organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl­aminium 2-carb­­oxy-4,5-di­chloro­benzoate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 25 November 2009; accepted 8 December 2009; online 12 December 2009)

In the structure of the 1:1 proton-transfer compound of isopropyl­amine with 4,5-dichloro­phthalic acid, C3H10N+·C8H3Cl2O4, the three cation H-atom donors associate with three separate carboxyl O-atom anion acceptors, giving conjoint cyclic R44(12), R44(16) hydrogen-bonding cation–anion inter­actions in a one-dimensional ribbon structure. In the anions, the carboxyl groups lie slightly out of the plane of the benzene ring [maximum deviations = 0.439 (1) for a carboxylic acid O atom and 0.433 (1) Å for a carboxyl­ate O atom]. However, the syn-related proton of the carboxylic acid group forms the common short intra­molecular O—H⋯Ocarbox­yl hydrogen bond.

Related literature

For the structures of other hydrogen 4,5-dichloro­phthalate salts, see: Mattes & Dorau (1986[Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808-814.]); Mallinson et al. (2003[Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259-4270.]); Bozkurt et al. (2006[Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258-o4260.]); Odabaşoğlu & Büyükgüngör (2007[Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4374-o4375.]); Smith et al. (2007[Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276-o4277.], 2008a[Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180-o183.],b[Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532-o536.], 2009a[Smith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103-o107.],b[Smith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111.],c[Smith, G., Wermuth, U. D. & White, J. M. (2009c). Acta Cryst. E65, o2333.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). J. Chem. Crystallogr. In the press. ]). For graph-set analysis see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C8H3Cl2O4

  • Mr = 294.12

  • Monoclinic, P 21 /n

  • a = 5.8362 (7) Å

  • b = 21.040 (2) Å

  • c = 10.3641 (13) Å

  • β = 95.064 (12)°

  • V = 1267.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 200 K

  • 0.40 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.982

  • 8508 measured reflections

  • 2484 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.11

  • 2484 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O21 1.00 (3) 1.45 (3) 2.4507 (16) 179 (3)
N1A—H11A⋯O11 0.977 (18) 1.875 (18) 2.8175 (17) 161.2 (15)
N1A—H12A⋯O21i 0.876 (19) 2.021 (18) 2.8593 (16) 159.6 (16)
N1A—H13A⋯O22ii 0.92 (2) 1.98 (2) 2.8869 (17) 168.8 (15)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with a number of nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Smith et al., 2007, 2008a,b, 2009a,b,c; Smith & Wermuth, 2010). In the majority of these structures, the DCPA anions are essentially planar with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were therefore expected and found in the 1:1 proton-transfer compound of DCPA with isopropylamine, the title compound C3H10N+ C8H3Cl2O4- (I), reported here.

In (I), the aminium group of the cation forms N+–H···Ocarboxyl hydrogen bonds with O acceptors of three separate DCPA anions (Figs. 1, 2). These associations (Table 1) give one-dimensional ribbon structures which extend across the c cell direction in the unit cell (Fig. 2) and feature conjoint cyclic R44(12) and R44(16) cation–anion hydrogen-bonding interactions (Etter et al., 1990). Within the DCPA anion [torsion angles C2–C1–C11–O11, -161.01 (13)° and C1–C2–C21–O22, -156.69 (13)°] indicate greater distortion from planarity than has been found in the common `planar' DCPA anion examples. The short intramolecular O–H···Ocarboxyl hydrogen bond is also slightly longer [2.4507 (16) Å] (cf. 1.4054 (19) Å (Smith et al., 2009c). Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.14 (11) ° and C2–C1–C11, 128.32 (11) °]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.5189 (18) and 1.5297 (18) Å], as well as short intramolecular aromatic ring C–H···Ocarboxyl interactions [2.6853 (18), 2.6996 (17) Å], are features of the `planar' hydrogen DCPA anions which have been noted previously (Smith et al., 2009c).

