metal-organic compounds
Diacridinium trans-diaquabis(pyrazine-2,3-dicarboxylato)cobaltate(II) hexahydrate
aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
The title compound, (C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O, consists of mononuclear trans-[Co(pz-2,3-dc)2(H2O)2]2− complex anions, (acrH)+ cations and uncoordinated water molecules (acr is acridine and pz-2,3-dcH2 is pyrazine-2,3-dicarboxylic acid). The CoII atom, which lies on a crystallographic center of symmetry, has a slightly distorted octahedral coordination environment, with two N and two O atoms from the (pz-2,3-dc)2− ligands in the equatorial plane and with two water molecules in axial positions. In the crystal, the components are held together by two distinct N—H⋯O and C—H⋯O hydrogen bonds with R22(8) graph-sets. The coordinated and uncoordinated water molecules are also involved in O—H⋯O hydrogen bonds, which lead to the formation of layers with R33(12) graph-set motifs. Extensive π–π stacking interactions between parallel aromatic rings of the acridinium ions, with distances ranging from 3.533 (1) to 3.613 (1) Å, occur in the structure.
Related literature
For the 2), see: Takusagawa & Shimada (1973). For complexes of (pz-2,3-dcH2) and manganese, copper, zinc, iron and cadmium, see: Zou et al. (1999); Konar et al. (2004); Li et al. (2003); Xu et al. (2008); Ma et al. (2006). For complexes of (pz-2,3-dcH2) with main group metals such as calcium, magnesium and sodium, see: Ptasiewicz-Bak & Leciejewicz (1997a,b); Tombul et al. (2006). For related structures of CoII complexes with py-2,6-dcH2, see: Aghabozorg et al. (2007, 2009); Aghabozorg, Attar Gharamaleki et al. (2008). For a review article on proton-transfer agents and their metal complexes, see: Aghabozorg, Manteghi & Sheshmani (2008).
of pyrazine-2,3-dicarboxylic acid (pz-2,3-dcHExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809053628/om2301sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053628/om2301Isup2.hkl
The reaction of cobalt(II) nitrate hexahydrate (72 mg, 0.25 mmol), acridine, acr, (90 mg, 0.5 mmol) and pyrazine-2,3-dicarboxylic acid, pz-2,3-dcH2, (84 mg, 0.5 mmol) in a 1:2:2 molar ratio in aqueous solution resulted in the formation of needle like, pale yellow, (acrH)2[Co(pz-2,3-dc)2(H2O)2]. 6H2O crystals.
The hydrogen atoms of NH groups and those of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. Hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent isotropic thermal parameters of the carbon atoms to which corresponding H atoms are bonded. H(N) and H(O) were refined using AFIX 3 starting from their difference map positions, with Uiso = 1.2 times the equivalent isotropic thermal parameter of the bonded atom.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O; thermal ellipsoids are shown at the 50% probability level. Atoms marked with A suffix are related by the symmetry code: -x + 1, -y + 2, -z. The anionic complex lies on a crystallographic center of symmetry. | |
Fig. 2. Hydrogen bonding with patterns of R22(8) and R33(12) graph sets link the different fragments together to form chains. | |
Fig. 3. Crystal structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O compound; the spaces between two layers of (acrH)+ cations (as counter-ions) are filled with layers of [Co(pz-2,3-dc)2(H2O)2]2– fragments and uncoordinated water molecules. | |
Fig. 4. Extensive π-π stacking interaction between aromatic rings of acridinium ions, (acrH)+, with centroid-centroid distances ranging from 3.533 (1) to 3.613 (1) Å. |
(C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O | Z = 1 |
Mr = 895.69 | F(000) = 465 |
Triclinic, P1 | Dx = 1.543 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9434 (15) Å | Cell parameters from 548 reflections |
b = 9.682 (2) Å | θ = 3–30° |
c = 15.660 (5) Å | µ = 0.53 mm−1 |
α = 94.60 (2)° | T = 120 K |
β = 98.59 (2)° | Needles, yellow |
γ = 110.656 (16)° | 0.35 × 0.10 × 0.10 mm |
V = 963.9 (4) Å3 |
Bruker SMART 1000 diffractometer | 5096 independent reflections |
Radiation source: fine-focus sealed tube | 3880 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 29.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.828, Tmax = 0.949 | k = −13→13 |
10681 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.699P] where P = (Fo2 + 2Fc2)/3 |
5096 reflections | (Δ/σ)max < 0.001 |
277 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
(C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O | γ = 110.656 (16)° |
Mr = 895.69 | V = 963.9 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.9434 (15) Å | Mo Kα radiation |
b = 9.682 (2) Å | µ = 0.53 mm−1 |
c = 15.660 (5) Å | T = 120 K |
α = 94.60 (2)° | 0.35 × 0.10 × 0.10 mm |
β = 98.59 (2)° |
Bruker SMART 1000 diffractometer | 5096 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3880 reflections with I > 2σ(I) |
Tmin = 0.828, Tmax = 0.949 | Rint = 0.028 |
10681 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.53 e Å−3 |
5096 reflections | Δρmin = −0.51 e Å−3 |
277 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 1.0000 | 0.0000 | 0.01687 (10) | |
O1W | 0.7405 (2) | 1.11233 (14) | 0.10425 (8) | 0.0206 (3) | |
H1WA | 0.8327 | 1.0726 | 0.1206 | 0.025* | |
H1WB | 0.7989 | 1.2121 | 0.1140 | 0.025* | |
O1 | 0.3091 (2) | 0.90307 (14) | 0.08669 (8) | 0.0183 (3) | |
