organic compounds
1,8-Bis(tosyloxy)-9,10-anthraquinone
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl
In the 28H20O8S2, adjacent anthracene skeletons are parallel or inclined at an angle of 20.6 (1)°. In the molecular structure, the mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1) and 76.8 (1)° with the tosyl rings, and the two terminal benzene rings are oriented at an angle of 74.5 (1)° with respect to each other. The is stabilized by intermolecular C—H⋯O and C—O⋯π interactions.
of the title compound, CRelated literature
For general background to anthraquinones, see: Cheng & Zee-Cheng (1983); Dzierzbicka et al. (2006); Gatto et al. (1996); Hunger (2003); Krapcho et al. (1991); Nakanishi et al. (2005); Zielske (1987); Zon et al. (2003). For related structures, see: Sereda & Akhvlediani (2003); Slouf (2002); Zain & Ng (2005). For molecular interactions, see: Bianchi et al. (2004); Santos-Contreras et al. (2007); Spek (2009); Steiner (1999). For the synthesis, see: Ossowski et al. (2000).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809051009/xu2694sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809051009/xu2694Isup2.hkl
1,8-Bis(tosyloxy)-9,10-anthraquinone was synthesized according to the method reported in the literature (Ossowski et al., 2000). To the stirring mixture of 5.0 g (20.8 mmol) 1,8-dihydroxy-9,10-anthraquinone and 5.22 g (27.4 mmol) of p-toluenesulfonyl chloride in 200 ml dichloromethane was dropwise added over 5 h 15 ml triethylamine in 100 ml dichloromethane. The progress of the reaction was monitored by TLC (SiO2, dichloromethane-petroleum ether 1:1 v/v) until the completion of reaction. The reaction mixture was stirred 6 h at room temperature. The solution was washed with water (3 x 100 ml), the organic phase was dried over MgSO4 and concentrated. The residue was purified by
on silica gel (dichloromethane-petroleum ether, 1:0.8 v/v) to afford the title compound as a yellow solid. (3.64 g, 28%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature (m.p. = 448–450 K; elemental analysis (% found/calculated: C 61.41/61.30, H 3.65/3.67, S 11.69/11.69)).H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C28H20O8S2 | F(000) = 1136 |
Mr = 548.58 | Dx = 1.462 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 10108 reflections |
a = 8.263 (2) Å | θ = 3.2–29.2° |
b = 27.473 (5) Å | µ = 0.27 mm−1 |
c = 11.162 (2) Å | T = 295 K |
β = 100.36 (3)° | Block, yellow |
V = 2492.6 (9) Å3 | 0.4 × 0.3 × 0.15 mm |
Z = 4 |
Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer | 3374 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.050 |
Graphite monochromator | θmax = 25.1°, θmin = 3.2° |
Detector resolution: 10.4002 pixels mm-1 | h = −9→9 |
ω scans | k = −28→32 |
18048 measured reflections | l = −13→11 |
4371 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0997P)2 + 0.3332P] where P = (Fo2 + 2Fc2)/3 |
4371 reflections | (Δ/σ)max = 0.002 |
345 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C28H20O8S2 | V = 2492.6 (9) Å3 |
Mr = 548.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.263 (2) Å | µ = 0.27 mm−1 |
b = 27.473 (5) Å | T = 295 K |
c = 11.162 (2) Å | 0.4 × 0.3 × 0.15 mm |
β = 100.36 (3)° |
Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer | 3374 reflections with I > 2σ(I) |
18048 measured reflections | Rint = 0.050 |
4371 independent reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.46 e Å−3 |
4371 reflections | Δρmin = −0.32 e Å−3 |
345 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1135 (3) | 0.52337 (10) | 0.7763 (2) | 0.0427 (6) | |
C2 | 0.0657 (4) | 0.47974 (11) | 0.8207 (3) | 0.0575 (8) | |
H2 | 0.0301 | 0.4789 | 0.8951 | 0.069* | |
C3 | 0.0707 (4) | 0.43742 (11) | 0.7550 (3) | 0.0636 (9) | |
H3 | 0.0365 | 0.4082 | 0.7843 | 0.076* | |
C4 | 0.1262 (4) | 0.43846 (11) | 0.6463 (3) | 0.0548 (8) | |
H4 | 0.1311 | 0.4098 | 0.6027 | 0.066* | |
C5 | 0.3761 (3) | 0.52607 (12) | 0.3386 (2) | 0.0511 (7) | |
H5 | 0.3765 | 0.4972 | 0.2949 | 0.061* | |
C6 | 0.4458 (4) | 0.56703 (12) | 0.3008 (3) | 0.0560 (8) | |
H6 | 0.4921 | 0.5660 | 0.2308 | 0.067* | |
C7 | 0.4480 (4) | 0.60985 (11) | 0.3654 (3) | 0.0518 (7) | |
H7 | 0.5004 | 0.6372 | 0.3415 | 0.062* | |
C8 | 0.3724 (3) | 0.61198 (10) | 0.4653 (2) | 0.0412 (6) | |
C9 | 0.2008 (3) | 0.57330 (9) | 0.6073 (2) | 0.0393 (6) | |
C10 | 0.2362 (3) | 0.48179 (10) | 0.4841 (3) | 0.0469 (7) | |
C11 | 0.1676 (3) | 0.52607 (9) | 0.6648 (2) | 0.0391 (6) | |
C12 | 0.1754 (3) | 0.48225 (9) | 0.6010 (3) | 0.0430 (6) | |
C13 | 0.2964 (3) | 0.57106 (9) | 0.5061 (2) | 0.0385 (6) | |
C14 | 0.3048 (3) | 0.52732 (10) | 0.4419 (2) | 0.0419 (6) | |
O15 | 0.0972 (2) | 0.56551 (7) | 0.84323 (17) | 0.0486 (5) | |
S16 | 0.22980 (10) | 0.57749 (3) | 0.96370 (6) | 0.0532 (3) | |
O17 | 0.1499 (3) | 0.61401 (9) | 1.0209 (2) | 0.0762 (7) | |
O18 | 0.2768 (3) | 0.53273 (8) | 1.02503 (19) | 0.0653 (6) | |
C19 | 0.3976 (3) | 0.60173 (10) | 0.9090 (2) | 0.0449 (6) | |
C20 | 0.3917 (4) | 0.64943 (11) | 0.8680 (3) | 0.0541 (8) | |
H20 | 0.3000 | 0.6687 | 0.8712 | 0.065* | |
C21 | 0.5222 (4) | 0.66780 (11) | 0.8228 (3) | 0.0540 (8) | |
H21 | 0.5183 | 0.6998 | 0.7955 | 0.065* | |
C22 | 0.6606 (4) | 0.63985 (11) | 0.8167 (3) | 0.0546 (7) | |
C23 | 0.6631 (4) | 0.59232 (11) | 0.8589 (3) | 0.0644 (9) | |
H23 | 0.7547 | 0.5730 | 0.8561 | 0.077* | |
C24 | 0.5337 (4) | 0.57324 (11) | 0.9046 (3) | 0.0582 (8) | |
H24 | 0.5376 | 0.5413 | 0.9325 | 0.070* | |
C25 | 0.8010 (5) | 0.66019 (14) | 0.7636 (4) | 0.0856 (12) | |
H25A | 0.8561 | 0.6342 | 0.7297 | 0.128* | |
H25B | 0.8771 | 0.6762 | 0.8264 | 0.128* | |
H25C | 0.7595 | 0.6832 | 0.7007 | 0.128* | |
O26 | 0.1427 (3) | 0.61106 (7) | 0.63596 (19) | 0.0530 (5) | |
O27 | 0.2365 (3) | 0.44406 (8) | 0.4261 (2) | 0.0714 (7) | |
O28 | 0.3778 (2) | 0.65378 (6) | 0.53713 (16) | 0.0471 (5) | |
S29 | 0.34049 (9) | 0.70699 (2) | 0.48060 (7) | 0.0481 (2) | |
O30 | 0.3284 (3) | 0.73551 (8) | 0.5843 (2) | 0.0638 (6) | |
O31 | 0.4611 (3) | 0.71850 (8) | 0.4092 (2) | 0.0643 (6) | |
C32 | 0.1493 (3) | 0.70184 (10) | 0.3851 (3) | 0.0444 (6) | |
C33 | 0.1394 (4) | 0.70045 (11) | 0.2604 (3) | 0.0556 (8) | |
H33 | 0.2343 | 0.7015 | 0.2266 | 0.067* | |
C34 | −0.0135 (4) | 0.69754 (12) | 0.1866 (3) | 0.0586 (8) | |
H34 | −0.0206 | 0.6962 | 0.1026 | 0.070* | |
C35 | −0.1561 (4) | 0.69661 (10) | 0.2349 (3) | 0.0525 (7) | |
C36 | −0.1428 (4) | 0.69827 (11) | 0.3605 (3) | 0.0533 (7) | |
H36 | −0.2380 | 0.6979 | 0.3941 | 0.064* | |
C37 | 0.0083 (3) | 0.70044 (10) | 0.4368 (3) | 0.0488 (7) | |
H37 | 0.0156 | 0.7010 | 0.5209 | 0.059* | |
C38 | −0.3217 (5) | 0.69311 (16) | 0.1525 (4) | 0.0821 (11) | |
H38A | −0.3199 | 0.7114 | 0.0795 | 0.123* | |
H38B | −0.4047 | 0.7061 | 0.1936 | 0.123* | |
H38C | −0.3458 | 0.6596 | 0.1320 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0381 (14) | 0.0445 (15) | 0.0461 (15) | 0.0029 (11) | 0.0092 (11) | 0.0010 (12) |
C2 | 0.0600 (18) | 0.0551 (18) | 0.0611 (19) | −0.0041 (14) | 0.0213 (15) | 0.0089 (15) |
C3 | 0.065 (2) | 0.0446 (17) | 0.083 (2) | −0.0099 (14) | 0.0186 (18) | 0.0101 (16) |
C4 | 0.0511 (16) | 0.0393 (15) | 0.072 (2) | −0.0036 (12) | 0.0054 (15) | −0.0027 (14) |
C5 | 0.0485 (16) | 0.0628 (19) | 0.0408 (16) | 0.0076 (13) | 0.0051 (12) | −0.0107 (13) |
C6 | 0.0539 (17) | 0.077 (2) | 0.0393 (16) | 0.0067 (15) | 0.0131 (13) | −0.0016 (14) |
C7 | 0.0536 (16) | 0.0576 (18) | 0.0457 (16) | 0.0011 (13) | 0.0127 (13) | 0.0055 (13) |
C8 | 0.0388 (13) | 0.0450 (15) | 0.0383 (14) | 0.0039 (11) | 0.0029 (11) | 0.0020 (11) |
C9 | 0.0376 (13) | 0.0422 (14) | 0.0372 (14) | 0.0016 (11) | 0.0045 (11) | −0.0010 (11) |
C10 | 0.0436 (14) | 0.0440 (16) | 0.0504 (16) | 0.0015 (11) | 0.0017 (12) | −0.0101 (13) |
C11 | 0.0345 (13) | 0.0406 (14) | 0.0412 (14) | 0.0019 (10) | 0.0046 (10) | 0.0015 (11) |
C12 | 0.0365 (13) | 0.0406 (15) | 0.0504 (16) | 0.0005 (11) | 0.0041 (11) | −0.0014 (12) |
C13 | 0.0364 (13) | 0.0456 (14) | 0.0321 (13) | 0.0053 (11) | 0.0029 (10) | 0.0001 (11) |
C14 | 0.0381 (13) | 0.0480 (15) | 0.0375 (14) | 0.0056 (11) | 0.0010 (11) | −0.0053 (12) |
O15 | 0.0510 (11) | 0.0515 (11) | 0.0462 (11) | 0.0089 (8) | 0.0163 (9) | 0.0006 (8) |
S16 | 0.0651 (5) | 0.0582 (5) | 0.0396 (4) | 0.0068 (3) | 0.0181 (3) | −0.0027 (3) |
O17 | 0.0945 (18) | 0.0811 (17) | 0.0624 (14) | 0.0122 (13) | 0.0391 (13) | −0.0169 (12) |
O18 | 0.0802 (15) | 0.0693 (14) | 0.0469 (12) | 0.0063 (11) | 0.0126 (11) | 0.0156 (10) |
C19 | 0.0543 (16) | 0.0428 (15) | 0.0372 (14) | 0.0068 (12) | 0.0070 (12) | −0.0058 (11) |
C20 | 0.0512 (17) | 0.0468 (16) | 0.0612 (19) | 0.0107 (13) | 0.0018 (14) | −0.0073 (14) |
C21 | 0.0632 (19) | 0.0402 (15) | 0.0557 (18) | 0.0016 (13) | 0.0025 (15) | −0.0025 (13) |
C22 | 0.0587 (18) | 0.0450 (16) | 0.0602 (18) | −0.0005 (13) | 0.0111 (15) | −0.0095 (13) |
C23 | 0.060 (2) | 0.0445 (18) | 0.092 (3) | 0.0124 (14) | 0.0231 (17) | −0.0039 (16) |
C24 | 0.066 (2) | 0.0404 (16) | 0.070 (2) | 0.0106 (14) | 0.0173 (16) | 0.0004 (14) |
C25 | 0.084 (3) | 0.064 (2) | 0.118 (3) | −0.0084 (19) | 0.044 (2) | −0.004 (2) |
O26 | 0.0669 (13) | 0.0389 (11) | 0.0587 (12) | 0.0081 (9) | 0.0259 (10) | 0.0001 (9) |
O27 | 0.0901 (17) | 0.0553 (13) | 0.0714 (15) | −0.0082 (11) | 0.0213 (13) | −0.0257 (12) |
O28 | 0.0543 (11) | 0.0439 (11) | 0.0429 (11) | −0.0036 (8) | 0.0085 (8) | 0.0006 (8) |
S29 | 0.0439 (4) | 0.0417 (4) | 0.0596 (5) | −0.0070 (3) | 0.0114 (3) | 0.0020 (3) |
O30 | 0.0678 (14) | 0.0496 (12) | 0.0720 (14) | −0.0069 (10) | 0.0070 (11) | −0.0169 (10) |
O31 | 0.0490 (12) | 0.0625 (14) | 0.0855 (16) | −0.0099 (10) | 0.0230 (11) | 0.0141 (12) |
C32 | 0.0452 (15) | 0.0402 (14) | 0.0500 (16) | 0.0007 (11) | 0.0143 (12) | 0.0055 (12) |
C33 | 0.0544 (17) | 0.0613 (18) | 0.0564 (18) | 0.0063 (14) | 0.0241 (14) | 0.0098 (14) |
C34 | 0.069 (2) | 0.0629 (19) | 0.0436 (16) | 0.0113 (15) | 0.0102 (15) | 0.0056 (14) |
C35 | 0.0535 (17) | 0.0416 (15) | 0.0605 (19) | 0.0073 (12) | 0.0050 (14) | 0.0021 (13) |
C36 | 0.0437 (16) | 0.0584 (18) | 0.0600 (19) | 0.0032 (13) | 0.0156 (14) | 0.0024 (14) |
C37 | 0.0483 (15) | 0.0535 (17) | 0.0469 (16) | −0.0007 (12) | 0.0144 (12) | 0.0011 (13) |
C38 | 0.066 (2) | 0.099 (3) | 0.073 (2) | 0.010 (2) | −0.0094 (18) | −0.001 (2) |
C1—C2 | 1.382 (4) | C19—C20 | 1.386 (4) |
C1—O15 | 1.398 (3) | C20—C21 | 1.367 (5) |
C1—C11 | 1.398 (4) | C20—H20 | 0.9300 |
C2—C3 | 1.379 (5) | C21—C22 | 1.389 (4) |
C2—H2 | 0.9300 | C21—H21 | 0.9300 |
C3—C4 | 1.372 (5) | C22—C23 | 1.387 (4) |
C3—H3 | 0.9300 | C22—C25 | 1.502 (5) |
C4—C12 | 1.394 (4) | C23—C24 | 1.369 (5) |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C5—C6 | 1.364 (5) | C24—H24 | 0.9300 |
C5—C14 | 1.387 (4) | C25—H25A | 0.9600 |
C5—H5 | 0.9300 | C25—H25B | 0.9600 |
C6—C7 | 1.379 (4) | C25—H25C | 0.9600 |
C6—H6 | 0.9300 | O28—S29 | 1.6000 (19) |
C7—C8 | 1.373 (4) | S29—O30 | 1.416 (2) |
C7—H7 | 0.9300 | S29—O31 | 1.419 (2) |
C8—O28 | 1.397 (3) | S29—C32 | 1.745 (3) |
C8—C13 | 1.403 (4) | C32—C33 | 1.380 (4) |
C9—O26 | 1.210 (3) | C32—C37 | 1.390 (4) |
C9—C13 | 1.491 (4) | C33—C34 | 1.381 (4) |
C9—C11 | 1.495 (4) | C33—H33 | 0.9300 |
C10—O27 | 1.223 (3) | C34—C35 | 1.381 (5) |
C10—C12 | 1.479 (4) | C34—H34 | 0.9300 |
C10—C14 | 1.485 (4) | C35—C36 | 1.387 (4) |
C11—C12 | 1.406 (4) | C35—C38 | 1.508 (4) |
C13—C14 | 1.407 (4) | C36—C37 | 1.380 (4) |
O15—S16 | 1.608 (2) | C36—H36 | 0.9300 |
S16—O17 | 1.415 (2) | C37—H37 | 0.9300 |
S16—O18 | 1.427 (2) | C38—H38A | 0.9600 |
S16—C19 | 1.745 (3) | C38—H38B | 0.9600 |
C19—C24 | 1.378 (4) | C38—H38C | 0.9600 |
C2—C1—O15 | 117.8 (3) | C21—C20—C19 | 119.2 (3) |
C2—C1—C11 | 121.6 (3) | C21—C20—H20 | 120.4 |
O15—C1—C11 | 120.6 (2) | C19—C20—H20 | 120.4 |
C3—C2—C1 | 120.2 (3) | C20—C21—C22 | 121.7 (3) |
C3—C2—H2 | 119.9 | C20—C21—H21 | 119.2 |
C1—C2—H2 | 119.9 | C22—C21—H21 | 119.2 |
C4—C3—C2 | 119.9 (3) | C23—C22—C21 | 117.7 (3) |
C4—C3—H3 | 120.0 | C23—C22—C25 | 121.3 (3) |
C2—C3—H3 | 120.0 | C21—C22—C25 | 121.0 (3) |
C3—C4—C12 | 120.3 (3) | C24—C23—C22 | 121.5 (3) |
C3—C4—H4 | 119.8 | C24—C23—H23 | 119.3 |
C12—C4—H4 | 119.8 | C22—C23—H23 | 119.3 |
C6—C5—C14 | 120.2 (3) | C23—C24—C19 | 119.5 (3) |
C6—C5—H5 | 119.9 | C23—C24—H24 | 120.2 |
C14—C5—H5 | 119.9 | C19—C24—H24 | 120.2 |
C5—C6—C7 | 120.6 (3) | C22—C25—H25A | 109.5 |
C5—C6—H6 | 119.7 | C22—C25—H25B | 109.5 |
C7—C6—H6 | 119.7 | H25A—C25—H25B | 109.5 |
C8—C7—C6 | 119.7 (3) | C22—C25—H25C | 109.5 |
C8—C7—H7 | 120.1 | H25A—C25—H25C | 109.5 |
C6—C7—H7 | 120.1 | H25B—C25—H25C | 109.5 |
C7—C8—O28 | 121.9 (2) | C8—O28—S29 | 122.72 (16) |
C7—C8—C13 | 121.7 (3) | O30—S29—O31 | 119.70 (14) |
O28—C8—C13 | 116.2 (2) | O30—S29—O28 | 102.71 (12) |
O26—C9—C13 | 121.7 (2) | O31—S29—O28 | 108.68 (12) |
O26—C9—C11 | 121.2 (2) | O30—S29—C32 | 110.80 (14) |
C13—C9—C11 | 116.9 (2) | O31—S29—C32 | 108.96 (14) |
O27—C10—C12 | 120.5 (3) | O28—S29—C32 | 104.82 (11) |
O27—C10—C14 | 120.6 (3) | C33—C32—C37 | 121.0 (3) |
C12—C10—C14 | 118.8 (2) | C33—C32—S29 | 120.1 (2) |
C1—C11—C12 | 117.2 (2) | C37—C32—S29 | 118.9 (2) |
C1—C11—C9 | 122.8 (2) | C32—C33—C34 | 119.0 (3) |
C12—C11—C9 | 119.8 (2) | C32—C33—H33 | 120.5 |
C4—C12—C11 | 120.8 (3) | C34—C33—H33 | 120.5 |
C4—C12—C10 | 118.7 (3) | C33—C34—C35 | 121.4 (3) |
C11—C12—C10 | 120.5 (2) | C33—C34—H34 | 119.3 |
C8—C13—C14 | 116.9 (2) | C35—C34—H34 | 119.3 |
C8—C13—C9 | 122.8 (2) | C34—C35—C36 | 118.4 (3) |
C14—C13—C9 | 120.2 (2) | C34—C35—C38 | 120.5 (3) |
C5—C14—C13 | 120.8 (3) | C36—C35—C38 | 121.1 (3) |
C5—C14—C10 | 119.1 (2) | C37—C36—C35 | 121.5 (3) |
C13—C14—C10 | 120.1 (2) | C37—C36—H36 | 119.2 |
C1—O15—S16 | 120.01 (16) | C35—C36—H36 | 119.2 |
O17—S16—O18 | 120.23 (15) | C36—C37—C32 | 118.6 (3) |
O17—S16—O15 | 102.67 (14) | C36—C37—H37 | 120.7 |
O18—S16—O15 | 108.09 (12) | C32—C37—H37 | 120.7 |
O17—S16—C19 | 110.62 (15) | C35—C38—H38A | 109.5 |
O18—S16—C19 | 109.39 (14) | C35—C38—H38B | 109.5 |
O15—S16—C19 | 104.49 (12) | H38A—C38—H38B | 109.5 |
C24—C19—C20 | 120.4 (3) | C35—C38—H38C | 109.5 |
C24—C19—S16 | 120.0 (2) | H38A—C38—H38C | 109.5 |
C20—C19—S16 | 119.6 (2) | H38B—C38—H38C | 109.5 |
O15—C1—C2—C3 | 176.5 (3) | C12—C10—C14—C13 | −6.3 (4) |
C11—C1—C2—C3 | 0.1 (4) | C2—C1—O15—S16 | 77.9 (3) |
C1—C2—C3—C4 | 1.3 (5) | C11—C1—O15—S16 | −105.6 (2) |
C2—C3—C4—C12 | −0.9 (5) | C1—O15—S16—O17 | −165.1 (2) |
C14—C5—C6—C7 | 0.8 (4) | C1—O15—S16—O18 | −37.1 (2) |
C5—C6—C7—C8 | −3.2 (4) | C1—O15—S16—C19 | 79.4 (2) |
C6—C7—C8—O28 | 176.9 (2) | O17—S16—C19—C24 | 148.7 (2) |
C6—C7—C8—C13 | 1.9 (4) | O18—S16—C19—C24 | 14.1 (3) |
C2—C1—C11—C12 | −1.6 (4) | O15—S16—C19—C24 | −101.4 (2) |
O15—C1—C11—C12 | −177.9 (2) | O17—S16—C19—C20 | −32.5 (3) |
C2—C1—C11—C9 | 172.5 (2) | O18—S16—C19—C20 | −167.1 (2) |
O15—C1—C11—C9 | −3.9 (4) | O15—S16—C19—C20 | 77.3 (2) |
O26—C9—C11—C1 | −19.9 (4) | C24—C19—C20—C21 | 0.2 (4) |
C13—C9—C11—C1 | 165.1 (2) | S16—C19—C20—C21 | −178.6 (2) |
O26—C9—C11—C12 | 154.0 (3) | C19—C20—C21—C22 | 0.2 (5) |
C13—C9—C11—C12 | −21.0 (3) | C20—C21—C22—C23 | −0.4 (5) |
C3—C4—C12—C11 | −0.7 (4) | C20—C21—C22—C25 | 178.3 (3) |
C3—C4—C12—C10 | 179.4 (3) | C21—C22—C23—C24 | 0.3 (5) |
C1—C11—C12—C4 | 1.9 (4) | C25—C22—C23—C24 | −178.4 (4) |
C9—C11—C12—C4 | −172.4 (2) | C22—C23—C24—C19 | 0.0 (5) |
C1—C11—C12—C10 | −178.1 (2) | C20—C19—C24—C23 | −0.3 (5) |
C9—C11—C12—C10 | 7.6 (4) | S16—C19—C24—C23 | 178.5 (3) |
O27—C10—C12—C4 | 3.1 (4) | C7—C8—O28—S29 | 47.3 (3) |
C14—C10—C12—C4 | −173.8 (2) | C13—C8—O28—S29 | −137.4 (2) |
O27—C10—C12—C11 | −176.9 (2) | C8—O28—S29—O30 | 169.05 (19) |
C14—C10—C12—C11 | 6.3 (4) | C8—O28—S29—O31 | −63.2 (2) |
C7—C8—C13—C14 | 1.6 (4) | C8—O28—S29—C32 | 53.2 (2) |
O28—C8—C13—C14 | −173.7 (2) | O30—S29—C32—C33 | 144.9 (2) |
C7—C8—C13—C9 | −174.4 (2) | O31—S29—C32—C33 | 11.2 (3) |
O28—C8—C13—C9 | 10.3 (3) | O28—S29—C32—C33 | −105.0 (2) |
O26—C9—C13—C8 | 22.0 (4) | O30—S29—C32—C37 | −33.5 (3) |
C11—C9—C13—C8 | −163.1 (2) | O31—S29—C32—C37 | −167.2 (2) |
O26—C9—C13—C14 | −154.0 (2) | O28—S29—C32—C37 | 76.6 (2) |
C11—C9—C13—C14 | 21.0 (3) | C37—C32—C33—C34 | −0.1 (4) |
C6—C5—C14—C13 | 2.8 (4) | S29—C32—C33—C34 | −178.5 (2) |
C6—C5—C14—C10 | −177.4 (3) | C32—C33—C34—C35 | 0.8 (5) |
C8—C13—C14—C5 | −4.0 (3) | C33—C34—C35—C36 | −0.5 (4) |
C9—C13—C14—C5 | 172.2 (2) | C33—C34—C35—C38 | −179.6 (3) |
C8—C13—C14—C10 | 176.3 (2) | C34—C35—C36—C37 | −0.5 (4) |
C9—C13—C14—C10 | −7.6 (3) | C38—C35—C36—C37 | 178.6 (3) |
O27—C10—C14—C5 | −2.9 (4) | C35—C36—C37—C32 | 1.1 (4) |
C12—C10—C14—C5 | 173.9 (2) | C33—C32—C37—C36 | −0.8 (4) |
O27—C10—C14—C13 | 176.9 (2) | S29—C32—C37—C36 | 177.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24···O18i | 0.93 | 2.54 | 3.332 (4) | 143 |
C33—H33···O30ii | 0.93 | 2.56 | 3.241 (4) | 130 |
C36—H36···O31iii | 0.93 | 2.58 | 3.458 (4) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C28H20O8S2 |
Mr | 548.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 8.263 (2), 27.473 (5), 11.162 (2) |
β (°) | 100.36 (3) |
V (Å3) | 2492.6 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.4 × 0.3 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18048, 4371, 3374 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.163, 1.15 |
No. of reflections | 4371 |
No. of parameters | 345 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.32 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24···O18i | 0.93 | 2.54 | 3.332 (4) | 143 |
C33—H33···O30ii | 0.93 | 2.56 | 3.241 (4) | 130 |
C36—H36···O31iii | 0.93 | 2.58 | 3.458 (4) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) x−1, y, z. |
C | O | J | O···J | C···J | C–O···J |
C10 | O27 | Cg1iv | 3.688 (3) | 3.481 (3) | 70.71 (17) |
C10 | O27 | Cg2v | 3.452 (3) | 3.528 (3) | 83.41 (18) |
Symmetry codes: (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C1-C4/C11/C12 and C5-C8/C13/C14 rings respectively. |
Acknowledgements
This work was supported by the Polish State Committee for Scientific Research (grant Nos. R02 0010 06 and DS 8210–4-0177–9).
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cheng, C. C. & Zee-Cheng, R. K. Y. (1983). Prog. Med. Chem. 20, 83–118. CrossRef CAS PubMed Web of Science Google Scholar
Dzierzbicka, K., Sowiński, P. & Kołodziejczyk, A. M. (2006). J. Pept. Sci. 12, 670–678. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122. CrossRef CAS PubMed Web of Science Google Scholar
Hunger, K. (2003). Industrial Dyes Chemistry, Properties, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar
Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373–2380. CrossRef PubMed CAS Web of Science Google Scholar
Nakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H. & Shimomura, K. (2005). Plant Phys. Biochem. 43, 921–928. Web of Science CrossRef CAS Google Scholar
Ossowski, T., Kira, J., Rogowska, D., Warmke, H. & Młodzianowski, J. (2000). J. Chem. Soc. Dalton Trans. pp. 689–696. Web of Science CrossRef Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sereda, G. A. & Akhvlediani, D. G. (2003). Tetrahedron Lett. 44, 9125–9126. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Slouf, M. (2002). J. Mol. Struct. 611, 139–146. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921–o2923. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zielske, A. G. (1987). J. Org. Chem. 52, 1305–1309. CrossRef CAS Web of Science Google Scholar
Zon, A., Palys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthraquinones, its amino and hydroxy derivatives as the largest group of naturally occurring quinines are of great practical significance in pharmacology, biochemistry and dye chemistry (Hunger, 2003). Anthraquinones are widely widespread in nature, they are occur in bark, or roots of different plants, and display various pharmacological activities such as anti-oxidant, anti-microbial, anti-fungal and anti-viral (Nakanishi et al., 2005). The anthraquinone ring system is often found in antitumor drugs, such as anthracyclines, mitoxantrone, ametantrone and anthrapyrazoles (Cheng & Zee-Cheng, 1983). Its planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Krapcho et al., 1991, Gatto et al., 1996). Anthraquinones are also interesting compounds for the investigations in analytical and electroanalytical chemistry due to the fact that they contain several π electrons, the reducible p-quinone system and are electroactive (Zon et al., 2003). The tosyl group is a very good leaving group, commonly used in organic synthesis in nucleophilic substitution reaction. This phenomenon is applicable to prepare the various aminoanthraquinone from (tosy1oxy)anthraquinone precursors (Zielske, 1987). The 1,8-Bis(tosyloxy)-9,10-anthraquinone is a very convenient and often used precursor to obtain the 1,8-diaminoanthraquinones derivatives (Dzierzbicka et al., 2006).
In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the anthraquinone skeleton are typical for this group of compounds (Sereda & Akhvlediani, 2003; Slouf, 2002; Zain & Ng, 2005).
In the packing of molecules of the title compound, the anthracene skeletons, with an average deviations from planarity of 0.044 (1) Å, are parallel or inclined at an angle of 20.1 (1)°. The mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1)° and 76.8 (1)°, with the tosyl phenyl rings. Those phenyl rings are oriented at the angle of 74.5 (1)° to each other.
The crystal structure is stabilized by C–H···O (Table 1, Fig. 2) and C–O···π (Table 1, Fig. 3) intermolecular interactions. The C–H···O interactions are the hydrogen bond type (Steiner, 1999, Bianchi et al., 2004). All interactions demonstrated were found by PLATON (Spek, 2009).