organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Di­methyl­amino-1-(4-methyl­phen­yl)prop-2-en-1-one

aCollege of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: sds8@163.com

(Received 2 November 2009; accepted 17 November 2009; online 4 December 2009)

In the title compound, C12H15NO, the C=C and C=O functional groups and the benzene ring are involved in an extended conjugated system. The mol­ecules are essentially planar with a maximal deviation from planarity for the non-H atoms of 0.062 (2) Å.

Related literature

For the pharmaceutical activity of enamino­nes, see: Edafiogh et al. (2003[Edafiogh, I. O., Ananthalakshmi, K. V. V. & Kombian, S. B. (2003). Bioorg. Med. Chem. 14, 5266-5272.]); Eddington et al. (2003[Eddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49-64.]). For the use of enamino­nes as chelating ligands for main group metals and transition metals in coordination chemistry, see: Cindrić et al. (2004[Cindrić, M., Vrdoljak, V. & Strukan, N. (2004). Inorg. Chim. Acta, 357, 931-938.]); Shi et al. (2008[Shi, Y. C., Cheng, H. J. & Zhang, S. H. (2008). Polyhedron, 27, 3331-3336.]). For the chemical synthesis of enamino­nes, see: Kantevari et al. (2007[Kantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024-13031.]); Ke et al. (2009[Ke, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389-1391.]). For the crystal structures of enamino­nes, see: Lemmerer et al. (2007[Lemmerer, A., Michael, J. P., Pienaar, D. P. & Sannasy, D. (2007). Acta Cryst. E63, o98-o99.]); Bertolasi et al. (1999[Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K. & Jollimore, J. V. (1999). Acta Cryst. B55, 994-1004.]); Blake et al. (1996[Blake, A. J., McNab, H., Monahan, L. C., Parsons, S. & Stevenson, E. (1996). Acta Cryst. C52, 2814-2818.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO

  • Mr = 189.25

  • Monoclinic, P 21 /c

  • a = 8.7918 (17) Å

  • b = 5.9506 (12) Å

  • c = 20.789 (4) Å

  • β = 99.300 (3)°

  • V = 1073.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.08 × 0.06 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.994, Tmax = 0.998

  • 5180 measured reflections

  • 2290 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.150

  • S = 1.02

  • 2290 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Enaminones and their metal complexes have been widely studied due to their applications in the fields of optical chemistry, medicinal chemistry and biotechnology. Those ligands are versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones and have been extensively used for the preparation of a variety of heterocyclic systems including some natural products and analogues. Moreover, in coordination chemistry, enaminones can be used as good chelating ligands for main group metals and transition metals (Cindrić et al., 2004; Shi et al.,2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig.1. The molecule crystallized as an E isomer with extended conjugation involving N, C=C, C=O, and the benzene ring. As a consequence the molecule is planar, the maximal deviation from planarity for the non-hydrogen atoms is 0.062 (2) Å.

Related literature top

For the pharmaceutical activity of enaminones, see: Edafiogh et al. (2003); Eddington et al. (2003). For the use of enaminones as chelating ligands for main group metals and transition metals in coordination chemistry, see: Cindrić et al. (2004); Shi et al. (2008). For the chemical synthesis of enaminones, see: Kantevari et al. (2007); Ke et al. (2009). For the crystal structures of enaminones, see: Lemmerer et al. (2007); Bertolasi et al. (1999); Blake et al. (1996).

Experimental top

A solution of 4-Methylacetophenone (13.2 g, 0.1 mol) in ethyl formate (14.8 g, 0.2 mol) was added dropwise to a stirred suspension of sodium ethoxide(6.8 g, 0.1 mol) in anhydrous diethyl ether (50 ml) at room temperature. After stirring for 4 h, 8.8 g Dimethylamine hydrochloride (0.11 mol) in 20 ml water was added dropwise to the stirred suspended matter, and it was stirred for another 2 h. Then, the organic phase was separated, and the solvent was removed on a rotary evaporator, the residual was recrystallized in hexane-acetone (10:1) in an afford of the title compound (15.2 g). Crystals were obtained by slow evaporation of a solution in diethyl ether at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.98 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 30% probability level.
3-Dimethylamino-1-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C12H15NOF(000) = 408
Mr = 189.25Dx = 1.171 Mg m3
Monoclinic, P21/cMelting point: 367 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7918 (17) ÅCell parameters from 1291 reflections
b = 5.9506 (12) Åθ = 3.1–28.6°
c = 20.789 (4) ŵ = 0.07 mm1
β = 99.300 (3)°T = 173 K
V = 1073.3 (4) Å3Plate, colourless
Z = 40.08 × 0.06 × 0.03 mm
Data collection top
Bruker APEX CCD
diffractometer
2290 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and phi scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.994, Tmax = 0.998k = 77
5180 measured reflectionsl = 1126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0918P)2 + 0.1894P]
where P = (Fo2 + 2Fc2)/3
2290 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H15NOV = 1073.3 (4) Å3
Mr = 189.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7918 (17) ŵ = 0.07 mm1
b = 5.9506 (12) ÅT = 173 K
c = 20.789 (4) Å0.08 × 0.06 × 0.03 mm
β = 99.300 (3)°
Data collection top
Bruker APEX CCD
diffractometer
2290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1731 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 0.998Rint = 0.023
5180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2290 reflectionsΔρmin = 0.23 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19626 (13)0.51500 (19)0.07917 (6)0.0490 (4)
N10.15817 (14)0.0530 (2)0.05528 (6)0.0327 (3)
C10.84154 (18)0.1518 (3)0.24118 (8)0.0439 (4)
H1A0.84750.00020.25960.066*
H1B0.86260.26190.27650.066*
H1C0.91790.16800.21200.066*
C20.68222 (16)0.1912 (2)0.20336 (7)0.0308 (3)
C30.64246 (17)0.3950 (3)0.17274 (7)0.0346 (4)
H3A0.71790.51010.17440.042*
C40.49477 (17)0.4341 (2)0.13971 (7)0.0318 (3)
H4A0.47050.57530.11930.038*
C50.38156 (16)0.2684 (2)0.13621 (6)0.0271 (3)
C60.42232 (16)0.0632 (2)0.16573 (7)0.0302 (3)
H6A0.34780.05350.16320.036*
C70.57032 (17)0.0256 (3)0.19896 (7)0.0328 (4)
H7A0.59520.11610.21900.039*
C80.22148 (16)0.3234 (2)0.10167 (7)0.0301 (3)
C90.10551 (16)0.1520 (2)0.09670 (7)0.0291 (3)
H9A0.12990.00870.11570.035*
C100.03947 (16)0.1940 (2)0.06473 (7)0.0296 (3)
H10A0.05780.34080.04720.036*
C110.1441 (2)0.1751 (3)0.07988 (9)0.0442 (4)
H11A0.04400.23680.07390.066*
H11B0.22680.26750.05600.066*
H11C0.15200.17520.12640.066*
C120.30880 (17)0.1211 (3)0.02142 (8)0.0411 (4)
H12A0.30260.27400.00450.062*
H12B0.38330.11750.05180.062*
H12C0.34210.01780.01480.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (7)0.0328 (6)0.0712 (9)0.0016 (5)0.0038 (6)0.0170 (6)
N10.0276 (6)0.0359 (7)0.0341 (7)0.0024 (5)0.0035 (5)0.0010 (5)
C10.0330 (9)0.0542 (10)0.0421 (9)0.0026 (7)0.0008 (7)0.0023 (8)
C20.0276 (7)0.0373 (8)0.0274 (7)0.0008 (6)0.0047 (5)0.0040 (6)
C30.0325 (8)0.0346 (8)0.0367 (8)0.0090 (6)0.0056 (6)0.0041 (6)
C40.0360 (8)0.0261 (7)0.0335 (8)0.0030 (6)0.0065 (6)0.0026 (6)
C50.0283 (7)0.0286 (7)0.0250 (7)0.0013 (5)0.0062 (5)0.0018 (5)
C60.0299 (7)0.0280 (7)0.0326 (8)0.0030 (6)0.0050 (6)0.0013 (6)
C70.0356 (8)0.0318 (8)0.0309 (7)0.0028 (6)0.0048 (6)0.0031 (6)
C80.0321 (8)0.0280 (7)0.0305 (7)0.0006 (6)0.0056 (6)0.0015 (6)
C90.0286 (8)0.0282 (7)0.0307 (7)0.0004 (6)0.0055 (6)0.0019 (6)
C100.0316 (8)0.0288 (7)0.0296 (7)0.0003 (6)0.0083 (6)0.0007 (6)
C110.0457 (10)0.0360 (9)0.0512 (10)0.0103 (7)0.0090 (8)0.0011 (7)
C120.0285 (8)0.0562 (11)0.0377 (8)0.0011 (7)0.0031 (6)0.0056 (7)
Geometric parameters (Å, º) top
O1—C81.2388 (18)C5—C81.509 (2)
N1—C101.3288 (18)C6—C71.389 (2)
N1—C111.448 (2)C6—H6A0.9500
N1—C121.453 (2)C7—H7A0.9500
C1—C21.510 (2)C8—C91.434 (2)
C1—H1A0.9800C9—C101.362 (2)
C1—H1B0.9800C9—H9A0.9500
C1—H1C0.9800C10—H10A0.9500
C2—C71.385 (2)C11—H11A0.9800
C2—C31.388 (2)C11—H11B0.9800
C3—C41.387 (2)C11—H11C0.9800
C3—H3A0.9500C12—H12A0.9800
C4—C51.395 (2)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.387 (2)
C10—N1—C11121.29 (13)C2—C7—C6121.09 (13)
C10—N1—C12121.85 (13)C2—C7—H7A119.5
C11—N1—C12116.84 (13)C6—C7—H7A119.5
C2—C1—H1A109.5O1—C8—C9123.07 (13)
C2—C1—H1B109.5O1—C8—C5118.41 (13)
H1A—C1—H1B109.5C9—C8—C5118.52 (12)
C2—C1—H1C109.5C10—C9—C8120.19 (13)
H1A—C1—H1C109.5C10—C9—H9A119.9
H1B—C1—H1C109.5C8—C9—H9A119.9
C7—C2—C3117.91 (13)N1—C10—C9127.35 (14)
C7—C2—C1120.88 (14)N1—C10—H10A116.3
C3—C2—C1121.21 (14)C9—C10—H10A116.3
C4—C3—C2121.32 (13)N1—C11—H11A109.5
C4—C3—H3A119.3N1—C11—H11B109.5
C2—C3—H3A119.3H11A—C11—H11B109.5
C3—C4—C5120.69 (14)N1—C11—H11C109.5
C3—C4—H4A119.7H11A—C11—H11C109.5
C5—C4—H4A119.7H11B—C11—H11C109.5
C6—C5—C4117.92 (13)N1—C12—H12A109.5
C6—C5—C8123.77 (13)N1—C12—H12B109.5
C4—C5—C8118.31 (13)H12A—C12—H12B109.5
C5—C6—C7121.06 (13)N1—C12—H12C109.5
C5—C6—H6A119.5H12A—C12—H12C109.5
C7—C6—H6A119.5H12B—C12—H12C109.5

Experimental details

Crystal data
Chemical formulaC12H15NO
Mr189.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.7918 (17), 5.9506 (12), 20.789 (4)
β (°) 99.300 (3)
V3)1073.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.08 × 0.06 × 0.03
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.994, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
5180, 2290, 1731
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.150, 1.02
No. of reflections2290
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Research Plan Project of Guangdong Province for financial surpport (05552838).

References

First citationBertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K. & Jollimore, J. V. (1999). Acta Cryst. B55, 994–1004.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlake, A. J., McNab, H., Monahan, L. C., Parsons, S. & Stevenson, E. (1996). Acta Cryst. C52, 2814–2818.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCindrić, M., Vrdoljak, V. & Strukan, N. (2004). Inorg. Chim. Acta, 357, 931–938.  Google Scholar
First citationEdafiogh, I. O., Ananthalakshmi, K. V. V. & Kombian, S. B. (2003). Bioorg. Med. Chem. 14, 5266–5272.  Google Scholar
First citationEddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024–13031.  Web of Science CrossRef CAS Google Scholar
First citationKe, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389–1391.  Web of Science CrossRef CAS Google Scholar
First citationLemmerer, A., Michael, J. P., Pienaar, D. P. & Sannasy, D. (2007). Acta Cryst. E63, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. C., Cheng, H. J. & Zhang, S. H. (2008). Polyhedron, 27, 3331–3336.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds