organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o33-o34

1,8-Bis(tos­yl­oxy)-9,10-anthra­quinone

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl

(Received 23 November 2009; accepted 26 November 2009; online 4 December 2009)

In the crystal structure of the title compound, C28H20O8S2, adjacent anthracene skeletons are parallel or inclined at an angle of 20.6 (1)°. In the mol­ecular structure, the mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1) and 76.8 (1)° with the tosyl rings, and the two terminal benzene rings are oriented at an angle of 74.5 (1)° with respect to each other. The crystal structure is stabilized by inter­molecular C—H⋯O and C—O⋯π inter­actions.

Related literature

For general background to anthraquinones, see: Cheng & Zee-Cheng (1983[Cheng, C. C. & Zee-Cheng, R. K. Y. (1983). Prog. Med. Chem. 20, 83-118.]); Dzierzbicka et al. (2006[Dzierzbicka, K., Sowiński, P. & Kołodziejczyk, A. M. (2006). J. Pept. Sci. 12, 670-678.]); Gatto et al. (1996[Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114-3122.]); Hunger (2003[Hunger, K. (2003). Industrial Dyes Chemistry, Properties, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]); Krapcho et al. (1991[Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373-2380.]); Nakanishi et al. (2005[Nakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H. & Shimomura, K. (2005). Plant Phys. Biochem. 43, 921-928.]); Zielske (1987[Zielske, A. G. (1987). J. Org. Chem. 52, 1305-1309.]); Zon et al. (2003[Zon, A., Palys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579-585.]). For related structures, see: Sereda & Akhvlediani (2003[Sereda, G. A. & Akhvlediani, D. G. (2003). Tetrahedron Lett. 44, 9125-9126.]); Slouf (2002[Slouf, M. (2002). J. Mol. Struct. 611, 139-146.]); Zain & Ng (2005[Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921-o2923.]). For mol­ecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Santos-Contreras et al. (2007[Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239-o242.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Steiner (1999[Steiner, T. (1999). Chem. Commun. pp. 313-314.]). For the synthesis, see: Ossowski et al. (2000[Ossowski, T., Kira, J., Rogowska, D., Warmke, H. & Młodzianowski, J. (2000). J. Chem. Soc. Dalton Trans. pp. 689-696.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20O8S2

  • Mr = 548.58

  • Monoclinic, P 21 /c

  • a = 8.263 (2) Å

  • b = 27.473 (5) Å

  • c = 11.162 (2) Å

  • β = 100.36 (3)°

  • V = 2492.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer

  • 18048 measured reflections

  • 4371 independent reflections

  • 3374 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.15

  • 4371 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O18i 0.93 2.54 3.332 (4) 143
C33—H33⋯O30ii 0.93 2.56 3.241 (4) 130
C36—H36⋯O31iii 0.93 2.58 3.458 (4) 156
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Table 2
C–O⋯π inter­actions (Å,°).

C O J O⋯J C⋯J C–O⋯J
C10 O27 Cg1iv 3.688 (3) 3.481 (3) 70.71 (17)
C10 O27 Cg2v 3.452 (3) 3.528 (3) 83.41 (18)
Symmetry codes: (iv) −x, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z + 1. Cg1 and Cg2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthraquinones, its amino and hydroxy derivatives as the largest group of naturally occurring quinines are of great practical significance in pharmacology, biochemistry and dye chemistry (Hunger, 2003). Anthraquinones are widely widespread in nature, they are occur in bark, or roots of different plants, and display various pharmacological activities such as anti-oxidant, anti-microbial, anti-fungal and anti-viral (Nakanishi et al., 2005). The anthraquinone ring system is often found in antitumor drugs, such as anthracyclines, mitoxantrone, ametantrone and anthrapyrazoles (Cheng & Zee-Cheng, 1983). Its planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Krapcho et al., 1991, Gatto et al., 1996). Anthraquinones are also interesting compounds for the investigations in analytical and electroanalytical chemistry due to the fact that they contain several π electrons, the reducible p-quinone system and are electroactive (Zon et al., 2003). The tosyl group is a very good leaving group, commonly used in organic synthesis in nucleophilic substitution reaction. This phenomenon is applicable to prepare the various aminoanthraquinone from (tosy1oxy)anthraquinone precursors (Zielske, 1987). The 1,8-Bis(tosyloxy)-9,10-anthraquinone is a very convenient and often used precursor to obtain the 1,8-diaminoanthraquinones derivatives (Dzierzbicka et al., 2006).

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the anthraquinone skeleton are typical for this group of compounds (Sereda & Akhvlediani, 2003; Slouf, 2002; Zain & Ng, 2005).

In the packing of molecules of the title compound, the anthracene skeletons, with an average deviations from planarity of 0.044 (1) Å, are parallel or inclined at an angle of 20.1 (1)°. The mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1)° and 76.8 (1)°, with the tosyl phenyl rings. Those phenyl rings are oriented at the angle of 74.5 (1)° to each other.

The crystal structure is stabilized by C–H···O (Table 1, Fig. 2) and C–O···π (Table 1, Fig. 3) intermolecular interactions. The C–H···O interactions are the hydrogen bond type (Steiner, 1999, Bianchi et al., 2004). All interactions demonstrated were found by PLATON (Spek, 2009).

Related literature top

For general background to anthraquinones, see: Cheng & Zee-Cheng (1983); Dzierzbicka et al. (2006); Gatto et al. (1996); Hunger (2003); Krapcho et al. (1991); Nakanishi et al. (2005); Zielske (1987); Zon et al. (2003). For related structures, see: Sereda & Akhvlediani (2003); Slouf (2002); Zain & Ng (2005). For molecular interactions, see: Bianchi et al. (2004); Santos-Contreras et al. (2007); Spek (2009); Steiner (1999). For the synthesis, see: Ossowski et al. (2000).

Experimental top

1,8-Bis(tosyloxy)-9,10-anthraquinone was synthesized according to the method reported in the literature (Ossowski et al., 2000). To the stirring mixture of 5.0 g (20.8 mmol) 1,8-dihydroxy-9,10-anthraquinone and 5.22 g (27.4 mmol) of p-toluenesulfonyl chloride in 200 ml dichloromethane was dropwise added over 5 h 15 ml triethylamine in 100 ml dichloromethane. The progress of the reaction was monitored by TLC (SiO2, dichloromethane-petroleum ether 1:1 v/v) until the completion of reaction. The reaction mixture was stirred 6 h at room temperature. The solution was washed with water (3 x 100 ml), the organic phase was dried over MgSO4 and concentrated. The residue was purified by column chromatography on silica gel (dichloromethane-petroleum ether, 1:0.8 v/v) to afford the title compound as a yellow solid. (3.64 g, 28%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature (m.p. = 448–450 K; elemental analysis (% found/calculated: C 61.41/61.30, H 3.65/3.67, S 11.69/11.69)).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1 and Cg2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along c axis. The C–H···O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -x + 2; (ii) x, -y + 3/2, z - 1/2; (iii) x - 1, y, z.]
[Figure 3] Fig. 3. The arrangement of the molecules in the crystal structure viewed approximately along c axis. The C–O···π interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1.]
1,8-Bis(tosyloxy)-9,10-anthraquinone top
Crystal data top
C28H20O8S2F(000) = 1136
Mr = 548.58Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10108 reflections
a = 8.263 (2) Åθ = 3.2–29.2°
b = 27.473 (5) ŵ = 0.27 mm1
c = 11.162 (2) ÅT = 295 K
β = 100.36 (3)°Block, yellow
V = 2492.6 (9) Å30.4 × 0.3 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
3374 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.050
Graphite monochromatorθmax = 25.1°, θmin = 3.2°
Detector resolution: 10.4002 pixels mm-1h = 99
ω scansk = 2832
18048 measured reflectionsl = 1311
4371 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.3332P]
where P = (Fo2 + 2Fc2)/3
4371 reflections(Δ/σ)max = 0.002
345 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C28H20O8S2V = 2492.6 (9) Å3
Mr = 548.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.263 (2) ŵ = 0.27 mm1
b = 27.473 (5) ÅT = 295 K
c = 11.162 (2) Å0.4 × 0.3 × 0.15 mm
β = 100.36 (3)°
Data collection top
Oxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
3374 reflections with I > 2σ(I)
18048 measured reflectionsRint = 0.050
4371 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.15Δρmax = 0.46 e Å3
4371 reflectionsΔρmin = 0.32 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1135 (3)0.52337 (10)0.7763 (2)0.0427 (6)
C20.0657 (4)0.47974 (11)0.8207 (3)0.0575 (8)
H20.03010.47890.89510.069*
C30.0707 (4)0.43742 (11)0.7550 (3)0.0636 (9)
H30.03650.40820.78430.076*
C40.1262 (4)0.43846 (11)0.6463 (3)0.0548 (8)
H40.13110.40980.60270.066*
C50.3761 (3)0.52607 (12)0.3386 (2)0.0511 (7)
H50.37650.49720.29490.061*
C60.4458 (4)0.56703 (12)0.3008 (3)0.0560 (8)
H60.49210.56600.23080.067*
C70.4480 (4)0.60985 (11)0.3654 (3)0.0518 (7)
H70.50040.63720.34150.062*
C80.3724 (3)0.61198 (10)0.4653 (2)0.0412 (6)
C90.2008 (3)0.57330 (9)0.6073 (2)0.0393 (6)
C100.2362 (3)0.48179 (10)0.4841 (3)0.0469 (7)
C110.1676 (3)0.52607 (9)0.6648 (2)0.0391 (6)
C120.1754 (3)0.48225 (9)0.6010 (3)0.0430 (6)
C130.2964 (3)0.57106 (9)0.5061 (2)0.0385 (6)
C140.3048 (3)0.52732 (10)0.4419 (2)0.0419 (6)
O150.0972 (2)0.56551 (7)0.84323 (17)0.0486 (5)
S160.22980 (10)0.57749 (3)0.96370 (6)0.0532 (3)
O170.1499 (3)0.61401 (9)1.0209 (2)0.0762 (7)
O180.2768 (3)0.53273 (8)1.02503 (19)0.0653 (6)
C190.3976 (3)0.60173 (10)0.9090 (2)0.0449 (6)
C200.3917 (4)0.64943 (11)0.8680 (3)0.0541 (8)
H200.30000.66870.87120.065*
C210.5222 (4)0.66780 (11)0.8228 (3)0.0540 (8)
H210.51830.69980.79550.065*
C220.6606 (4)0.63985 (11)0.8167 (3)0.0546 (7)
C230.6631 (4)0.59232 (11)0.8589 (3)0.0644 (9)
H230.75470.57300.85610.077*
C240.5337 (4)0.57324 (11)0.9046 (3)0.0582 (8)
H240.53760.54130.93250.070*
C250.8010 (5)0.66019 (14)0.7636 (4)0.0856 (12)
H25A0.85610.63420.72970.128*
H25B0.87710.67620.82640.128*
H25C0.75950.68320.70070.128*
O260.1427 (3)0.61106 (7)0.63596 (19)0.0530 (5)
O270.2365 (3)0.44406 (8)0.4261 (2)0.0714 (7)
O280.3778 (2)0.65378 (6)0.53713 (16)0.0471 (5)
S290.34049 (9)0.70699 (2)0.48060 (7)0.0481 (2)
O300.3284 (3)0.73551 (8)0.5843 (2)0.0638 (6)
O310.4611 (3)0.71850 (8)0.4092 (2)0.0643 (6)
C320.1493 (3)0.70184 (10)0.3851 (3)0.0444 (6)
C330.1394 (4)0.70045 (11)0.2604 (3)0.0556 (8)
H330.23430.70150.22660.067*
C340.0135 (4)0.69754 (12)0.1866 (3)0.0586 (8)
H340.02060.69620.10260.070*
C350.1561 (4)0.69661 (10)0.2349 (3)0.0525 (7)
C360.1428 (4)0.69827 (11)0.3605 (3)0.0533 (7)
H360.23800.69790.39410.064*
C370.0083 (3)0.70044 (10)0.4368 (3)0.0488 (7)
H370.01560.70100.52090.059*
C380.3217 (5)0.69311 (16)0.1525 (4)0.0821 (11)
H38A0.31990.71140.07950.123*
H38B0.40470.70610.19360.123*
H38C0.34580.65960.13200.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (14)0.0445 (15)0.0461 (15)0.0029 (11)0.0092 (11)0.0010 (12)
C20.0600 (18)0.0551 (18)0.0611 (19)0.0041 (14)0.0213 (15)0.0089 (15)
C30.065 (2)0.0446 (17)0.083 (2)0.0099 (14)0.0186 (18)0.0101 (16)
C40.0511 (16)0.0393 (15)0.072 (2)0.0036 (12)0.0054 (15)0.0027 (14)
C50.0485 (16)0.0628 (19)0.0408 (16)0.0076 (13)0.0051 (12)0.0107 (13)
C60.0539 (17)0.077 (2)0.0393 (16)0.0067 (15)0.0131 (13)0.0016 (14)
C70.0536 (16)0.0576 (18)0.0457 (16)0.0011 (13)0.0127 (13)0.0055 (13)
C80.0388 (13)0.0450 (15)0.0383 (14)0.0039 (11)0.0029 (11)0.0020 (11)
C90.0376 (13)0.0422 (14)0.0372 (14)0.0016 (11)0.0045 (11)0.0010 (11)
C100.0436 (14)0.0440 (16)0.0504 (16)0.0015 (11)0.0017 (12)0.0101 (13)
C110.0345 (13)0.0406 (14)0.0412 (14)0.0019 (10)0.0046 (10)0.0015 (11)
C120.0365 (13)0.0406 (15)0.0504 (16)0.0005 (11)0.0041 (11)0.0014 (12)
C130.0364 (13)0.0456 (14)0.0321 (13)0.0053 (11)0.0029 (10)0.0001 (11)
C140.0381 (13)0.0480 (15)0.0375 (14)0.0056 (11)0.0010 (11)0.0053 (12)
O150.0510 (11)0.0515 (11)0.0462 (11)0.0089 (8)0.0163 (9)0.0006 (8)
S160.0651 (5)0.0582 (5)0.0396 (4)0.0068 (3)0.0181 (3)0.0027 (3)
O170.0945 (18)0.0811 (17)0.0624 (14)0.0122 (13)0.0391 (13)0.0169 (12)
O180.0802 (15)0.0693 (14)0.0469 (12)0.0063 (11)0.0126 (11)0.0156 (10)
C190.0543 (16)0.0428 (15)0.0372 (14)0.0068 (12)0.0070 (12)0.0058 (11)
C200.0512 (17)0.0468 (16)0.0612 (19)0.0107 (13)0.0018 (14)0.0073 (14)
C210.0632 (19)0.0402 (15)0.0557 (18)0.0016 (13)0.0025 (15)0.0025 (13)
C220.0587 (18)0.0450 (16)0.0602 (18)0.0005 (13)0.0111 (15)0.0095 (13)
C230.060 (2)0.0445 (18)0.092 (3)0.0124 (14)0.0231 (17)0.0039 (16)
C240.066 (2)0.0404 (16)0.070 (2)0.0106 (14)0.0173 (16)0.0004 (14)
C250.084 (3)0.064 (2)0.118 (3)0.0084 (19)0.044 (2)0.004 (2)
O260.0669 (13)0.0389 (11)0.0587 (12)0.0081 (9)0.0259 (10)0.0001 (9)
O270.0901 (17)0.0553 (13)0.0714 (15)0.0082 (11)0.0213 (13)0.0257 (12)
O280.0543 (11)0.0439 (11)0.0429 (11)0.0036 (8)0.0085 (8)0.0006 (8)
S290.0439 (4)0.0417 (4)0.0596 (5)0.0070 (3)0.0114 (3)0.0020 (3)
O300.0678 (14)0.0496 (12)0.0720 (14)0.0069 (10)0.0070 (11)0.0169 (10)
O310.0490 (12)0.0625 (14)0.0855 (16)0.0099 (10)0.0230 (11)0.0141 (12)
C320.0452 (15)0.0402 (14)0.0500 (16)0.0007 (11)0.0143 (12)0.0055 (12)
C330.0544 (17)0.0613 (18)0.0564 (18)0.0063 (14)0.0241 (14)0.0098 (14)
C340.069 (2)0.0629 (19)0.0436 (16)0.0113 (15)0.0102 (15)0.0056 (14)
C350.0535 (17)0.0416 (15)0.0605 (19)0.0073 (12)0.0050 (14)0.0021 (13)
C360.0437 (16)0.0584 (18)0.0600 (19)0.0032 (13)0.0156 (14)0.0024 (14)
C370.0483 (15)0.0535 (17)0.0469 (16)0.0007 (12)0.0144 (12)0.0011 (13)
C380.066 (2)0.099 (3)0.073 (2)0.010 (2)0.0094 (18)0.001 (2)
Geometric parameters (Å, º) top
C1—C21.382 (4)C19—C201.386 (4)
C1—O151.398 (3)C20—C211.367 (5)
C1—C111.398 (4)C20—H200.9300
C2—C31.379 (5)C21—C221.389 (4)
C2—H20.9300C21—H210.9300
C3—C41.372 (5)C22—C231.387 (4)
C3—H30.9300C22—C251.502 (5)
C4—C121.394 (4)C23—C241.369 (5)
C4—H40.9300C23—H230.9300
C5—C61.364 (5)C24—H240.9300
C5—C141.387 (4)C25—H25A0.9600
C5—H50.9300C25—H25B0.9600
C6—C71.379 (4)C25—H25C0.9600
C6—H60.9300O28—S291.6000 (19)
C7—C81.373 (4)S29—O301.416 (2)
C7—H70.9300S29—O311.419 (2)
C8—O281.397 (3)S29—C321.745 (3)
C8—C131.403 (4)C32—C331.380 (4)
C9—O261.210 (3)C32—C371.390 (4)
C9—C131.491 (4)C33—C341.381 (4)
C9—C111.495 (4)C33—H330.9300
C10—O271.223 (3)C34—C351.381 (5)
C10—C121.479 (4)C34—H340.9300
C10—C141.485 (4)C35—C361.387 (4)
C11—C121.406 (4)C35—C381.508 (4)
C13—C141.407 (4)C36—C371.380 (4)
O15—S161.608 (2)C36—H360.9300
S16—O171.415 (2)C37—H370.9300
S16—O181.427 (2)C38—H38A0.9600
S16—C191.745 (3)C38—H38B0.9600
C19—C241.378 (4)C38—H38C0.9600
C2—C1—O15117.8 (3)C21—C20—C19119.2 (3)
C2—C1—C11121.6 (3)C21—C20—H20120.4
O15—C1—C11120.6 (2)C19—C20—H20120.4
C3—C2—C1120.2 (3)C20—C21—C22121.7 (3)
C3—C2—H2119.9C20—C21—H21119.2
C1—C2—H2119.9C22—C21—H21119.2
C4—C3—C2119.9 (3)C23—C22—C21117.7 (3)
C4—C3—H3120.0C23—C22—C25121.3 (3)
C2—C3—H3120.0C21—C22—C25121.0 (3)
C3—C4—C12120.3 (3)C24—C23—C22121.5 (3)
C3—C4—H4119.8C24—C23—H23119.3
C12—C4—H4119.8C22—C23—H23119.3
C6—C5—C14120.2 (3)C23—C24—C19119.5 (3)
C6—C5—H5119.9C23—C24—H24120.2
C14—C5—H5119.9C19—C24—H24120.2
C5—C6—C7120.6 (3)C22—C25—H25A109.5
C5—C6—H6119.7C22—C25—H25B109.5
C7—C6—H6119.7H25A—C25—H25B109.5
C8—C7—C6119.7 (3)C22—C25—H25C109.5
C8—C7—H7120.1H25A—C25—H25C109.5
C6—C7—H7120.1H25B—C25—H25C109.5
C7—C8—O28121.9 (2)C8—O28—S29122.72 (16)
C7—C8—C13121.7 (3)O30—S29—O31119.70 (14)
O28—C8—C13116.2 (2)O30—S29—O28102.71 (12)
O26—C9—C13121.7 (2)O31—S29—O28108.68 (12)
O26—C9—C11121.2 (2)O30—S29—C32110.80 (14)
C13—C9—C11116.9 (2)O31—S29—C32108.96 (14)
O27—C10—C12120.5 (3)O28—S29—C32104.82 (11)
O27—C10—C14120.6 (3)C33—C32—C37121.0 (3)
C12—C10—C14118.8 (2)C33—C32—S29120.1 (2)
C1—C11—C12117.2 (2)C37—C32—S29118.9 (2)
C1—C11—C9122.8 (2)C32—C33—C34119.0 (3)
C12—C11—C9119.8 (2)C32—C33—H33120.5
C4—C12—C11120.8 (3)C34—C33—H33120.5
C4—C12—C10118.7 (3)C33—C34—C35121.4 (3)
C11—C12—C10120.5 (2)C33—C34—H34119.3
C8—C13—C14116.9 (2)C35—C34—H34119.3
C8—C13—C9122.8 (2)C34—C35—C36118.4 (3)
C14—C13—C9120.2 (2)C34—C35—C38120.5 (3)
C5—C14—C13120.8 (3)C36—C35—C38121.1 (3)
C5—C14—C10119.1 (2)C37—C36—C35121.5 (3)
C13—C14—C10120.1 (2)C37—C36—H36119.2
C1—O15—S16120.01 (16)C35—C36—H36119.2
O17—S16—O18120.23 (15)C36—C37—C32118.6 (3)
O17—S16—O15102.67 (14)C36—C37—H37120.7
O18—S16—O15108.09 (12)C32—C37—H37120.7
O17—S16—C19110.62 (15)C35—C38—H38A109.5
O18—S16—C19109.39 (14)C35—C38—H38B109.5
O15—S16—C19104.49 (12)H38A—C38—H38B109.5
C24—C19—C20120.4 (3)C35—C38—H38C109.5
C24—C19—S16120.0 (2)H38A—C38—H38C109.5
C20—C19—S16119.6 (2)H38B—C38—H38C109.5
O15—C1—C2—C3176.5 (3)C12—C10—C14—C136.3 (4)
C11—C1—C2—C30.1 (4)C2—C1—O15—S1677.9 (3)
C1—C2—C3—C41.3 (5)C11—C1—O15—S16105.6 (2)
C2—C3—C4—C120.9 (5)C1—O15—S16—O17165.1 (2)
C14—C5—C6—C70.8 (4)C1—O15—S16—O1837.1 (2)
C5—C6—C7—C83.2 (4)C1—O15—S16—C1979.4 (2)
C6—C7—C8—O28176.9 (2)O17—S16—C19—C24148.7 (2)
C6—C7—C8—C131.9 (4)O18—S16—C19—C2414.1 (3)
C2—C1—C11—C121.6 (4)O15—S16—C19—C24101.4 (2)
O15—C1—C11—C12177.9 (2)O17—S16—C19—C2032.5 (3)
C2—C1—C11—C9172.5 (2)O18—S16—C19—C20167.1 (2)
O15—C1—C11—C93.9 (4)O15—S16—C19—C2077.3 (2)
O26—C9—C11—C119.9 (4)C24—C19—C20—C210.2 (4)
C13—C9—C11—C1165.1 (2)S16—C19—C20—C21178.6 (2)
O26—C9—C11—C12154.0 (3)C19—C20—C21—C220.2 (5)
C13—C9—C11—C1221.0 (3)C20—C21—C22—C230.4 (5)
C3—C4—C12—C110.7 (4)C20—C21—C22—C25178.3 (3)
C3—C4—C12—C10179.4 (3)C21—C22—C23—C240.3 (5)
C1—C11—C12—C41.9 (4)C25—C22—C23—C24178.4 (4)
C9—C11—C12—C4172.4 (2)C22—C23—C24—C190.0 (5)
C1—C11—C12—C10178.1 (2)C20—C19—C24—C230.3 (5)
C9—C11—C12—C107.6 (4)S16—C19—C24—C23178.5 (3)
O27—C10—C12—C43.1 (4)C7—C8—O28—S2947.3 (3)
C14—C10—C12—C4173.8 (2)C13—C8—O28—S29137.4 (2)
O27—C10—C12—C11176.9 (2)C8—O28—S29—O30169.05 (19)
C14—C10—C12—C116.3 (4)C8—O28—S29—O3163.2 (2)
C7—C8—C13—C141.6 (4)C8—O28—S29—C3253.2 (2)
O28—C8—C13—C14173.7 (2)O30—S29—C32—C33144.9 (2)
C7—C8—C13—C9174.4 (2)O31—S29—C32—C3311.2 (3)
O28—C8—C13—C910.3 (3)O28—S29—C32—C33105.0 (2)
O26—C9—C13—C822.0 (4)O30—S29—C32—C3733.5 (3)
C11—C9—C13—C8163.1 (2)O31—S29—C32—C37167.2 (2)
O26—C9—C13—C14154.0 (2)O28—S29—C32—C3776.6 (2)
C11—C9—C13—C1421.0 (3)C37—C32—C33—C340.1 (4)
C6—C5—C14—C132.8 (4)S29—C32—C33—C34178.5 (2)
C6—C5—C14—C10177.4 (3)C32—C33—C34—C350.8 (5)
C8—C13—C14—C54.0 (3)C33—C34—C35—C360.5 (4)
C9—C13—C14—C5172.2 (2)C33—C34—C35—C38179.6 (3)
C8—C13—C14—C10176.3 (2)C34—C35—C36—C370.5 (4)
C9—C13—C14—C107.6 (3)C38—C35—C36—C37178.6 (3)
O27—C10—C14—C52.9 (4)C35—C36—C37—C321.1 (4)
C12—C10—C14—C5173.9 (2)C33—C32—C37—C360.8 (4)
O27—C10—C14—C13176.9 (2)S29—C32—C37—C36177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O18i0.932.543.332 (4)143
C33—H33···O30ii0.932.563.241 (4)130
C36—H36···O31iii0.932.583.458 (4)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H20O8S2
Mr548.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.263 (2), 27.473 (5), 11.162 (2)
β (°) 100.36 (3)
V3)2492.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.3 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini R ULTRA Ruby CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18048, 4371, 3374
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.15
No. of reflections4371
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O18i0.932.543.332 (4)143
C33—H33···O30ii0.932.563.241 (4)130
C36—H36···O31iii0.932.583.458 (4)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x1, y, z.
C–O···π interactions (Å,°). top
COJO···JC···JC–O···J
C10O27Cg1iv3.688 (3)3.481 (3)70.71 (17)
C10O27Cg2v3.452 (3)3.528 (3)83.41 (18)
Symmetry codes: (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C1-C4/C11/C12 and C5-C8/C13/C14 rings respectively.
 

Acknowledgements

This work was supported by the Polish State Committee for Scientific Research (grant Nos. R02 0010 06 and DS 8210–4-0177–9).

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCheng, C. C. & Zee-Cheng, R. K. Y. (1983). Prog. Med. Chem. 20, 83–118.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDzierzbicka, K., Sowiński, P. & Kołodziejczyk, A. M. (2006). J. Pept. Sci. 12, 670–678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHunger, K. (2003). Industrial Dyes Chemistry, Properties, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.  Google Scholar
First citationKrapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373–2380.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H. & Shimomura, K. (2005). Plant Phys. Biochem. 43, 921–928.  Web of Science CrossRef CAS Google Scholar
First citationOssowski, T., Kira, J., Rogowska, D., Warmke, H. & Młodzianowski, J. (2000). J. Chem. Soc. Dalton Trans. pp. 689–696.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSantos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSereda, G. A. & Akhvlediani, D. G. (2003). Tetrahedron Lett. 44, 9125–9126.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlouf, M. (2002). J. Mol. Struct. 611, 139–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1999). Chem. Commun. pp. 313–314.  Web of Science CrossRef Google Scholar
First citationZain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921–o2923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZielske, A. G. (1987). J. Org. Chem. 52, 1305–1309.  CrossRef CAS Web of Science Google Scholar
First citationZon, A., Palys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o33-o34
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds