metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m83-m84

Diacridinium trans-di­aqua­bis­(pyrazine-2,3-di­carboxyl­ato)cobaltate(II) hexa­hydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 21 November 2009; accepted 12 December 2009; online 19 December 2009)

The title compound, (C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O, consists of mononuclear trans-[Co(pz-2,3-dc)2(H2O)2]2− complex anions, (acrH)+ cations and uncoordinated water mol­ecules (acr is acridine and pz-2,3-dcH2 is pyrazine-2,3-dicarboxylic acid). The CoII atom, which lies on a crystallographic center of symmetry, has a slightly distorted octa­hedral coordination environment, with two N and two O atoms from the (pz-2,3-dc)2− ligands in the equatorial plane and with two water mol­ecules in axial positions. In the crystal, the components are held together by two distinct N—H⋯O and C—H⋯O hydrogen bonds with R22(8) graph-sets. The coordinated and uncoordinated water mol­ecules are also involved in O—H⋯O hydrogen bonds, which lead to the formation of layers with R33(12) graph-set motifs. Extensive ππ stacking inter­actions between parallel aromatic rings of the acridinium ions, with distances ranging from 3.533 (1) to 3.613 (1) Å, occur in the structure.

Related literature

For the crystal structure of pyrazine-2,3-dicarboxylic acid (pz-2,3-dcH2), see: Takusagawa & Shimada (1973[Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121-1123.]). For complexes of (pz-2,3-dcH2) and manganese, copper, zinc, iron and cadmium, see: Zou et al. (1999[Zou, J.-Z., Xu, Z., Chen, W. C., Lo, K. M. & You, X.-Z. (1999). Polyhedron, 18, 1507-1512.]); Konar et al. (2004[Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593-1597.]); Li et al. (2003[Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869-875.]); Xu et al. (2008[Xu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104.]); Ma et al. (2006[Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528-m2529.]). For complexes of (pz-2,3-dcH2) with main group metals such as calcium, magnesium and sodium, see: Ptasiewicz-Bak & Leciejewicz (1997a[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500.],b[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.]); Tombul et al. (2006[Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.]). For related structures of CoII complexes with py-2,6-dcH2, see: Aghabozorg et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.], 2009[Aghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826-m827.]); Aghabozorg, Attar Gharamaleki et al. (2008[Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187-m188.]). For a review article on proton-transfer agents and their metal complexes, see: Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O

  • Mr = 895.69

  • Triclinic, [P \overline 1]

  • a = 6.9434 (15) Å

  • b = 9.682 (2) Å

  • c = 15.660 (5) Å

  • α = 94.60 (2)°

  • β = 98.59 (2)°

  • γ = 110.656 (16)°

  • V = 963.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 120 K

  • 0.35 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.949

  • 10681 measured reflections

  • 5096 independent reflections

  • 3880 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.00

  • 5096 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3Wi 0.87 1.81 2.684 (2) 174
O1W—H1WB⋯O4Wii 0.90 1.77 2.658 (2) 174
O2W—H2WA⋯O2 0.90 1.92 2.813 (2) 172
O2W—H2WB⋯O4iii 0.88 1.90 2.776 (2) 177
O3W—H3WA⋯O1iv 0.88 1.95 2.806 (2) 165
O3W—H3WB⋯O2Wiv 0.83 2.01 2.809 (2) 162
O4W—H4WA⋯O3 0.93 1.91 2.789 (2) 156
O4W—H4WB⋯N4iii 0.96 1.92 2.848 (2) 163
N9—H9⋯O4 0.92 1.74 2.648 (2) 167
C11—H11⋯O3 0.95 2.50 3.365 (3) 151
C12—H12⋯O1v 0.95 2.49 3.431 (3) 171
C16—H16⋯O2Wvi 0.95 2.46 3.395 (3) 169
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y+1, z; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) x, y-1, z; (vi) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Pyrazine-2,3-dicarboxylic acid, (pz-2,3-dcH2), has proved to be well suited for the construction of multidimensional frameworks due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). A variety of metal-organic compounds of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically. Among many reported compounds, complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al.,2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006), are extensively studied. Also, there are many reported compounds of (pz-2,3-dcH2) with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. In this paper, we report the synthesis and crystal structure of the title compound.

The reaction of pyrazine-2,3-dicarboxlic acid, acridine and cobalt(II) nitrate, resulted in the formation of (acrH)2[Co(py-2,3-dc)2(H2O)2]. 6H2O. This compound consists of an anionic complex, trans-[Co(pz-2,3-dc)2(H2O)2]2–, counter-ions, (acrH)+ and six uncoordinated water molecules. In the title compound, two carboxylic COOH protons have been transferred to non-coordinated pyridine rings of acridine. The central Co1 atom is six-coordinated by N1, O1, N1i and O1i atoms in the equatorial plane from two (pz-2,3-dc)2– ligands and by two water molecules, O1W and O1Wi, in the axial position [symmetry code (i), -x + 1,-y + 2, -z] (see Fig. 1). The water molecules are almost perpendicular to the plane of (pz-2,3-dc)2– ligands, with O1W—Co1—N1, O1W—Co1—O1, O1Wi—Co1—N1 and O1Wi—Co1—O1 angles of 86.35 (6), 89.57 (6), 93.65 (6) and 90.43 (6)°, respectively.

The coordination environment around the CoII may be considered as slightly distorted octahedral. The anionic complex lies on a crystallographic center of symmetry. The mean Co—N and Co—O bond distances are 2.1237 (15) and 2.0738 (14) Å, respectively, which are consistent with our previously reported data for CoII complexes (Aghabozorg et al., 2009; Aghabozorg, Attar Gharamaleki et al., 2008; Aghabozorg, Manteghi, Sheshmani, 2008; Aghabozorg et al., 2007).

In the structure of the title compound, (acrH)+ cations and [Co(pz-2,3-dc)2(H2O)2]2– anions are linked together by two classical N9—H9···O4 and non-classical C11—H11···O3 hydrogen bonds by R22(8) graph-set motifs. Also, the coordinated and uncoordinated water molecules are involved in O—H···O hydrogen bonds with O···O distances of 2.658 (2) to 2.813 (2) Å, which lead to the formation of chains with R33(12) graph-set motifs (Fig. 2).

As can be seen from Fig. 3, in the crystal structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O, the spaces between two layers of (acrH)+ cations (as counter-ions) are filled with layers of [Co(pz-2,3-dc)2(H2O)2]2– fragments and uncoordinated water molecules. Also an extensive π-π stacking interaction between aromatic rings of acridinium ions, (acrH)+, with centroid-centroid distances ranging from 3.533 (1) to 3.613 (1) Å are observed (Fig.4).

Related literature top

For the X-ray structure of pyrazine-2,3-dicarboxylic acid (pz-2,3-dcH2), see: Takusagawa & Shimada (1973). For transition metal complexes of (pz-2,3-dcH2) and manganese, copper, zinc, iron and cadmium, see: Zou et al. (1999); Konar et al. (2004); Li et al. (2003); Xu et al. (2008); Ma et al. (2006). For complexes of (pz-2,3-dcH2) with main group metals such as calcium, magnesium and sodium, see: Ptasiewicz-Bak & Leciejewicz (1997a,b); Tombul et al. (2006). For related structures of CoII complexes with py-2,6-dcH2, see: Aghabozorg et al. (2007, 2009); Aghabozorg, Attar Gharamaleki et al. (2008). For a review article on proton-transfer agents and their metal complexes, see: Aghabozorg, Manteghi & Sheshmani (2008).

Experimental top

The reaction of cobalt(II) nitrate hexahydrate (72 mg, 0.25 mmol), acridine, acr, (90 mg, 0.5 mmol) and pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, (84 mg, 0.5 mmol) in a 1:2:2 molar ratio in aqueous solution resulted in the formation of needle like, pale yellow, (acrH)2[Co(pz-2,3-dc)2(H2O)2]. 6H2O crystals.

Refinement top

The hydrogen atoms of NH groups and those of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. Hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent isotropic thermal parameters of the carbon atoms to which corresponding H atoms are bonded. H(N) and H(O) were refined using AFIX 3 starting from their difference map positions, with Uiso = 1.2 times the equivalent isotropic thermal parameter of the bonded atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O; thermal ellipsoids are shown at the 50% probability level. Atoms marked with A suffix are related by the symmetry code: -x + 1, -y + 2, -z. The anionic complex lies on a crystallographic center of symmetry.
[Figure 2] Fig. 2. Hydrogen bonding with patterns of R22(8) and R33(12) graph sets link the different fragments together to form chains.
[Figure 3] Fig. 3. Crystal structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O compound; the spaces between two layers of (acrH)+ cations (as counter-ions) are filled with layers of [Co(pz-2,3-dc)2(H2O)2]2– fragments and uncoordinated water molecules.
[Figure 4] Fig. 4. Extensive π-π stacking interaction between aromatic rings of acridinium ions, (acrH)+, with centroid-centroid distances ranging from 3.533 (1) to 3.613 (1) Å.
Diacridinium trans-diaquabis(pyrazine-2,3-dicarboxylato)cobaltate(II) hexahydrate top
Crystal data top
(C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2OZ = 1
Mr = 895.69F(000) = 465
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9434 (15) ÅCell parameters from 548 reflections
b = 9.682 (2) Åθ = 3–30°
c = 15.660 (5) ŵ = 0.53 mm1
α = 94.60 (2)°T = 120 K
β = 98.59 (2)°Needles, yellow
γ = 110.656 (16)°0.35 × 0.10 × 0.10 mm
V = 963.9 (4) Å3
Data collection top
Bruker SMART 1000
diffractometer
5096 independent reflections
Radiation source: fine-focus sealed tube3880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.828, Tmax = 0.949k = 1313
10681 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.699P]
where P = (Fo2 + 2Fc2)/3
5096 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
(C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2Oγ = 110.656 (16)°
Mr = 895.69V = 963.9 (4) Å3
Triclinic, P1Z = 1
a = 6.9434 (15) ÅMo Kα radiation
b = 9.682 (2) ŵ = 0.53 mm1
c = 15.660 (5) ÅT = 120 K
α = 94.60 (2)°0.35 × 0.10 × 0.10 mm
β = 98.59 (2)°
Data collection top
Bruker SMART 1000
diffractometer
5096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3880 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.949Rint = 0.028
10681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
5096 reflectionsΔρmin = 0.51 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50001.00000.00000.01687 (10)
O1W0.7405 (2)1.11233 (14)0.10425 (8)0.0206 (3)
H1WA0.83271.07260.12060.025*
H1WB0.79891.21210.11400.025*
O10.3091 (2)0.90307 (14)0.08669 (8)0.0183 (3)
O20.2750 (2)0.74313 (15)0.18449 (9)0.0234 (3)
O30.3583 (2)0.45588 (14)0.18785 (9)0.0209 (3)
O40.6398 (2)0.63005 (15)0.27515 (8)0.0228 (3)
N10.5784 (2)0.81013 (16)0.01910 (10)0.0164 (3)
C20.5084 (3)0.74911 (19)0.08802 (11)0.0153 (3)
C30.5842 (3)0.64696 (19)0.12446 (11)0.0155 (3)
N40.7276 (2)0.60676 (17)0.09142 (10)0.0184 (3)
C50.7905 (3)0.6652 (2)0.02152 (12)0.0190 (4)
H50.88890.63640.00400.023*
C60.7162 (3)0.7669 (2)0.01489 (12)0.0184 (4)
H60.76410.80630.06480.022*
C70.3499 (3)0.8006 (2)0.12333 (11)0.0164 (4)
C80.5162 (3)0.5715 (2)0.20244 (12)0.0176 (4)
N90.6756 (2)0.47469 (17)0.40425 (10)0.0178 (3)
H90.64390.52600.36060.021*
C100.6512 (3)0.3295 (2)0.38850 (12)0.0180 (4)
C110.5757 (3)0.2510 (2)0.30266 (12)0.0219 (4)
H110.54270.29970.25550.026*
C120.5512 (3)0.1052 (2)0.28880 (13)0.0254 (4)
H120.49930.05230.23130.031*
C130.6007 (3)0.0294 (2)0.35744 (14)0.0270 (4)
H130.58270.07260.34560.032*
C140.6742 (3)0.1031 (2)0.44064 (14)0.0244 (4)
H140.70780.05210.48650.029*
C150.7007 (3)0.2556 (2)0.45909 (12)0.0196 (4)
C160.7708 (3)0.3361 (2)0.54300 (12)0.0216 (4)
H160.80460.28860.59070.026*
C170.7918 (3)0.4849 (2)0.55801 (12)0.0209 (4)
C180.8584 (3)0.5710 (3)0.64269 (13)0.0262 (4)
H180.89000.52630.69210.031*
C190.8771 (3)0.7159 (3)0.65353 (13)0.0289 (5)
H190.92110.77170.71030.035*
C200.8314 (3)0.7843 (2)0.58062 (14)0.0265 (4)
H200.84680.88620.58930.032*
C210.7655 (3)0.7068 (2)0.49774 (13)0.0222 (4)
H210.73510.75410.44940.027*
C220.7435 (3)0.5551 (2)0.48544 (12)0.0182 (4)
O2W0.0497 (2)0.83209 (16)0.29844 (9)0.0253 (3)
H2WA0.11360.79400.26190.030*
H2WB0.08140.77060.29060.030*
O3W0.9656 (2)0.99532 (15)0.83648 (9)0.0249 (3)
H3WA0.89471.02890.86930.030*
H3WB0.97171.03360.79110.030*
O4W0.0631 (2)0.40692 (16)0.12903 (11)0.0354 (4)
H4WA0.08020.45050.14980.042*
H4WB0.13290.47620.12880.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01858 (19)0.01624 (18)0.01689 (18)0.00754 (14)0.00289 (14)0.00433 (13)
O1W0.0203 (7)0.0165 (6)0.0235 (7)0.0078 (5)0.0020 (5)0.0013 (5)
O10.0197 (7)0.0186 (6)0.0206 (7)0.0107 (5)0.0053 (5)0.0055 (5)
O20.0269 (7)0.0250 (7)0.0257 (7)0.0136 (6)0.0131 (6)0.0110 (6)
O30.0201 (7)0.0187 (7)0.0229 (7)0.0056 (5)0.0034 (5)0.0059 (5)
O40.0231 (7)0.0261 (7)0.0162 (6)0.0059 (6)0.0014 (5)0.0056 (5)
N10.0192 (8)0.0143 (7)0.0147 (7)0.0058 (6)0.0022 (6)0.0014 (6)
C20.0153 (8)0.0130 (8)0.0158 (8)0.0048 (7)0.0003 (7)0.0004 (6)
C30.0170 (8)0.0138 (8)0.0145 (8)0.0051 (7)0.0009 (7)0.0010 (6)
N40.0200 (8)0.0174 (8)0.0190 (8)0.0083 (6)0.0035 (6)0.0034 (6)
C50.0209 (9)0.0189 (9)0.0187 (9)0.0088 (8)0.0051 (7)0.0008 (7)
C60.0210 (9)0.0187 (9)0.0170 (9)0.0083 (7)0.0051 (7)0.0040 (7)
C70.0161 (9)0.0155 (8)0.0167 (8)0.0053 (7)0.0018 (7)0.0019 (7)
C80.0196 (9)0.0191 (9)0.0184 (9)0.0112 (7)0.0048 (7)0.0059 (7)
N90.0164 (7)0.0229 (8)0.0145 (7)0.0076 (6)0.0024 (6)0.0049 (6)
C100.0140 (8)0.0232 (9)0.0172 (9)0.0066 (7)0.0035 (7)0.0055 (7)
C110.0197 (9)0.0261 (10)0.0186 (9)0.0075 (8)0.0021 (7)0.0038 (8)
C120.0225 (10)0.0259 (10)0.0235 (10)0.0049 (8)0.0031 (8)0.0005 (8)
C130.0239 (10)0.0197 (10)0.0358 (12)0.0060 (8)0.0055 (9)0.0045 (8)
C140.0207 (10)0.0260 (10)0.0292 (10)0.0095 (8)0.0057 (8)0.0125 (8)
C150.0140 (8)0.0267 (10)0.0198 (9)0.0083 (8)0.0045 (7)0.0076 (8)
C160.0160 (9)0.0334 (11)0.0187 (9)0.0107 (8)0.0054 (7)0.0113 (8)
C170.0152 (9)0.0336 (11)0.0155 (9)0.0103 (8)0.0036 (7)0.0052 (8)
C180.0193 (10)0.0457 (13)0.0158 (9)0.0152 (9)0.0028 (7)0.0025 (9)
C190.0205 (10)0.0442 (13)0.0200 (10)0.0124 (9)0.0025 (8)0.0059 (9)
C200.0189 (10)0.0321 (11)0.0286 (11)0.0111 (9)0.0052 (8)0.0031 (9)
C210.0187 (9)0.0275 (10)0.0222 (9)0.0108 (8)0.0044 (7)0.0032 (8)
C220.0125 (8)0.0265 (10)0.0157 (8)0.0072 (7)0.0039 (7)0.0025 (7)
O2W0.0227 (7)0.0293 (8)0.0244 (7)0.0093 (6)0.0071 (6)0.0042 (6)
O3W0.0291 (8)0.0299 (8)0.0247 (7)0.0196 (6)0.0079 (6)0.0088 (6)
O4W0.0200 (7)0.0181 (7)0.0642 (11)0.0077 (6)0.0030 (7)0.0021 (7)
Geometric parameters (Å, º) top
Co1—O1W2.0631 (14)C11—C121.356 (3)
Co1—O1Wi2.0631 (14)C11—H110.9500
Co1—O1i2.0846 (14)C12—C131.416 (3)
Co1—O12.0846 (14)C12—H120.9500
Co1—N12.1237 (15)C13—C141.365 (3)
Co1—N1i2.1237 (15)C13—H130.9500
O1W—H1WA0.8741C14—C151.422 (3)
O1W—H1WB0.8956C14—H140.9500
O1—C71.279 (2)C15—C161.396 (3)
O2—C71.236 (2)C16—C171.393 (3)
O3—C81.235 (2)C16—H160.9500
O4—C81.271 (2)C17—C181.426 (3)
N1—C61.332 (2)C17—C221.427 (3)
N1—C21.344 (2)C18—C191.357 (3)
C2—C31.396 (2)C18—H180.9500
C2—C71.513 (2)C19—C201.416 (3)
C3—N41.344 (2)C19—H190.9500
C3—C81.523 (2)C20—C211.372 (3)
N4—C51.333 (2)C20—H200.9500
C5—C61.386 (3)C21—C221.416 (3)
C5—H50.9500C21—H210.9500
C6—H60.9500O2W—H2WA0.9045
N9—C101.352 (2)O2W—H2WB0.8778
N9—C221.359 (2)O3W—H3WA0.8802
N9—H90.9214O3W—H3WB0.8268
C10—C111.416 (3)O4W—H4WA0.9266
C10—C151.428 (3)O4W—H4WB0.9560
O1W—Co1—O1Wi180.00 (8)C22—N9—H9114.8
O1W—Co1—O1i90.43 (6)N9—C10—C11120.24 (16)
O1Wi—Co1—O1i89.57 (6)N9—C10—C15119.61 (17)
O1W—Co1—O189.57 (6)C11—C10—C15120.15 (18)
O1Wi—Co1—O190.43 (6)C12—C11—C10119.03 (18)
O1i—Co1—O1180.0C12—C11—H11120.5
O1W—Co1—N186.35 (6)C10—C11—H11120.5
O1Wi—Co1—N193.65 (6)C11—C12—C13122.01 (19)
O1i—Co1—N1101.76 (6)C11—C12—H12119.0
O1—Co1—N178.24 (6)C13—C12—H12119.0
O1W—Co1—N1i93.65 (6)C14—C13—C12119.96 (19)
O1Wi—Co1—N1i86.35 (6)C14—C13—H13120.0
O1i—Co1—N1i78.24 (6)C12—C13—H13120.0
O1—Co1—N1i101.76 (6)C13—C14—C15120.42 (18)
N1—Co1—N1i180.000 (1)C13—C14—H14119.8
Co1—O1W—H1WA118.4C15—C14—H14119.8
Co1—O1W—H1WB121.9C16—C15—C14123.17 (18)
H1WA—O1W—H1WB111.1C16—C15—C10118.39 (18)
C7—O1—Co1116.07 (11)C14—C15—C10118.43 (18)
C6—N1—C2118.22 (15)C17—C16—C15121.10 (17)
C6—N1—Co1128.58 (12)C17—C16—H16119.5
C2—N1—Co1111.60 (12)C15—C16—H16119.5
N1—C2—C3120.57 (16)C16—C17—C18123.23 (18)
N1—C2—C7116.06 (15)C16—C17—C22118.67 (17)
C3—C2—C7123.36 (16)C18—C17—C22118.11 (19)
N4—C3—C2120.99 (16)C19—C18—C17120.76 (19)
N4—C3—C8114.13 (15)C19—C18—H18119.6
C2—C3—C8124.87 (16)C17—C18—H18119.6
C5—N4—C3117.53 (15)C18—C19—C20120.36 (19)
N4—C5—C6121.74 (17)C18—C19—H19119.8
N4—C5—H5119.1C20—C19—H19119.8
C6—C5—H5119.1C21—C20—C19121.5 (2)
N1—C6—C5120.89 (17)C21—C20—H20119.3
N1—C6—H6119.6C19—C20—H20119.3
C5—C6—H6119.6C20—C21—C22118.87 (19)
O2—C7—O1126.20 (17)C20—C21—H21120.6
O2—C7—C2118.32 (16)C22—C21—H21120.6
O1—C7—C2115.47 (15)N9—C22—C21120.25 (17)
O3—C8—O4127.19 (17)N9—C22—C17119.30 (18)
O3—C8—C3117.46 (16)C21—C22—C17120.45 (17)
O4—C8—C3115.12 (16)H2WA—O2W—H2WB107.6
C10—N9—C22122.92 (16)H3WA—O3W—H3WB110.8
C10—N9—H9122.3H4WA—O4W—H4WB113.8
O1W—Co1—O1—C773.69 (13)C2—C3—C8—O386.2 (2)
O1Wi—Co1—O1—C7106.31 (13)N4—C3—C8—O481.2 (2)
N1—Co1—O1—C712.67 (12)C2—C3—C8—O499.0 (2)
N1i—Co1—O1—C7167.33 (12)C22—N9—C10—C11178.69 (17)
O1W—Co1—N1—C688.80 (16)C22—N9—C10—C150.9 (3)
O1Wi—Co1—N1—C691.19 (16)N9—C10—C11—C12179.51 (18)
O1i—Co1—N1—C60.87 (16)C15—C10—C11—C120.1 (3)
O1—Co1—N1—C6179.13 (16)C10—C11—C12—C130.6 (3)
O1W—Co1—N1—C276.28 (12)C11—C12—C13—C140.4 (3)
O1Wi—Co1—N1—C2103.72 (12)C12—C13—C14—C150.3 (3)
O1i—Co1—N1—C2165.96 (12)C13—C14—C15—C16178.53 (19)
O1—Co1—N1—C214.04 (12)C13—C14—C15—C100.7 (3)
C6—N1—C2—C32.1 (3)N9—C10—C15—C160.9 (3)
Co1—N1—C2—C3164.70 (13)C11—C10—C15—C16178.74 (17)
C6—N1—C2—C7179.20 (15)N9—C10—C15—C14179.83 (17)
Co1—N1—C2—C714.00 (19)C11—C10—C15—C140.6 (3)
N1—C2—C3—N40.3 (3)C14—C15—C16—C17179.19 (18)
C7—C2—C3—N4178.91 (16)C10—C15—C16—C170.1 (3)
N1—C2—C3—C8179.89 (16)C15—C16—C17—C18178.62 (18)
C7—C2—C3—C81.3 (3)C15—C16—C17—C221.0 (3)
C2—C3—N4—C51.6 (3)C16—C17—C18—C19179.72 (19)
C8—C3—N4—C5178.23 (16)C22—C17—C18—C190.7 (3)
C3—N4—C5—C61.7 (3)C17—C18—C19—C200.3 (3)
C2—N1—C6—C52.0 (3)C18—C19—C20—C210.7 (3)
Co1—N1—C6—C5162.24 (14)C19—C20—C21—C220.1 (3)
N4—C5—C6—N10.1 (3)C10—N9—C22—C21179.90 (17)
Co1—O1—C7—O2169.89 (15)C10—N9—C22—C170.0 (3)
Co1—O1—C7—C28.93 (19)C20—C21—C22—N9179.06 (17)
N1—C2—C7—O2177.20 (16)C20—C21—C22—C170.8 (3)
C3—C2—C7—O24.1 (3)C16—C17—C22—N91.0 (3)
N1—C2—C7—O13.9 (2)C18—C17—C22—N9178.67 (16)
C3—C2—C7—O1174.79 (16)C16—C17—C22—C21179.16 (17)
N4—C3—C8—O393.7 (2)C18—C17—C22—C211.2 (3)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wii0.871.812.684 (2)174
O1W—H1WB···O4Wiii0.901.772.658 (2)174
O2W—H2WA···O20.901.922.813 (2)172
O2W—H2WB···O4iv0.881.902.776 (2)177
O3W—H3WA···O1v0.881.952.806 (2)165
O3W—H3WB···O2Wv0.832.012.809 (2)162
O4W—H4WA···O30.931.912.789 (2)156
O4W—H4WB···N4iv0.961.922.848 (2)163
N9—H9···O40.921.742.648 (2)167
C11—H11···O30.952.503.365 (3)151
C12—H12···O1vi0.952.493.431 (3)171
C16—H16···O2Wvii0.952.463.395 (3)169
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x, y1, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O
Mr895.69
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.9434 (15), 9.682 (2), 15.660 (5)
α, β, γ (°)94.60 (2), 98.59 (2), 110.656 (16)
V3)963.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.828, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
10681, 5096, 3880
Rint0.028
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.00
No. of reflections5096
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wi0.871.812.684 (2)174
O1W—H1WB···O4Wii0.901.772.658 (2)174
O2W—H2WA···O20.901.922.813 (2)172
O2W—H2WB···O4iii0.881.902.776 (2)177
O3W—H3WA···O1iv0.881.952.806 (2)165
O3W—H3WB···O2Wiv0.832.012.809 (2)162
O4W—H4WA···O30.931.912.789 (2)156
O4W—H4WB···N4iii0.961.922.848 (2)163
N9—H9···O40.921.742.648 (2)167
C11—H11···O30.952.503.365 (3)151
C12—H12···O1v0.952.493.431 (3)171
C16—H16···O2Wvi0.952.463.395 (3)169
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y1, z; (vi) x+1, y+1, z+1.
 

References

First citationAghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKonar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869–875.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123.  CrossRef Web of Science Google Scholar
First citationTombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, J.-Z., Xu, Z., Chen, W. C., Lo, K. M. & You, X.-Z. (1999). Polyhedron, 18, 1507–1512.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m83-m84
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds