organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,8,10,13-Penta­methyl-6-phenyl-13,14-di­hydro-12H-6λ5-dibenzo[d,i][1,3,7,2]dioxaza­phosphecin-6-thione

aDepartment of Physics, S.V. University, Tirupati 517 502, India, bJapan Association for the Advancement of Medical Equipment, Hongo Bunkyo-ku, Tokyo-113 0033, Japan, cDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and dDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com

(Received 13 November 2009; accepted 4 December 2009; online 12 December 2009)

In the title compound, C25H28NO2PS, the cyclo­decene ring exhibits a crown conformation. The two dimethyl­benzene rings which are fused symmetrically on either side of the ten-membered ring, make dihedral angles of 20.2 (1) and 18.0 (1)°. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of 88.4 (1)°. The crystal structure is stabilized by very weak intra­molecular C—H⋯O hydrogen bonding.

Related literature

For applications of phospho­rus containing macrocycles, see: Lehn (1988[Lehn, J. M. (1988). Angew Chem. Int. Ed. Engl. 27, 89-112.]); Cram (1988[Cram, D. J. (1988). Angew Chem. Int. Ed. Engl. 27, 1009-1020.]). For their biological activity, see: Sankar et al. (2009[Sankar, A. U. R., Kumar, B. S., Reddy, M. V. N., Reddy, S. S., Reddy, C. S. & Raju, C. N. (2009). Bulg. Chem. Commun. 41, 59-64.]). For P=S bond lengths in related structures, see: Dutasta et al. (1979[Dutasta, J. P., Grand, A., Guimaraes, A. C. & Robert, J. B. (1979). Tetrahedron, 35, 197-207.]).

[Scheme 1]

Experimental

Crystal data
  • C25H28NO2PS

  • Mr = 437.52

  • Monoclinic, P 21 /c

  • a = 8.7117 (9) Å

  • b = 16.3225 (16) Å

  • c = 16.9021 (16) Å

  • β = 99.525 (10)°

  • V = 2370.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • 21854 measured reflections

  • 7063 independent reflections

  • 3672 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.161

  • S = 1.03

  • 7063 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O3 0.96 2.39 2.848 (3) 109

Data collection: CryAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd. Abingdon, England.]); cell refinement: CryAlis PRO; data reduction: CryAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd. Abingdon, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ZORTEPII (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Phosphorus containing macrocycles are interesting molecules with potential applications in supramolecular and synthetic organic chemistry. The molecules found numerous industrial (Lehn, 1988) and biological (Cram, 1988) applications and also function as good hosts in the host–guest chemistry. The present title compound possesses antimicrobial activity against gram positive Staphylococcus aureus, gram negative Escherichia coli and antifungal activity against Aspergillus niger, Helminthosporium oryzae. It also exhibits equal antimicrobial and antifungal activities when compared with that of standard Penicillin and Griseofulvin (Sankar et al., 2009).

The P=S bond length, 1.913Å is in good agreement with the related structure (Dutasta et al., 1979). The crown conformation makes P—N bond length[3.133 Å] smaller than the Van der Waal's radii[3.35 Å] in such a way, which is favourable for P—N coordination. It is interesting to mention that the geometrical parameters between the two fragments from P to N of the ten membered heterocyclic ring are equal within the experimental limitations. The sulfur substituted at P and the methyl substituted at N are almost orthogonally oriented to the mean plane of cyclodecene. The bond angles O(3)—P(1)=S(2) and O(4)—P(1)=S(2) are identical to each other and same is the case with the bond angles O(3)—P(1)—C(25), O(4)—P(1)—C(25)and C(14)—N(5)—C(15),C(16)—N(5)—C(15). The crystal structure is stabilized by intra molecular C—H···O hydrogen bonding. The packing of the molecules is along [110] plane (figure 2).

Related literature top

For applications of phosphorus containing macrocycles, see: Lehn (1988); Cram (1988). For their biological activity, see: Sankar et al. (2009). For PS bond lengths in related structures, see: Dutasta et al. (1979).

Experimental top

A solution of phenyl dichlorophosphine (300 mg, 2 mmol) in 25 ml of dry toluene was added dropwise over a period of 20 minutes to a stirred solution of bis(2,4-dimethyl-2-hydroxybenzyl)methylamine (600 mg, 2 mmol) and triethyl amine (404 mg, 4 mmol) in 25 ml of dry toluene at 0°C under N2 atmosphere. After the addition, the temperature of the reaction mixture was raised to room temperature and stirred for 3 h, later the reaction mixture was stirred at 30°C for another 3 h. The triethylamine hydrochloride was removed by filtration. The intermediate obtained was dissolved in dry toluene (30 ml) and sulfur was added at room temperature. The reaction mixture was brought to reflux and kept with stirring for 2 h for the completion of reaction was indicated by TLC analysis. The solvent was removed in a rota-evaporator. The resulting crude product was crystallized by 2-propanol, rectangular shaped single crystals are obtained for diffraction studies.

Refinement top

All the H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2eq (C) for aromatic, 0.97 Å, Uiso = 1.2eq (C)for CH2 group and 0.96 Å, Uiso = 1.5eq (C) for CH3 group

Computing details top

Data collection: CryAlis PRO (Oxford Diffraction, 2007); cell refinement: CryAlis PRO (Oxford Diffraction, 2007); data reduction: CryAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing view of the molecules in the unit cell.
2,4,8,10,13-Pentamethyl-6-phenyl-13,14-dihydro-12H-6λ5- dibenzo[d,i][1,3,7,2]dioxazaphosphecin-6-thione top
Crystal data top
C25H28NO2PSF(000) = 928
Mr = 437.52Dx = 1.226 Mg m3
Dm = 1.225 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7063 reflections
a = 8.7117 (9) Åθ = 3.1–30.2°
b = 16.3225 (16) ŵ = 0.23 mm1
c = 16.9021 (16) ÅT = 293 K
β = 99.525 (10)°Rectangular, brown
V = 2370.3 (4) Å30.30 × 0.24 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3672 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 30.2°, θmin = 3.1°
ω–2θ scansh = 812
21854 measured reflectionsk = 2320
7063 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
7063 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C25H28NO2PSV = 2370.3 (4) Å3
Mr = 437.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7117 (9) ŵ = 0.23 mm1
b = 16.3225 (16) ÅT = 293 K
c = 16.9021 (16) Å0.30 × 0.24 × 0.18 mm
β = 99.525 (10)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3672 reflections with I > 2σ(I)
21854 measured reflectionsRint = 0.033
7063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
7063 reflectionsΔρmin = 0.29 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.17744 (6)0.16344 (3)0.18237 (3)0.03883 (16)
S20.02473 (7)0.22402 (3)0.22679 (4)0.05506 (19)
O30.12396 (15)0.11944 (8)0.09791 (7)0.0405 (3)
C250.3425 (2)0.22061 (12)0.16102 (11)0.0427 (5)
O40.26513 (16)0.09104 (8)0.23448 (8)0.0439 (3)
N50.0375 (2)0.01189 (10)0.19579 (9)0.0424 (4)
C240.0253 (2)0.12021 (12)0.05097 (11)0.0410 (5)
C220.0613 (3)0.18239 (12)0.00492 (12)0.0470 (5)
C130.1521 (3)0.00145 (13)0.31893 (12)0.0452 (5)
C170.1224 (2)0.05350 (12)0.05584 (11)0.0426 (5)
C60.2449 (2)0.06607 (13)0.31197 (11)0.0427 (5)
C160.0717 (3)0.01544 (12)0.11289 (11)0.0466 (5)
H16A0.15330.05650.10780.056*
H16B0.02040.04090.09850.056*
C180.2601 (3)0.05058 (14)0.00225 (12)0.0524 (5)
H180.32720.00670.00480.063*
C140.0690 (3)0.04331 (13)0.24529 (12)0.0512 (5)
H14A0.14470.06400.21420.061*
H14B0.01110.08970.26100.061*
C210.2018 (3)0.17554 (14)0.05738 (13)0.0550 (6)
H210.22900.21640.09550.066*
C300.3574 (3)0.30281 (13)0.17657 (13)0.0544 (6)
H300.27910.33110.19630.065*
C120.1470 (3)0.03023 (14)0.39559 (13)0.0525 (6)
H120.08500.07540.40170.063*
C290.4898 (3)0.34342 (16)0.16272 (16)0.0694 (7)
H290.49990.39920.17340.083*
C230.0493 (3)0.25157 (14)0.01172 (15)0.0670 (7)
H23A0.13910.24630.02940.100*
H23B0.00150.30280.00540.100*
H23C0.08100.24990.06350.100*
C70.3294 (3)0.10556 (14)0.37772 (13)0.0561 (6)
C150.1759 (3)0.02847 (16)0.22984 (13)0.0607 (6)
H15A0.14670.04700.28420.091*
H15B0.23670.02070.22910.091*
H15C0.23630.07010.19890.091*
C190.3022 (3)0.11051 (15)0.05507 (13)0.0575 (6)
C260.4609 (3)0.17977 (15)0.13089 (15)0.0617 (6)
H260.45250.12390.12000.074*
C100.2310 (3)0.00598 (16)0.46344 (13)0.0598 (6)
C200.4511 (3)0.1035 (2)0.11439 (17)0.0885 (9)
H20A0.50470.05430.10400.133*
H20B0.42740.10160.16780.133*
H20C0.51590.15010.10920.133*
C90.3187 (3)0.07330 (17)0.45288 (13)0.0641 (7)
H90.37390.09880.49800.077*
C80.4268 (4)0.17912 (18)0.36884 (17)0.0832 (9)
H8A0.47590.19750.42090.125*
H8B0.36220.22200.34260.125*
H8C0.50510.16520.33730.125*
C280.6049 (4)0.30329 (19)0.13385 (16)0.0750 (8)
H280.69380.33130.12550.090*
C270.5903 (3)0.22253 (18)0.11724 (18)0.0758 (8)
H270.66850.19540.09630.091*
C110.2268 (4)0.0284 (2)0.54643 (14)0.0864 (9)
H11A0.16010.07560.54210.130*
H11B0.18770.01250.57870.130*
H11C0.33010.04400.57100.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0388 (3)0.0353 (3)0.0422 (3)0.0001 (2)0.0060 (2)0.0017 (2)
S20.0534 (4)0.0493 (3)0.0648 (4)0.0089 (3)0.0168 (3)0.0070 (3)
O30.0393 (8)0.0403 (8)0.0416 (7)0.0017 (6)0.0058 (6)0.0024 (6)
C250.0435 (12)0.0398 (11)0.0432 (10)0.0097 (9)0.0021 (9)0.0006 (9)
O40.0452 (8)0.0433 (8)0.0429 (7)0.0045 (6)0.0060 (6)0.0041 (6)
N50.0452 (10)0.0415 (9)0.0400 (9)0.0009 (8)0.0056 (8)0.0041 (7)
C240.0408 (11)0.0446 (11)0.0373 (10)0.0019 (9)0.0053 (9)0.0022 (9)
C220.0514 (13)0.0424 (11)0.0467 (11)0.0007 (10)0.0066 (10)0.0011 (9)
C130.0475 (12)0.0426 (11)0.0448 (11)0.0105 (9)0.0059 (10)0.0064 (9)
C170.0472 (12)0.0425 (11)0.0381 (10)0.0061 (9)0.0075 (9)0.0018 (9)
C60.0408 (11)0.0456 (11)0.0413 (10)0.0051 (9)0.0052 (9)0.0046 (9)
C160.0541 (13)0.0377 (11)0.0466 (11)0.0121 (10)0.0039 (10)0.0019 (9)
C180.0485 (13)0.0562 (13)0.0507 (12)0.0104 (11)0.0030 (11)0.0025 (10)
C140.0596 (14)0.0405 (12)0.0518 (12)0.0019 (10)0.0039 (11)0.0062 (10)
C210.0571 (15)0.0555 (14)0.0485 (12)0.0048 (11)0.0028 (11)0.0085 (10)
C300.0634 (15)0.0398 (12)0.0576 (13)0.0106 (11)0.0032 (11)0.0025 (10)
C120.0471 (13)0.0586 (14)0.0529 (13)0.0067 (10)0.0114 (11)0.0123 (11)
C290.085 (2)0.0476 (14)0.0724 (16)0.0216 (14)0.0036 (15)0.0030 (12)
C230.0761 (18)0.0540 (14)0.0669 (15)0.0114 (13)0.0004 (14)0.0196 (12)
C70.0539 (14)0.0583 (14)0.0525 (12)0.0011 (11)0.0021 (11)0.0016 (11)
C150.0491 (14)0.0803 (17)0.0547 (13)0.0015 (12)0.0143 (11)0.0081 (12)
C190.0548 (14)0.0613 (15)0.0528 (13)0.0014 (12)0.0019 (11)0.0010 (11)
C260.0509 (14)0.0508 (14)0.0871 (17)0.0071 (11)0.0224 (13)0.0073 (12)
C100.0577 (15)0.0775 (17)0.0440 (12)0.0175 (13)0.0075 (11)0.0116 (12)
C200.0703 (19)0.094 (2)0.088 (2)0.0080 (16)0.0243 (16)0.0151 (17)
C90.0643 (16)0.0811 (18)0.0430 (12)0.0054 (14)0.0025 (11)0.0043 (12)
C80.089 (2)0.0820 (19)0.0676 (16)0.0263 (16)0.0194 (15)0.0023 (15)
C280.0702 (19)0.081 (2)0.0722 (17)0.0307 (16)0.0064 (15)0.0094 (15)
C270.0569 (17)0.080 (2)0.096 (2)0.0119 (14)0.0299 (15)0.0035 (16)
C110.079 (2)0.130 (3)0.0516 (14)0.0177 (19)0.0149 (14)0.0249 (16)
Geometric parameters (Å, º) top
P1—O41.5916 (14)C12—C101.387 (3)
P1—O31.5970 (13)C12—H120.9300
P1—C251.800 (2)C29—C281.355 (4)
P1—S21.9083 (7)C29—H290.9300
O3—C241.407 (2)C23—H23A0.9600
C25—C301.369 (3)C23—H23B0.9600
C25—C261.393 (3)C23—H23C0.9600
O4—C61.410 (2)C7—C91.393 (3)
N5—C151.445 (3)C7—C81.492 (4)
N5—C161.454 (2)C15—H15A0.9600
N5—C141.454 (3)C15—H15B0.9600
C24—C221.387 (3)C15—H15C0.9600
C24—C171.390 (3)C19—C201.507 (3)
C22—C211.391 (3)C26—C271.378 (3)
C22—C231.501 (3)C26—H260.9300
C13—C61.383 (3)C10—C91.367 (4)
C13—C121.386 (3)C10—C111.517 (3)
C13—C141.498 (3)C20—H20A0.9600
C17—C181.379 (3)C20—H20B0.9600
C17—C161.500 (3)C20—H20C0.9600
C6—C71.386 (3)C9—H90.9300
C16—H16A0.9700C8—H8A0.9600
C16—H16B0.9700C8—H8B0.9600
C18—C191.383 (3)C8—H8C0.9600
C18—H180.9300C28—C271.349 (4)
C14—H14A0.9700C28—H280.9300
C14—H14B0.9700C27—H270.9300
C21—C191.380 (3)C11—H11A0.9600
C21—H210.9300C11—H11B0.9600
C30—C291.383 (3)C11—H11C0.9600
C30—H300.9300
O4—P1—O3101.72 (7)C28—C29—H29119.4
O4—P1—C2599.77 (9)C30—C29—H29119.4
O3—P1—C25100.28 (8)C22—C23—H23A109.5
O4—P1—S2117.97 (6)C22—C23—H23B109.5
O3—P1—S2117.74 (6)H23A—C23—H23B109.5
C25—P1—S2116.25 (7)C22—C23—H23C109.5
C24—O3—P1127.29 (12)H23A—C23—H23C109.5
C30—C25—C26119.1 (2)H23B—C23—H23C109.5
C30—C25—P1121.54 (17)C6—C7—C9116.7 (2)
C26—C25—P1119.30 (16)C6—C7—C8121.9 (2)
C6—O4—P1127.32 (12)C9—C7—C8121.4 (2)
C15—N5—C16112.94 (17)N5—C15—H15A109.5
C15—N5—C14112.43 (16)N5—C15—H15B109.5
C16—N5—C14111.96 (16)H15A—C15—H15B109.5
C22—C24—C17122.84 (19)N5—C15—H15C109.5
C22—C24—O3118.35 (17)H15A—C15—H15C109.5
C17—C24—O3118.33 (17)H15B—C15—H15C109.5
C24—C22—C21116.83 (19)C21—C19—C18117.9 (2)
C24—C22—C23121.8 (2)C21—C19—C20121.3 (2)
C21—C22—C23121.30 (19)C18—C19—C20120.8 (2)
C6—C13—C12117.3 (2)C27—C26—C25119.7 (2)
C6—C13—C14120.14 (18)C27—C26—H26120.2
C12—C13—C14122.4 (2)C25—C26—H26120.2
C18—C17—C24117.39 (19)C9—C10—C12117.7 (2)
C18—C17—C16121.85 (18)C9—C10—C11121.2 (2)
C24—C17—C16120.57 (18)C12—C10—C11121.1 (2)
C13—C6—C7122.87 (19)C19—C20—H20A109.5
C13—C6—O4118.29 (18)C19—C20—H20B109.5
C7—C6—O4118.58 (19)H20A—C20—H20B109.5
N5—C16—C17112.40 (16)C19—C20—H20C109.5
N5—C16—H16A109.1H20A—C20—H20C109.5
C17—C16—H16A109.1H20B—C20—H20C109.5
N5—C16—H16B109.1C10—C9—C7123.1 (2)
C17—C16—H16B109.1C10—C9—H9118.4
H16A—C16—H16B107.9C7—C9—H9118.4
C17—C18—C19122.4 (2)C7—C8—H8A109.5
C17—C18—H18118.8C7—C8—H8B109.5
C19—C18—H18118.8H8A—C8—H8B109.5
N5—C14—C13111.73 (17)C7—C8—H8C109.5
N5—C14—H14A109.3H8A—C8—H8C109.5
C13—C14—H14A109.3H8B—C8—H8C109.5
N5—C14—H14B109.3C27—C28—C29119.8 (3)
C13—C14—H14B109.3C27—C28—H28120.1
H14A—C14—H14B107.9C29—C28—H28120.1
C19—C21—C22122.6 (2)C28—C27—C26120.8 (3)
C19—C21—H21118.7C28—C27—H27119.6
C22—C21—H21118.7C26—C27—H27119.6
C25—C30—C29119.5 (2)C10—C11—H11A109.5
C25—C30—H30120.2C10—C11—H11B109.5
C29—C30—H30120.2H11A—C11—H11B109.5
C13—C12—C10122.3 (2)C10—C11—H11C109.5
C13—C12—H12118.8H11A—C11—H11C109.5
C10—C12—H12118.8H11B—C11—H11C109.5
C28—C29—C30121.1 (2)
O4—P1—O3—C24130.89 (15)C24—C17—C18—C190.5 (3)
C25—P1—O3—C24126.77 (16)C16—C17—C18—C19174.6 (2)
S2—P1—O3—C240.33 (17)C15—N5—C14—C1374.0 (2)
O4—P1—C25—C30127.47 (18)C16—N5—C14—C13157.61 (17)
O3—P1—C25—C30128.60 (18)C6—C13—C14—N559.9 (3)
S2—P1—C25—C300.5 (2)C12—C13—C14—N5123.5 (2)
O4—P1—C25—C2650.00 (19)C24—C22—C21—C190.0 (3)
O3—P1—C25—C2653.93 (19)C23—C22—C21—C19176.8 (2)
S2—P1—C25—C26177.98 (16)C26—C25—C30—C290.5 (3)
O3—P1—O4—C6131.31 (16)P1—C25—C30—C29176.95 (18)
C25—P1—O4—C6125.93 (17)C6—C13—C12—C100.3 (3)
S2—P1—O4—C60.90 (18)C14—C13—C12—C10176.4 (2)
P1—O3—C24—C2289.3 (2)C25—C30—C29—C280.1 (4)
P1—O3—C24—C1798.4 (2)C13—C6—C7—C90.8 (3)
C17—C24—C22—C210.0 (3)O4—C6—C7—C9173.3 (2)
O3—C24—C22—C21171.87 (18)C13—C6—C7—C8179.0 (2)
C17—C24—C22—C23176.8 (2)O4—C6—C7—C86.9 (3)
O3—C24—C22—C234.9 (3)C22—C21—C19—C180.3 (4)
C22—C24—C17—C180.2 (3)C22—C21—C19—C20178.1 (2)
O3—C24—C17—C18172.11 (17)C17—C18—C19—C210.6 (3)
C22—C24—C17—C16174.92 (18)C17—C18—C19—C20177.8 (2)
O3—C24—C17—C163.0 (3)C30—C25—C26—C270.0 (4)
C12—C13—C6—C70.8 (3)P1—C25—C26—C27177.6 (2)
C14—C13—C6—C7177.5 (2)C13—C12—C10—C91.3 (3)
C12—C13—C6—O4173.30 (18)C13—C12—C10—C11178.2 (2)
C14—C13—C6—O43.4 (3)C12—C10—C9—C71.3 (4)
P1—O4—C6—C1399.7 (2)C11—C10—C9—C7178.1 (2)
P1—O4—C6—C786.0 (2)C6—C7—C9—C100.3 (4)
C15—N5—C16—C1775.8 (2)C8—C7—C9—C10179.9 (3)
C14—N5—C16—C17156.10 (18)C30—C29—C28—C270.8 (4)
C18—C17—C16—N5125.8 (2)C29—C28—C27—C261.4 (4)
C24—C17—C16—N559.3 (3)C25—C26—C27—C281.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O30.962.392.848 (3)109

Experimental details

Crystal data
Chemical formulaC25H28NO2PS
Mr437.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7117 (9), 16.3225 (16), 16.9021 (16)
β (°) 99.525 (10)
V3)2370.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21854, 7063, 3672
Rint0.033
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.161, 1.03
No. of reflections7063
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: CryAlis PRO (Oxford Diffraction, 2007), CryAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEPII (Zsolnai, 1997), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O30.962.392.848 (3)109
 

Acknowledgements

MK thanks the University Grants Commission, New Delhi, for sanctioning the major research project for this work.

References

First citationCram, D. J. (1988). Angew Chem. Int. Ed. Engl. 27, 1009–1020.  CrossRef Web of Science Google Scholar
First citationDutasta, J. P., Grand, A., Guimaraes, A. C. & Robert, J. B. (1979). Tetrahedron, 35, 197–207.  CSD CrossRef CAS Web of Science Google Scholar
First citationLehn, J. M. (1988). Angew Chem. Int. Ed. Engl. 27, 89–112.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd. Abingdon, England.  Google Scholar
First citationSankar, A. U. R., Kumar, B. S., Reddy, M. V. N., Reddy, S. S., Reddy, C. S. & Raju, C. N. (2009). Bulg. Chem. Commun. 41, 59–64.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds