metal-organic compounds
catena-Poly[[dianilinedichloridocopper(II)]-μ2-2,5-bis(4-pyridyl)-1,3,4-oxadiazole]
aSchool of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, People's Republic of China, and bResearch Center for Advanced Molecular Materials, School of Chemistry and Chemical Engineering, Scientific Research Academy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, People's Republic of China
*Correspondence e-mail: chizhang@ujs.edu.cn
In the title compound, [CuCl2(C6H7N)2(C12H8N4O)]n, the Cu atom, located on an inversion center, is coordinated by four N atoms from two aniline ligands and two 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ligands. Two Cl atoms lying above and below the plane formed by these four N atoms interact weakly with the Cu atom [Cu—Cl = 2.7870 (7) Å]. The trans 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ligands act as bridging ligands, linking adjacent Cu atoms and forming a one-dimensional coordination polymer. Two anilines coordinate with each Cu atom as terminal groups. The structure contains two classical N—H⋯Cl and two non-classical C—H⋯Cl hydrogen bonds.
Related literature
Unsymmetric organic bridging ligands can play different roles in the construction of metal-organic frameworks, see: Du et al. (2004); Dong et al. (2005). For Cu—Cl distances, see: Handley et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809054191/pv2245sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809054191/pv2245Isup2.hkl
2,5-Bis(4-pyridyl)-1,3,4-oxadiazole (1 mmol) and copper chloride (1 mmol) were added into N,N'-dimethylformamide (5 ml) with thorough stirring for 5 minutes. The solution underwent an additional stir for one minute after aniline (2 ml) was added. After filtration, 10 ml i-PrOH was successively laid on the surface of above filtrate. Black block crystals were obtained after ten days.
H atoms were positioned geometrically and refined with riding model, with C—H = 0.93 Å and N—H = 0.90 Å and Uiso = 1.2Ueq(parent atom) for all H atoms.
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity. Symmetry code: (i) -x - 1/2, -y + 1/2, -z. |
[CuCl2(C6H7N)2(C12H8N4O)] | F(000) = 1116 |
Mr = 544.93 | Dx = 1.569 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4915 reflections |
a = 27.028 (5) Å | θ = 3.0–28.9° |
b = 12.618 (3) Å | µ = 1.21 mm−1 |
c = 6.7904 (14) Å | T = 293 K |
β = 94.96 (3)° | Prism, black |
V = 2307.1 (8) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku CCD area-detector diffractometer | 2233 independent reflections |
Radiation source: fine-focus sealed tube | 2106 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
phi and ω scans | h = −28→33 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −15→13 |
Tmin = 0.329, Tmax = 0.463 | l = −8→8 |
5331 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0436P)2 + 2.9828P] where P = (Fo2 + 2Fc2)/3 |
2233 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[CuCl2(C6H7N)2(C12H8N4O)] | V = 2307.1 (8) Å3 |
Mr = 544.93 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.028 (5) Å | µ = 1.21 mm−1 |
b = 12.618 (3) Å | T = 293 K |
c = 6.7904 (14) Å | 0.20 × 0.20 × 0.20 mm |
β = 94.96 (3)° |
Rigaku CCD area-detector diffractometer | 2233 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2106 reflections with I > 2σ(I) |
Tmin = 0.329, Tmax = 0.463 | Rint = 0.018 |
5331 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2233 reflections | Δρmin = −0.31 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.2500 | 0.2500 | 0.0000 | 0.03226 (14) | |
Cl1 | −0.25356 (2) | 0.38364 (4) | −0.32770 (8) | 0.03830 (16) | |
O1 | −0.5000 | 0.13053 (16) | −0.2500 | 0.0314 (4) | |
N1 | −0.21455 (6) | 0.14463 (14) | −0.1808 (3) | 0.0307 (4) | |
H1A | −0.2260 | 0.0793 | −0.1575 | 0.037* | |
H1B | −0.2248 | 0.1606 | −0.3069 | 0.037* | |
N2 | −0.47412 (6) | −0.03453 (15) | −0.2314 (3) | 0.0439 (5) | |
N3 | −0.31537 (6) | 0.18313 (14) | −0.1116 (2) | 0.0302 (4) | |
C1 | −0.16136 (8) | 0.13839 (16) | −0.1674 (3) | 0.0297 (4) | |
C2 | −0.35055 (8) | 0.24122 (16) | −0.2121 (3) | 0.0318 (5) | |
H2C | −0.3421 | 0.3077 | −0.2578 | 0.038* | |
C3 | −0.13423 (9) | 0.21652 (19) | −0.2524 (3) | 0.0384 (5) | |
H3A | −0.1504 | 0.2698 | −0.3277 | 0.046* | |
C4 | −0.37354 (7) | 0.04244 (17) | −0.0989 (3) | 0.0327 (5) | |
H4A | −0.3801 | −0.0273 | −0.0650 | 0.039* | |
C5 | −0.41057 (7) | 0.10551 (16) | −0.1900 (3) | 0.0294 (4) | |
C6 | −0.13728 (9) | 0.05767 (19) | −0.0619 (3) | 0.0393 (5) | |
H6A | −0.1554 | 0.0039 | −0.0081 | 0.047* | |
C7 | −0.46097 (7) | 0.06337 (17) | −0.2226 (3) | 0.0316 (4) | |
C8 | −0.08592 (10) | 0.0568 (2) | −0.0361 (4) | 0.0526 (7) | |
H8A | −0.0696 | 0.0023 | 0.0355 | 0.063* | |
C9 | −0.32679 (7) | 0.08464 (17) | −0.0592 (3) | 0.0315 (4) | |
H9A | −0.3022 | 0.0430 | 0.0065 | 0.038* | |
C10 | −0.39873 (8) | 0.20621 (17) | −0.2503 (3) | 0.0324 (4) | |
H10A | −0.4227 | 0.2495 | −0.3153 | 0.039* | |
C11 | −0.05886 (9) | 0.1359 (2) | −0.1157 (4) | 0.0546 (7) | |
H11A | −0.0244 | 0.1357 | −0.0958 | 0.066* | |
C12 | −0.08290 (9) | 0.2150 (2) | −0.2247 (4) | 0.0489 (6) | |
H12A | −0.0646 | 0.2678 | −0.2804 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0197 (2) | 0.0341 (2) | 0.0427 (2) | −0.00195 (14) | 0.00072 (15) | −0.00980 (15) |
Cl1 | 0.0389 (3) | 0.0335 (3) | 0.0414 (3) | −0.0028 (2) | −0.0027 (2) | 0.0045 (2) |
O1 | 0.0211 (9) | 0.0319 (10) | 0.0406 (11) | 0.000 | −0.0006 (8) | 0.000 |
N1 | 0.0295 (9) | 0.0312 (9) | 0.0313 (9) | −0.0004 (7) | 0.0024 (7) | 0.0004 (7) |
N2 | 0.0222 (9) | 0.0345 (10) | 0.0735 (14) | 0.0003 (8) | −0.0040 (9) | 0.0004 (9) |
N3 | 0.0229 (8) | 0.0341 (9) | 0.0336 (9) | 0.0001 (7) | 0.0016 (7) | −0.0058 (7) |
C1 | 0.0298 (10) | 0.0310 (10) | 0.0287 (10) | 0.0015 (8) | 0.0055 (8) | −0.0039 (8) |
C2 | 0.0296 (11) | 0.0328 (11) | 0.0331 (11) | −0.0014 (8) | 0.0034 (9) | 0.0006 (8) |
C3 | 0.0409 (13) | 0.0385 (12) | 0.0368 (12) | −0.0018 (10) | 0.0094 (10) | 0.0013 (9) |
C4 | 0.0268 (10) | 0.0313 (10) | 0.0395 (11) | 0.0012 (9) | 0.0004 (8) | −0.0019 (9) |
C5 | 0.0225 (10) | 0.0345 (11) | 0.0310 (10) | −0.0015 (8) | 0.0010 (8) | −0.0046 (8) |
C6 | 0.0396 (12) | 0.0385 (12) | 0.0405 (12) | 0.0028 (10) | 0.0072 (10) | 0.0022 (10) |
C7 | 0.0230 (9) | 0.0337 (11) | 0.0375 (11) | 0.0034 (9) | −0.0005 (8) | −0.0008 (9) |
C8 | 0.0423 (14) | 0.0611 (17) | 0.0538 (15) | 0.0199 (13) | 0.0007 (11) | 0.0028 (13) |
C9 | 0.0245 (10) | 0.0323 (10) | 0.0371 (11) | 0.0027 (9) | −0.0009 (8) | −0.0031 (9) |
C10 | 0.0261 (10) | 0.0364 (11) | 0.0341 (11) | 0.0035 (9) | −0.0018 (8) | 0.0016 (9) |
C11 | 0.0289 (12) | 0.0780 (19) | 0.0577 (16) | 0.0022 (13) | 0.0085 (11) | −0.0111 (14) |
C12 | 0.0421 (13) | 0.0549 (15) | 0.0522 (15) | −0.0115 (12) | 0.0191 (12) | −0.0065 (12) |
Cu1—N3i | 2.0436 (17) | C2—H2C | 0.9300 |
Cu1—N3 | 2.0436 (17) | C3—C12 | 1.384 (3) |
Cu1—N1i | 2.0966 (17) | C3—H3A | 0.9300 |
Cu1—N1 | 2.0966 (17) | C4—C9 | 1.376 (3) |
Cu1—Cl1 | 2.7870 (7) | C4—C5 | 1.383 (3) |
Cu1—Cl1i | 2.7870 (7) | C4—H4A | 0.9300 |
O1—C7 | 1.353 (2) | C5—C10 | 1.381 (3) |
O1—C7ii | 1.353 (2) | C5—C7 | 1.461 (3) |
N1—C1 | 1.435 (3) | C6—C8 | 1.384 (3) |
N1—H1A | 0.9000 | C6—H6A | 0.9300 |
N1—H1B | 0.9000 | C8—C11 | 1.375 (4) |
N2—C7 | 1.285 (3) | C8—H8A | 0.9300 |
N2—N2ii | 1.400 (3) | C9—H9A | 0.9300 |
N3—C9 | 1.336 (3) | C10—H10A | 0.9300 |
N3—C2 | 1.340 (3) | C11—C12 | 1.372 (4) |
C1—C6 | 1.376 (3) | C11—H11A | 0.9300 |
C1—C3 | 1.384 (3) | C12—H12A | 0.9300 |
C2—C10 | 1.378 (3) | ||
N3i—Cu1—N3 | 180.00 | C10—C2—H2C | 118.7 |
N3i—Cu1—N1i | 86.87 (7) | C12—C3—C1 | 119.6 (2) |
N3—Cu1—N1i | 93.13 (7) | C12—C3—H3A | 120.2 |
N3i—Cu1—N1 | 93.13 (7) | C1—C3—H3A | 120.2 |
N3—Cu1—N1 | 86.87 (7) | C9—C4—C5 | 118.8 (2) |
N1i—Cu1—N1 | 180.00 | C9—C4—H4A | 120.6 |
N3i—Cu1—Cl1 | 90.87 (6) | C5—C4—H4A | 120.6 |
N3—Cu1—Cl1 | 89.13 (6) | C10—C5—C4 | 119.00 (19) |
N1i—Cu1—Cl1 | 95.61 (5) | C10—C5—C7 | 121.81 (19) |
N1—Cu1—Cl1 | 84.39 (5) | C4—C5—C7 | 119.19 (19) |
N3i—Cu1—Cl1i | 89.13 (6) | C1—C6—C8 | 119.7 (2) |
N3—Cu1—Cl1i | 90.87 (6) | C1—C6—H6A | 120.1 |
N1i—Cu1—Cl1i | 84.39 (5) | C8—C6—H6A | 120.1 |
N1—Cu1—Cl1i | 95.61 (5) | N2—C7—O1 | 112.73 (18) |
Cl1—Cu1—Cl1i | 180.00 | N2—C7—C5 | 127.37 (19) |
C7—O1—C7ii | 102.5 (2) | O1—C7—C5 | 119.89 (18) |
C1—N1—Cu1 | 120.26 (13) | C11—C8—C6 | 120.4 (2) |
C1—N1—H1A | 107.3 | C11—C8—H8A | 119.8 |
Cu1—N1—H1A | 107.3 | C6—C8—H8A | 119.8 |
C1—N1—H1B | 107.3 | N3—C9—C4 | 122.48 (19) |
Cu1—N1—H1B | 107.3 | N3—C9—H9A | 118.8 |
H1A—N1—H1B | 106.9 | C4—C9—H9A | 118.8 |
C7—N2—N2ii | 106.03 (12) | C2—C10—C5 | 118.60 (19) |
C9—N3—C2 | 118.33 (18) | C2—C10—H10A | 120.7 |
C9—N3—Cu1 | 119.83 (14) | C5—C10—H10A | 120.7 |
C2—N3—Cu1 | 121.05 (14) | C12—C11—C8 | 119.8 (2) |
C6—C1—C3 | 120.0 (2) | C12—C11—H11A | 120.1 |
C6—C1—N1 | 119.99 (19) | C8—C11—H11A | 120.1 |
C3—C1—N1 | 119.90 (19) | C11—C12—C3 | 120.4 (2) |
N3—C2—C10 | 122.5 (2) | C11—C12—H12A | 119.8 |
N3—C2—H2C | 118.7 | C3—C12—H12A | 119.8 |
Symmetry codes: (i) −x−1/2, −y+1/2, −z; (ii) −x−1, y, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1iii | 0.90 | 2.53 | 3.406 (2) | 165 |
N1—H1B···Cl1iv | 0.90 | 2.56 | 3.393 (2) | 154 |
C9—H9A···Cl1i | 0.93 | 2.70 | 3.285 (2) | 121 |
C2—H2C···Cl1 | 0.93 | 2.66 | 3.328 (2) | 129 |
Symmetry codes: (i) −x−1/2, −y+1/2, −z; (iii) −x−1/2, y−1/2, −z−1/2; (iv) −x−1/2, −y+1/2, −z−1. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C6H7N)2(C12H8N4O)] |
Mr | 544.93 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 27.028 (5), 12.618 (3), 6.7904 (14) |
β (°) | 94.96 (3) |
V (Å3) | 2307.1 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku CCD area-detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.329, 0.463 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5331, 2233, 2106 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.085, 1.04 |
No. of reflections | 2233 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.31 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.90 | 2.53 | 3.406 (2) | 165 |
N1—H1B···Cl1ii | 0.90 | 2.56 | 3.393 (2) | 154 |
C9—H9A···Cl1iii | 0.93 | 2.70 | 3.285 (2) | 121 |
C2—H2C···Cl1 | 0.93 | 2.66 | 3.328 (2) | 129 |
Symmetry codes: (i) −x−1/2, y−1/2, −z−1/2; (ii) −x−1/2, −y+1/2, −z−1; (iii) −x−1/2, −y+1/2, −z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant No. 50472048).
References
Dong, Y. B., Ma, J. P., Mark, D. S., Huang, R. Q., Tang, B., Chen, D. Z. & Loye, H. C. (2005). Solid State Sci. 4, 1313–1320. Web of Science CSD CrossRef Google Scholar
Du, M., Lam, C. K., Bu, X. H. & Mak, T. C. K. (2004). Inorg. Chem. Commun. 8, 315–318. Web of Science CSD CrossRef Google Scholar
Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 316, 59–64. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The unsymmetric organic bridging ligands can play different roles in constructing metal-organic frameworks (Du et al., 2004; Dong et al., 2005). Recently, we have synthesized a new one-dimensional polymer with unsymmetric organic 2,5-bis(4-pyridyl)-1,3,4-oxadiazole as bridging ligand. In this paper, the crystal structure of the title compound, (I), is presented.
As illustrated in Fig. 1, each Cu coordinates with four N atoms from two anilines and two 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ligands, and two Cl atoms lying above and below the plane formed by the N atoms around Cu interact with Cu atom to form an octahedral geometry. The Cu—Cl bonds (2.7870 (7) Å) are longer than normal value (Handley et al., 2001). 2,5-Bis(4-pyridyl)-1,3,4-oxadiazoles act as bridging ligands to connect adjacent two Cu atoms to construct a unique one-dimensional chain. The crystal structure shows a range of classical N—H···Cl and non-classical C—H···Cl hydrogen bonds (Table 1).