O2 | 0.2750 (2) | 0.74313 (15) | 0.18449 (9) | 0.0234 (3) | |
O3 | 0.3583 (2) | 0.45588 (14) | 0.18785 (9) | 0.0209 (3) | |
O4 | 0.6398 (2) | 0.63005 (15) | 0.27515 (8) | 0.0228 (3) | |
N1 | 0.5784 (2) | 0.81013 (16) | 0.01910 (10) | 0.0164 (3) | |
C2 | 0.5084 (3) | 0.74911 (19) | 0.08802 (11) | 0.0153 (3) | |
C3 | 0.5842 (3) | 0.64696 (19) | 0.12446 (11) | 0.0155 (3) | |
N4 | 0.7276 (2) | 0.60676 (17) | 0.09142 (10) | 0.0184 (3) | |
C5 | 0.7905 (3) | 0.6652 (2) | 0.02152 (12) | 0.0190 (4) | |
H5 | 0.8889 | 0.6364 | −0.0040 | 0.023* | |
C6 | 0.7162 (3) | 0.7669 (2) | −0.01489 (12) | 0.0184 (4) | |
H6 | 0.7641 | 0.8063 | −0.0648 | 0.022* | |
C7 | 0.3499 (3) | 0.8006 (2) | 0.12333 (11) | 0.0164 (4) | |
C8 | 0.5162 (3) | 0.5715 (2) | 0.20244 (12) | 0.0176 (4) | |
N9 | 0.6756 (2) | 0.47469 (17) | 0.40425 (10) | 0.0178 (3) | |
H9 | 0.6439 | 0.5260 | 0.3606 | 0.021* | |
C10 | 0.6512 (3) | 0.3295 (2) | 0.38850 (12) | 0.0180 (4) | |
C11 | 0.5757 (3) | 0.2510 (2) | 0.30266 (12) | 0.0219 (4) | |
H11 | 0.5427 | 0.2997 | 0.2555 | 0.026* | |
C12 | 0.5512 (3) | 0.1052 (2) | 0.28880 (13) | 0.0254 (4) | |
H12 | 0.4993 | 0.0523 | 0.2313 | 0.031* | |
C13 | 0.6007 (3) | 0.0294 (2) | 0.35744 (14) | 0.0270 (4) | |
H13 | 0.5827 | −0.0726 | 0.3456 | 0.032* | |
C14 | 0.6742 (3) | 0.1031 (2) | 0.44064 (14) | 0.0244 (4) | |
H14 | 0.7078 | 0.0521 | 0.4865 | 0.029* | |
C15 | 0.7007 (3) | 0.2556 (2) | 0.45909 (12) | 0.0196 (4) | |
C16 | 0.7708 (3) | 0.3361 (2) | 0.54300 (12) | 0.0216 (4) | |
H16 | 0.8046 | 0.2886 | 0.5907 | 0.026* | |
C17 | 0.7918 (3) | 0.4849 (2) | 0.55801 (12) | 0.0209 (4) | |
C18 | 0.8584 (3) | 0.5710 (3) | 0.64269 (13) | 0.0262 (4) | |
H18 | 0.8900 | 0.5263 | 0.6921 | 0.031* | |
C19 | 0.8771 (3) | 0.7159 (3) | 0.65353 (13) | 0.0289 (5) | |
H19 | 0.9211 | 0.7717 | 0.7103 | 0.035* | |
C20 | 0.8314 (3) | 0.7843 (2) | 0.58062 (14) | 0.0265 (4) | |
H20 | 0.8468 | 0.8862 | 0.5893 | 0.032* | |
C21 | 0.7655 (3) | 0.7068 (2) | 0.49774 (13) | 0.0222 (4) | |
H21 | 0.7351 | 0.7541 | 0.4494 | 0.027* | |
C22 | 0.7435 (3) | 0.5551 (2) | 0.48544 (12) | 0.0182 (4) | |
O2W | 0.0497 (2) | 0.83209 (16) | 0.29844 (9) | 0.0253 (3) | |
H2WA | 0.1136 | 0.7940 | 0.2619 | 0.030* | |
H2WB | −0.0814 | 0.7706 | 0.2906 | 0.030* | |
O3W | 0.9656 (2) | 0.99532 (15) | 0.83648 (9) | 0.0249 (3) | |
H3WA | 0.8947 | 1.0289 | 0.8693 | 0.030* | |
H3WB | 0.9717 | 1.0336 | 0.7911 | 0.030* | |
O4W | −0.0631 (2) | 0.40692 (16) | 0.12903 (11) | 0.0354 (4) | |
H4WA | 0.0802 | 0.4505 | 0.1498 | 0.042* | |
H4WB | −0.1329 | 0.4762 | 0.1288 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01858 (19) | 0.01624 (18) | 0.01689 (18) | 0.00754 (14) | 0.00289 (14) | 0.00433 (13) |
O1W | 0.0203 (7) | 0.0165 (6) | 0.0235 (7) | 0.0078 (5) | −0.0020 (5) | 0.0013 (5) |
O1 | 0.0197 (7) | 0.0186 (6) | 0.0206 (7) | 0.0107 (5) | 0.0053 (5) | 0.0055 (5) |
O2 | 0.0269 (7) | 0.0250 (7) | 0.0257 (7) | 0.0136 (6) | 0.0131 (6) | 0.0110 (6) |
O3 | 0.0201 (7) | 0.0187 (7) | 0.0229 (7) | 0.0056 (5) | 0.0034 (5) | 0.0059 (5) |
O4 | 0.0231 (7) | 0.0261 (7) | 0.0162 (6) | 0.0059 (6) | 0.0014 (5) | 0.0056 (5) |
N1 | 0.0192 (8) | 0.0143 (7) | 0.0147 (7) | 0.0058 (6) | 0.0022 (6) | 0.0014 (6) |
C2 | 0.0153 (8) | 0.0130 (8) | 0.0158 (8) | 0.0048 (7) | 0.0003 (7) | −0.0004 (6) |
C3 | 0.0170 (8) | 0.0138 (8) | 0.0145 (8) | 0.0051 (7) | 0.0009 (7) | 0.0010 (6) |
N4 | 0.0200 (8) | 0.0174 (8) | 0.0190 (8) | 0.0083 (6) | 0.0035 (6) | 0.0034 (6) |
C5 | 0.0209 (9) | 0.0189 (9) | 0.0187 (9) | 0.0088 (8) | 0.0051 (7) | 0.0008 (7) |
C6 | 0.0210 (9) | 0.0187 (9) | 0.0170 (9) | 0.0083 (7) | 0.0051 (7) | 0.0040 (7) |
C7 | 0.0161 (9) | 0.0155 (8) | 0.0167 (8) | 0.0053 (7) | 0.0018 (7) | 0.0019 (7) |
C8 | 0.0196 (9) | 0.0191 (9) | 0.0184 (9) | 0.0112 (7) | 0.0048 (7) | 0.0059 (7) |
N9 | 0.0164 (7) | 0.0229 (8) | 0.0145 (7) | 0.0076 (6) | 0.0024 (6) | 0.0049 (6) |
C10 | 0.0140 (8) | 0.0232 (9) | 0.0172 (9) | 0.0066 (7) | 0.0035 (7) | 0.0055 (7) |
C11 | 0.0197 (9) | 0.0261 (10) | 0.0186 (9) | 0.0075 (8) | 0.0021 (7) | 0.0038 (8) |
C12 | 0.0225 (10) | 0.0259 (10) | 0.0235 (10) | 0.0049 (8) | 0.0031 (8) | 0.0005 (8) |
C13 | 0.0239 (10) | 0.0197 (10) | 0.0358 (12) | 0.0060 (8) | 0.0055 (9) | 0.0045 (8) |
C14 | 0.0207 (10) | 0.0260 (10) | 0.0292 (10) | 0.0095 (8) | 0.0057 (8) | 0.0125 (8) |
C15 | 0.0140 (8) | 0.0267 (10) | 0.0198 (9) | 0.0083 (8) | 0.0045 (7) | 0.0076 (8) |
C16 | 0.0160 (9) | 0.0334 (11) | 0.0187 (9) | 0.0107 (8) | 0.0054 (7) | 0.0113 (8) |
C17 | 0.0152 (9) | 0.0336 (11) | 0.0155 (9) | 0.0103 (8) | 0.0036 (7) | 0.0052 (8) |
C18 | 0.0193 (10) | 0.0457 (13) | 0.0158 (9) | 0.0152 (9) | 0.0028 (7) | 0.0025 (9) |
C19 | 0.0205 (10) | 0.0442 (13) | 0.0200 (10) | 0.0124 (9) | 0.0025 (8) | −0.0059 (9) |
C20 | 0.0189 (10) | 0.0321 (11) | 0.0286 (11) | 0.0111 (9) | 0.0052 (8) | −0.0031 (9) |
C21 | 0.0187 (9) | 0.0275 (10) | 0.0222 (9) | 0.0108 (8) | 0.0044 (7) | 0.0032 (8) |
C22 | 0.0125 (8) | 0.0265 (10) | 0.0157 (8) | 0.0072 (7) | 0.0039 (7) | 0.0025 (7) |
O2W | 0.0227 (7) | 0.0293 (8) | 0.0244 (7) | 0.0093 (6) | 0.0071 (6) | 0.0042 (6) |
O3W | 0.0291 (8) | 0.0299 (8) | 0.0247 (7) | 0.0196 (6) | 0.0079 (6) | 0.0088 (6) |
O4W | 0.0200 (7) | 0.0181 (7) | 0.0642 (11) | 0.0077 (6) | −0.0030 (7) | 0.0021 (7) |
Co1—O1W | 2.0631 (14) | C11—C12 | 1.356 (3) |
Co1—O1Wi | 2.0631 (14) | C11—H11 | 0.9500 |
Co1—O1i | 2.0846 (14) | C12—C13 | 1.416 (3) |
Co1—O1 | 2.0846 (14) | C12—H12 | 0.9500 |
Co1—N1 | 2.1237 (15) | C13—C14 | 1.365 (3) |
Co1—N1i | 2.1237 (15) | C13—H13 | 0.9500 |
O1W—H1WA | 0.8741 | C14—C15 | 1.422 (3) |
O1W—H1WB | 0.8956 | C14—H14 | 0.9500 |
O1—C7 | 1.279 (2) | C15—C16 | 1.396 (3) |
O2—C7 | 1.236 (2) | C16—C17 | 1.393 (3) |
O3—C8 | 1.235 (2) | C16—H16 | 0.9500 |
O4—C8 | 1.271 (2) | C17—C18 | 1.426 (3) |
N1—C6 | 1.332 (2) | C17—C22 | 1.427 (3) |
N1—C2 | 1.344 (2) | C18—C19 | 1.357 (3) |
C2—C3 | 1.396 (2) | C18—H18 | 0.9500 |
C2—C7 | 1.513 (2) | C19—C20 | 1.416 (3) |
C3—N4 | 1.344 (2) | C19—H19 | 0.9500 |
C3—C8 | 1.523 (2) | C20—C21 | 1.372 (3) |
N4—C5 | 1.333 (2) | C20—H20 | 0.9500 |
C5—C6 | 1.386 (3) | C21—C22 | 1.416 (3) |
C5—H5 | 0.9500 | C21—H21 | 0.9500 |
C6—H6 | 0.9500 | O2W—H2WA | 0.9045 |
N9—C10 | 1.352 (2) | O2W—H2WB | 0.8778 |
N9—C22 | 1.359 (2) | O3W—H3WA | 0.8802 |
N9—H9 | 0.9214 | O3W—H3WB | 0.8268 |
C10—C11 | 1.416 (3) | O4W—H4WA | 0.9266 |
C10—C15 | 1.428 (3) | O4W—H4WB | 0.9560 |
O1W—Co1—O1Wi | 180.00 (8) | C22—N9—H9 | 114.8 |
O1W—Co1—O1i | 90.43 (6) | N9—C10—C11 | 120.24 (16) |
O1Wi—Co1—O1i | 89.57 (6) | N9—C10—C15 | 119.61 (17) |
O1W—Co1—O1 | 89.57 (6) | C11—C10—C15 | 120.15 (18) |
O1Wi—Co1—O1 | 90.43 (6) | C12—C11—C10 | 119.03 (18) |
O1i—Co1—O1 | 180.0 | C12—C11—H11 | 120.5 |
O1W—Co1—N1 | 86.35 (6) | C10—C11—H11 | 120.5 |
O1Wi—Co1—N1 | 93.65 (6) | C11—C12—C13 | 122.01 (19) |
O1i—Co1—N1 | 101.76 (6) | C11—C12—H12 | 119.0 |
O1—Co1—N1 | 78.24 (6) | C13—C12—H12 | 119.0 |
O1W—Co1—N1i | 93.65 (6) | C14—C13—C12 | 119.96 (19) |
O1Wi—Co1—N1i | 86.35 (6) | C14—C13—H13 | 120.0 |
O1i—Co1—N1i | 78.24 (6) | C12—C13—H13 | 120.0 |
O1—Co1—N1i | 101.76 (6) | C13—C14—C15 | 120.42 (18) |
N1—Co1—N1i | 180.000 (1) | C13—C14—H14 | 119.8 |
Co1—O1W—H1WA | 118.4 | C15—C14—H14 | 119.8 |
Co1—O1W—H1WB | 121.9 | C16—C15—C14 | 123.17 (18) |
H1WA—O1W—H1WB | 111.1 | C16—C15—C10 | 118.39 (18) |
C7—O1—Co1 | 116.07 (11) | C14—C15—C10 | 118.43 (18) |
C6—N1—C2 | 118.22 (15) | C17—C16—C15 | 121.10 (17) |
C6—N1—Co1 | 128.58 (12) | C17—C16—H16 | 119.5 |
C2—N1—Co1 | 111.60 (12) | C15—C16—H16 | 119.5 |
N1—C2—C3 | 120.57 (16) | C16—C17—C18 | 123.23 (18) |
N1—C2—C7 | 116.06 (15) | C16—C17—C22 | 118.67 (17) |
C3—C2—C7 | 123.36 (16) | C18—C17—C22 | 118.11 (19) |
N4—C3—C2 | 120.99 (16) | C19—C18—C17 | 120.76 (19) |
N4—C3—C8 | 114.13 (15) | C19—C18—H18 | 119.6 |
C2—C3—C8 | 124.87 (16) | C17—C18—H18 | 119.6 |
C5—N4—C3 | 117.53 (15) | C18—C19—C20 | 120.36 (19) |
N4—C5—C6 | 121.74 (17) | C18—C19—H19 | 119.8 |
N4—C5—H5 | 119.1 | C20—C19—H19 | 119.8 |
C6—C5—H5 | 119.1 | C21—C20—C19 | 121.5 (2) |
N1—C6—C5 | 120.89 (17) | C21—C20—H20 | 119.3 |
N1—C6—H6 | 119.6 | C19—C20—H20 | 119.3 |
C5—C6—H6 | 119.6 | C20—C21—C22 | 118.87 (19) |
O2—C7—O1 | 126.20 (17) | C20—C21—H21 | 120.6 |
O2—C7—C2 | 118.32 (16) | C22—C21—H21 | 120.6 |
O1—C7—C2 | 115.47 (15) | N9—C22—C21 | 120.25 (17) |
O3—C8—O4 | 127.19 (17) | N9—C22—C17 | 119.30 (18) |
O3—C8—C3 | 117.46 (16) | C21—C22—C17 | 120.45 (17) |
O4—C8—C3 | 115.12 (16) | H2WA—O2W—H2WB | 107.6 |
C10—N9—C22 | 122.92 (16) | H3WA—O3W—H3WB | 110.8 |
C10—N9—H9 | 122.3 | H4WA—O4W—H4WB | 113.8 |
O1W—Co1—O1—C7 | −73.69 (13) | C2—C3—C8—O3 | 86.2 (2) |
O1Wi—Co1—O1—C7 | 106.31 (13) | N4—C3—C8—O4 | 81.2 (2) |
N1—Co1—O1—C7 | 12.67 (12) | C2—C3—C8—O4 | −99.0 (2) |
N1i—Co1—O1—C7 | −167.33 (12) | C22—N9—C10—C11 | 178.69 (17) |
O1W—Co1—N1—C6 | −88.80 (16) | C22—N9—C10—C15 | −0.9 (3) |
O1Wi—Co1—N1—C6 | 91.19 (16) | N9—C10—C11—C12 | −179.51 (18) |
O1i—Co1—N1—C6 | 0.87 (16) | C15—C10—C11—C12 | 0.1 (3) |
O1—Co1—N1—C6 | −179.13 (16) | C10—C11—C12—C13 | −0.6 (3) |
O1W—Co1—N1—C2 | 76.28 (12) | C11—C12—C13—C14 | 0.4 (3) |
O1Wi—Co1—N1—C2 | −103.72 (12) | C12—C13—C14—C15 | 0.3 (3) |
O1i—Co1—N1—C2 | 165.96 (12) | C13—C14—C15—C16 | 178.53 (19) |
O1—Co1—N1—C2 | −14.04 (12) | C13—C14—C15—C10 | −0.7 (3) |
C6—N1—C2—C3 | 2.1 (3) | N9—C10—C15—C16 | 0.9 (3) |
Co1—N1—C2—C3 | −164.70 (13) | C11—C10—C15—C16 | −178.74 (17) |
C6—N1—C2—C7 | −179.20 (15) | N9—C10—C15—C14 | −179.83 (17) |
Co1—N1—C2—C7 | 14.00 (19) | C11—C10—C15—C14 | 0.6 (3) |
N1—C2—C3—N4 | −0.3 (3) | C14—C15—C16—C17 | −179.19 (18) |
C7—C2—C3—N4 | −178.91 (16) | C10—C15—C16—C17 | 0.1 (3) |
N1—C2—C3—C8 | 179.89 (16) | C15—C16—C17—C18 | 178.62 (18) |
C7—C2—C3—C8 | 1.3 (3) | C15—C16—C17—C22 | −1.0 (3) |
C2—C3—N4—C5 | −1.6 (3) | C16—C17—C18—C19 | 179.72 (19) |
C8—C3—N4—C5 | 178.23 (16) | C22—C17—C18—C19 | −0.7 (3) |
C3—N4—C5—C6 | 1.7 (3) | C17—C18—C19—C20 | −0.3 (3) |
C2—N1—C6—C5 | −2.0 (3) | C18—C19—C20—C21 | 0.7 (3) |
Co1—N1—C6—C5 | 162.24 (14) | C19—C20—C21—C22 | −0.1 (3) |
N4—C5—C6—N1 | 0.1 (3) | C10—N9—C22—C21 | −179.90 (17) |
Co1—O1—C7—O2 | 169.89 (15) | C10—N9—C22—C17 | 0.0 (3) |
Co1—O1—C7—C2 | −8.93 (19) | C20—C21—C22—N9 | 179.06 (17) |
N1—C2—C7—O2 | 177.20 (16) | C20—C21—C22—C17 | −0.8 (3) |
C3—C2—C7—O2 | −4.1 (3) | C16—C17—C22—N9 | 1.0 (3) |
N1—C2—C7—O1 | −3.9 (2) | C18—C17—C22—N9 | −178.67 (16) |
C3—C2—C7—O1 | 174.79 (16) | C16—C17—C22—C21 | −179.16 (17) |
N4—C3—C8—O3 | −93.7 (2) | C18—C17—C22—C21 | 1.2 (3) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3Wii | 0.87 | 1.81 | 2.684 (2) | 174 |
O1W—H1WB···O4Wiii | 0.90 | 1.77 | 2.658 (2) | 174 |
O2W—H2WA···O2 | 0.90 | 1.92 | 2.813 (2) | 172 |
O2W—H2WB···O4iv | 0.88 | 1.90 | 2.776 (2) | 177 |
O3W—H3WA···O1v | 0.88 | 1.95 | 2.806 (2) | 165 |
O3W—H3WB···O2Wv | 0.83 | 2.01 | 2.809 (2) | 162 |
O4W—H4WA···O3 | 0.93 | 1.91 | 2.789 (2) | 156 |
O4W—H4WB···N4iv | 0.96 | 1.92 | 2.848 (2) | 163 |
N9—H9···O4 | 0.92 | 1.74 | 2.648 (2) | 167 |
C11—H11···O3 | 0.95 | 2.50 | 3.365 (3) | 151 |
C12—H12···O1vi | 0.95 | 2.49 | 3.431 (3) | 171 |
C16—H16···O2Wvii | 0.95 | 2.46 | 3.395 (3) | 169 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) x+1, y+1, z; (iv) x−1, y, z; (v) −x+1, −y+2, −z+1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C13H10N)2[Co(C6H2N2O4)2(H2O)2]·6H2O |
Mr | 895.69 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 6.9434 (15), 9.682 (2), 15.660 (5) |
α, β, γ (°) | 94.60 (2), 98.59 (2), 110.656 (16) |
V (Å3) | 963.9 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.35 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.828, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10681, 5096, 3880 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.101, 1.00 |
No. of reflections | 5096 |
No. of parameters | 277 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.51 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3Wi | 0.87 | 1.81 | 2.684 (2) | 174 |
O1W—H1WB···O4Wii | 0.90 | 1.77 | 2.658 (2) | 174 |
O2W—H2WA···O2 | 0.90 | 1.92 | 2.813 (2) | 172 |
O2W—H2WB···O4iii | 0.88 | 1.90 | 2.776 (2) | 177 |
O3W—H3WA···O1iv | 0.88 | 1.95 | 2.806 (2) | 165 |
O3W—H3WB···O2Wiv | 0.83 | 2.01 | 2.809 (2) | 162 |
O4W—H4WA···O3 | 0.93 | 1.91 | 2.789 (2) | 156 |
O4W—H4WB···N4iii | 0.96 | 1.92 | 2.848 (2) | 163 |
N9—H9···O4 | 0.92 | 1.74 | 2.648 (2) | 167 |
C11—H11···O3 | 0.95 | 2.50 | 3.365 (3) | 151 |
C12—H12···O1v | 0.95 | 2.49 | 3.431 (3) | 171 |
C16—H16···O2Wvi | 0.95 | 2.46 | 3.395 (3) | 169 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+1; (v) x, y−1, z; (vi) −x+1, −y+1, −z+1. |
References
Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826–m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597. Web of Science CSD CrossRef CAS Google Scholar
Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869–875. Web of Science CSD CrossRef CAS Google Scholar
Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500. CAS Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123. CrossRef Web of Science Google Scholar
Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zou, J.-Z., Xu, Z., Chen, W. C., Lo, K. M. & You, X.-Z. (1999). Polyhedron, 18, 1507–1512. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Pyrazine-2,3-dicarboxylic acid, (pz-2,3-dcH2), has proved to be well suited for the construction of multidimensional frameworks due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). A variety of metal-organic compounds of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically. Among many reported compounds, complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al.,2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006), are extensively studied. Also, there are many reported compounds of (pz-2,3-dcH2) with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. In this paper, we report the synthesis and crystal structure of the title compound.
The reaction of pyrazine-2,3-dicarboxlic acid, acridine and cobalt(II) nitrate, resulted in the formation of (acrH)2[Co(py-2,3-dc)2(H2O)2]. 6H2O. This compound consists of an anionic complex, trans-[Co(pz-2,3-dc)2(H2O)2]2–, counter-ions, (acrH)+ and six uncoordinated water molecules. In the title compound, two carboxylic COOH protons have been transferred to non-coordinated pyridine rings of acridine. The central Co1 atom is six-coordinated by N1, O1, N1i and O1i atoms in the equatorial plane from two (pz-2,3-dc)2– ligands and by two water molecules, O1W and O1Wi, in the axial position [symmetry code (i), -x + 1,-y + 2, -z] (see Fig. 1). The water molecules are almost perpendicular to the plane of (pz-2,3-dc)2– ligands, with O1W—Co1—N1, O1W—Co1—O1, O1Wi—Co1—N1 and O1Wi—Co1—O1 angles of 86.35 (6), 89.57 (6), 93.65 (6) and 90.43 (6)°, respectively.
The coordination environment around the CoII may be considered as slightly distorted octahedral. The anionic complex lies on a crystallographic center of symmetry. The mean Co—N and Co—O bond distances are 2.1237 (15) and 2.0738 (14) Å, respectively, which are consistent with our previously reported data for CoII complexes (Aghabozorg et al., 2009; Aghabozorg, Attar Gharamaleki et al., 2008; Aghabozorg, Manteghi, Sheshmani, 2008; Aghabozorg et al., 2007).
In the structure of the title compound, (acrH)+ cations and [Co(pz-2,3-dc)2(H2O)2]2– anions are linked together by two classical N9—H9···O4 and non-classical C11—H11···O3 hydrogen bonds by R22(8) graph-set motifs. Also, the coordinated and uncoordinated water molecules are involved in O—H···O hydrogen bonds with O···O distances of 2.658 (2) to 2.813 (2) Å, which lead to the formation of chains with R33(12) graph-set motifs (Fig. 2).
As can be seen from Fig. 3, in the crystal structure of (acrH)2[Co(pz-2,3-dc)2(H2O)2].6H2O, the spaces between two layers of (acrH)+ cations (as counter-ions) are filled with layers of [Co(pz-2,3-dc)2(H2O)2]2– fragments and uncoordinated water molecules. Also an extensive π-π stacking interaction between aromatic rings of acridinium ions, (acrH)+, with centroid-centroid distances ranging from 3.533 (1) to 3.613 (1) Å are observed (Fig.4).