Related literature top

The structures of other hydrogen 4,5-dichlorophthalate salts may be found in Mattes & Dorau (1986); Mallinson et al. (2003); Bozkurt et al. (2006); Odabaşoğlu & Büyükgüngör (2007); Smith et al. (2007, 2008a,b, 2009a,b,c); Smith & Wermuth (2010). For graph-set analysis see: Etter et al. (1990).

Experimental top

The title compound (I) was synthesized by heating together 1 mmol quantities of isopropylamine and 4,5-dichlorophthalic acid in 50 ml of methanol for 10 min under reflux. After concentration to ca. 30 ml, total room-temperature evaporation of the hot-filtered solution gave a white non-crystalline solid which was redissolved in water, finally providing colourless flat prisms (m.p. 533 K).

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–Haromatic = 0.93 Å; C–Haliphatic = 0.96–0.98 Å] and treated as riding models with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the isopropylaminium cation and the hydrogen 4,5-dichlorophthalate anion in (I). Non-H atoms are shown as 40% probability displacement ellipsoids. The inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded ribbon structure of (I) extending across the c axial direction in the unit cell. Hydrogen bonds are shown as dashed lines. For symmetry codes see Table 1.
isopropylaminium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C3H10N+·C8H3Cl2O4F(000) = 608
Mr = 294.12Dx = 1.541 Mg m3
Monoclinic, P21/nMelting point: 533 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8362 (7) ÅCell parameters from 3787 reflections
b = 21.040 (2) Åθ = 3.5–28.9°
c = 10.3641 (13) ŵ = 0.52 mm1
β = 95.064 (12)°T = 200 K
V = 1267.7 (3) Å3Prism, colourless
Z = 40.40 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
2484 independent reflections
Radiation source: Enhance (Mo) X-ray source2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.942, Tmax = 0.982k = 2525
8508 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
2484 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C3H10N+·C8H3Cl2O4V = 1267.7 (3) Å3
Mr = 294.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8362 (7) ŵ = 0.52 mm1
b = 21.040 (2) ÅT = 200 K
c = 10.3641 (13) Å0.40 × 0.20 × 0.18 mm
β = 95.064 (12)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
2484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2103 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.982Rint = 0.020
8508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.24 e Å3
2484 reflectionsΔρmin = 0.22 e Å3
179 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.02700 (6)0.21328 (2)0.79371 (4)0.0321 (1)
Cl50.07644 (7)0.22223 (2)0.48482 (4)0.0381 (1)
O110.51763 (18)0.06697 (6)0.34762 (10)0.0380 (4)
O120.79781 (18)0.04757 (5)0.49757 (11)0.0363 (4)
O210.85388 (16)0.04986 (5)0.73467 (10)0.0284 (3)
O220.61961 (18)0.05281 (5)0.89173 (10)0.0319 (3)
C10.4642 (2)0.10656 (6)0.55707 (13)0.0208 (4)
C20.4887 (2)0.10301 (6)0.69407 (13)0.0197 (4)
C30.3362 (2)0.13730 (6)0.76294 (14)0.0214 (4)
C40.1622 (2)0.17415 (6)0.70180 (14)0.0230 (4)
C50.1406 (2)0.17807 (6)0.56719 (14)0.0247 (4)
C60.2902 (2)0.14478 (6)0.49726 (14)0.0241 (4)
C110.5991 (2)0.07119 (6)0.46084 (14)0.0250 (4)
C210.6660 (2)0.06527 (6)0.78049 (14)0.0225 (4)
N1A0.8171 (2)0.04013 (6)0.15582 (13)0.0231 (4)
C1A0.9564 (2)0.10018 (7)0.17227 (15)0.0271 (4)
C2A0.7999 (3)0.15688 (8)0.14539 (19)0.0420 (6)
C3A1.1460 (3)0.09810 (8)0.08332 (17)0.0350 (5)
H30.351500.135400.852900.0260*
H60.275100.147800.407400.0290*
H120.821 (4)0.0490 (11)0.594 (3)0.087 (8)*
H1A1.024800.102600.261900.0330*
H11A0.694 (3)0.0418 (8)0.2138 (18)0.040 (5)*
H12A0.907 (3)0.0072 (9)0.1720 (17)0.036 (5)*
H13A0.751 (3)0.0384 (8)0.072 (2)0.037 (5)*
H21A0.681700.156600.204200.0500*
H22A0.730800.154700.057900.0500*
H23A0.887900.195300.157000.0500*
H31A1.241400.061600.103600.0420*
H32A1.237200.136000.094300.0420*
H33A1.080700.095300.004800.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0289 (2)0.0304 (2)0.0377 (2)0.0045 (1)0.0069 (2)0.0040 (2)
Cl50.0363 (2)0.0352 (2)0.0399 (3)0.0086 (2)0.0133 (2)0.0045 (2)
O110.0356 (6)0.0582 (7)0.0205 (6)0.0017 (5)0.0050 (5)0.0080 (5)
O120.0341 (6)0.0470 (6)0.0286 (7)0.0119 (5)0.0069 (5)0.0007 (5)
O210.0221 (5)0.0317 (6)0.0309 (6)0.0035 (4)0.0002 (4)0.0045 (4)
O220.0368 (6)0.0395 (6)0.0187 (6)0.0064 (4)0.0014 (4)0.0048 (4)
C10.0216 (7)0.0217 (7)0.0189 (7)0.0057 (5)0.0008 (5)0.0006 (5)
C20.0196 (6)0.0194 (6)0.0196 (7)0.0048 (5)0.0010 (5)0.0012 (5)
C30.0248 (7)0.0226 (7)0.0168 (7)0.0038 (5)0.0011 (5)0.0007 (5)
C40.0223 (7)0.0200 (7)0.0268 (8)0.0029 (5)0.0024 (6)0.0014 (5)
C50.0249 (7)0.0208 (7)0.0268 (8)0.0018 (5)0.0069 (6)0.0028 (5)
C60.0275 (7)0.0265 (7)0.0174 (8)0.0055 (5)0.0033 (6)0.0021 (5)
C110.0273 (7)0.0268 (7)0.0214 (8)0.0060 (6)0.0052 (6)0.0006 (6)
C210.0246 (7)0.0208 (7)0.0212 (8)0.0029 (5)0.0030 (6)0.0004 (5)
N1A0.0237 (6)0.0269 (6)0.0183 (7)0.0018 (5)0.0003 (5)0.0007 (5)
C1A0.0315 (8)0.0281 (7)0.0208 (8)0.0026 (6)0.0031 (6)0.0018 (6)
C2A0.0512 (10)0.0287 (8)0.0474 (11)0.0071 (7)0.0111 (8)0.0027 (7)
C3A0.0291 (8)0.0354 (8)0.0408 (10)0.0019 (6)0.0041 (7)0.0071 (7)
Geometric parameters (Å, º) top
Cl4—C41.7292 (14)C2—C31.3908 (18)
Cl5—C51.7337 (14)C3—C41.3858 (18)
O11—C111.2298 (18)C4—C51.392 (2)
O12—C111.2880 (16)C5—C61.3747 (18)
O21—C211.2747 (16)C3—H30.9300
O22—C211.2354 (18)C6—H60.9300
O12—H121.00 (3)C1A—C2A1.513 (2)
N1A—C1A1.5039 (19)C1A—C3A1.502 (2)
N1A—H11A0.977 (18)C1A—H1A0.9800
N1A—H13A0.92 (2)C2A—H21A0.9600
N1A—H12A0.876 (19)C2A—H22A0.9600
C1—C61.3968 (18)C2A—H23A0.9600
C1—C111.5189 (18)C3A—H31A0.9600
C1—C21.4164 (19)C3A—H32A0.9600
C2—C211.5297 (18)C3A—H33A0.9600
C11—O12—H12108.9 (14)O21—C21—C2118.27 (12)
H11A—N1A—H12A111.8 (15)O22—C21—C2117.64 (11)
C1A—N1A—H13A108.5 (11)C2—C3—H3119.00
C1A—N1A—H11A108.6 (10)C4—C3—H3119.00
H11A—N1A—H13A108.2 (16)C1—C6—H6119.00
H12A—N1A—H13A110.1 (16)C5—C6—H6119.00
C1A—N1A—H12A109.5 (12)C2A—C1A—C3A112.05 (14)
C6—C1—C11112.92 (12)N1A—C1A—C2A109.27 (11)
C2—C1—C6118.71 (12)N1A—C1A—C3A109.03 (12)
C2—C1—C11128.32 (11)N1A—C1A—H1A109.00
C1—C2—C21128.14 (11)C2A—C1A—H1A109.00
C1—C2—C3118.33 (12)C3A—C1A—H1A109.00
C3—C2—C21113.53 (12)C1A—C2A—H21A110.00
C2—C3—C4122.13 (13)C1A—C2A—H22A109.00
Cl4—C4—C5121.21 (10)C1A—C2A—H23A109.00
C3—C4—C5119.29 (12)H21A—C2A—H22A109.00
Cl4—C4—C3119.49 (11)H21A—C2A—H23A109.00
Cl5—C5—C4121.52 (10)H22A—C2A—H23A110.00
C4—C5—C6119.51 (12)C1A—C3A—H31A109.00
Cl5—C5—C6118.94 (11)C1A—C3A—H32A110.00
C1—C6—C5122.01 (13)C1A—C3A—H33A109.00
O11—C11—O12121.09 (13)H31A—C3A—H32A109.00
O11—C11—C1118.87 (11)H31A—C3A—H33A109.00
O12—C11—C1120.03 (12)H32A—C3A—H33A109.00
O21—C21—O22124.07 (12)
C6—C1—C2—C30.72 (18)C1—C2—C21—O2122.83 (19)
C6—C1—C2—C21179.34 (12)C1—C2—C21—O22158.69 (13)
C11—C1—C2—C3176.37 (12)C3—C2—C21—O21157.23 (12)
C11—C1—C2—C213.6 (2)C3—C2—C21—O2221.26 (17)
C2—C1—C6—C51.04 (19)C2—C3—C4—Cl4177.78 (10)
C11—C1—C6—C5176.47 (11)C2—C3—C4—C51.10 (19)
C2—C1—C11—O11161.01 (13)Cl4—C4—C5—Cl50.02 (16)
C2—C1—C11—O1220.7 (2)Cl4—C4—C5—C6178.09 (10)
C6—C1—C11—O1116.22 (17)C3—C4—C5—Cl5178.86 (10)
C6—C1—C11—O12162.10 (12)C3—C4—C5—C60.78 (18)
C1—C2—C3—C40.34 (19)Cl5—C5—C6—C1177.84 (10)
C21—C2—C3—C4179.61 (11)C4—C5—C6—C10.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O211.00 (3)1.45 (3)2.4507 (16)179 (3)
N1A—H11A···O110.977 (18)1.875 (18)2.8175 (17)161.2 (15)
N1A—H12A···O21i0.876 (19)2.021 (18)2.8593 (16)159.6 (16)
N1A—H13A···O22ii0.92 (2)1.98 (2)2.8869 (17)168.8 (15)
C3—H3···O220.932.352.6996 (17)102
C6—H6···O110.932.332.6853 (18)102
C3A—H31A···O22i0.962.543.458 (2)160
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC3H10N+·C8H3Cl2O4
Mr294.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)5.8362 (7), 21.040 (2), 10.3641 (13)
β (°) 95.064 (12)
V3)1267.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.40 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8508, 2484, 2103
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.11
No. of reflections2484
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O211.00 (3)1.45 (3)2.4507 (16)179 (3)
N1A—H11A···O110.977 (18)1.875 (18)2.8175 (17)161.2 (15)
N1A—H12A···O21i0.876 (19)2.021 (18)2.8593 (16)159.6 (16)
N1A—H13A···O22ii0.92 (2)1.98 (2)2.8869 (17)168.8 (15)
C3—H3···O220.932.352.6996 (17)102
C6—H6···O110.932.332.6853 (18)102
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808–814.  Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4374–o4375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). J. Chem. Crystallogr. In the press.  Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276–o4277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180–o183.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532–o536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009c). Acta Cryst. E65, o2333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds