organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzo­nitrile methanol solvate

aCollege of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China
*Correspondence e-mail: wenlan1964@yeah.net

(Received 28 November 2009; accepted 29 November 2009; online 4 December 2009)

In the title compound, C20H11N5·CH3OH, the benzene ring is twisted by a small dihedral angle of 1.89 (11)° with respect to the imidazo[4,5-f][1,10]phenanthroline ring system. N—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For related structures, see: Sun et al. (2007[Sun, M., Chen, G., Ling, B.-P. & Liu, Y.-X. (2007). Acta Cryst. E63, o1210-o1211.]); Yin (2008[Yin, G.-Q. (2008). Acta Cryst. E64, o1236.]); Zhang et al. (2008[Zhang, W.-Z., Li, L. & Xiao, Y.-H. (2008). Acta Cryst. E64, o1331.]).

[Scheme 1]

Experimental

Crystal data
  • C20H11N5·CH4O

  • Mr = 353.38

  • Monoclinic, P 21 /n

  • a = 7.115 (1) Å

  • b = 18.385 (2) Å

  • c = 13.5576 (12) Å

  • β = 99.956 (19)°

  • V = 1746.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Rigaku, SCXmini diffractometer

  • 15971 measured reflections

  • 3432 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.179

  • S = 1.04

  • 3432 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1 0.86 1.95 2.803 (3) 174
O1—H1E⋯N5i 0.98 1.89 2.857 (3) 168
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline and its derivatives are commonly used as ligands in metal-organic coordination polymers (Sun et al., 2007; Yin, 2008; Zhang et al., 2008). The title compound was synthesized from 1,10-phenanthroline-5,6-dione.

The asymmetric unit of the title compound, C20H11N5.CH3OH, contains one organic molecule and one solvent methanol molecule (Fig.1). The molecules are connected by N—H···O and O—H···N hydrogen bonding to form a one-dimensional chain (Fig. 2). The organic molecule is essentially planar.

Related literature top

For applications of phenanthroline derivatives, see: Yin (2008); Zhang et al. (2008). For a related structure, see: Sun et al. (2007).

Experimental top

1,10-Phenanthroline-5,6-dione (1.5 mmol) and 3-cyanobenzaldehyde (1.5 mmol) were dissolved in CH3COOH and CH3COONH4 (1:1) solution (30 ml). The mixture was refluxed for 1.5 h under argon, after cooling this mixture was diluted with water and neutralized with concentrated aqueous ammonia, immediately resulting a yellow precipitate, which was washed with water, acetone and diethyl ether respectively. Crystals of the title compound were obtained by recrystallization from dichloromethane-methanol solution.

Refinement top

Methanol H atom was located in a difference Fourier map and refined as riding in as-found relative position, the thermal parameter was refined. Other H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing viewed along the b axis. Hydrogen bonds are drawn as dashed lines
3-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzonitrile methanol solvate top
Crystal data top
C20H11N5·CH4OF(000) = 736
Mr = 353.38Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2018 reflections
a = 7.115 (1) Åθ = 3.0–26.0°
b = 18.385 (2) ŵ = 0.09 mm1
c = 13.5576 (12) ÅT = 293 K
β = 99.956 (19)°Block, colorless
V = 1746.7 (4) Å30.30 × 0.28 × 0.26 mm
Z = 4
Data collection top
Rigaku, SCXmini
diffractometer
2018 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
Detector resolution: 13.6612 pixels mm-1h = 88
ω scank = 2222
15971 measured reflectionsl = 1616
3432 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.0647P]
where P = (Fo2 + 2Fc2)/3
3432 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H11N5·CH4OV = 1746.7 (4) Å3
Mr = 353.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.115 (1) ŵ = 0.09 mm1
b = 18.385 (2) ÅT = 293 K
c = 13.5576 (12) Å0.30 × 0.28 × 0.26 mm
β = 99.956 (19)°
Data collection top
Rigaku, SCXmini
diffractometer
2018 reflections with I > 2σ(I)
15971 measured reflectionsRint = 0.099
3432 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
3432 reflectionsΔρmin = 0.19 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6541 (5)0.05805 (18)0.7761 (3)0.0518 (8)
C20.6702 (4)0.07430 (16)0.6737 (2)0.0430 (7)
C30.6441 (4)0.14493 (17)0.6377 (3)0.0510 (8)
H3A0.61730.18220.67950.061*
C40.6581 (5)0.15944 (17)0.5396 (3)0.0538 (9)
H4A0.63980.20660.51520.065*
C50.6993 (4)0.10430 (17)0.4769 (2)0.0501 (8)
H5A0.70790.11490.41070.060*
C60.7281 (4)0.03325 (15)0.5117 (2)0.0386 (7)
C70.7123 (4)0.01864 (16)0.6113 (2)0.0407 (7)
H7A0.73000.02850.63600.049*
C80.7695 (4)0.02402 (15)0.4435 (2)0.0391 (7)
C90.8262 (4)0.08115 (15)0.3144 (2)0.0388 (7)
C100.8600 (4)0.10077 (16)0.2162 (2)0.0391 (7)
C110.8394 (4)0.05275 (17)0.1346 (2)0.0490 (8)
H11A0.79980.00510.14130.059*
C120.8787 (5)0.07721 (19)0.0448 (2)0.0567 (9)
H12A0.86290.04700.01100.068*
C130.9430 (5)0.14836 (19)0.0393 (2)0.0596 (10)
H13A0.97580.16330.02100.072*
C140.9157 (4)0.17313 (16)0.2013 (2)0.0411 (7)
C150.9232 (4)0.22708 (16)0.2820 (2)0.0407 (7)
C160.9749 (5)0.34573 (18)0.3349 (3)0.0622 (10)
H16A1.01030.39300.32210.075*
C170.9213 (5)0.33164 (18)0.4271 (2)0.0592 (9)
H17A0.91970.36870.47370.071*
C180.8714 (5)0.26248 (17)0.4477 (2)0.0511 (8)
H18A0.83650.25150.50900.061*
C190.8732 (4)0.20771 (15)0.3752 (2)0.0388 (7)
C200.8320 (4)0.13278 (15)0.3885 (2)0.0371 (7)
C210.9291 (6)0.1623 (3)0.7300 (3)0.1045 (16)
H21A0.90030.18770.78750.157*
H21B1.03530.18530.70750.157*
H21C0.96100.11270.74780.157*
N10.6392 (5)0.04524 (19)0.8570 (2)0.0749 (9)
N20.7870 (3)0.01301 (12)0.34899 (16)0.0406 (6)
N30.7950 (3)0.09555 (12)0.47126 (17)0.0390 (6)
H3B0.78910.11370.52910.047*
N40.9610 (4)0.19635 (14)0.11301 (19)0.0550 (7)
N50.9787 (4)0.29620 (13)0.26399 (19)0.0513 (7)
O10.7700 (4)0.16399 (13)0.65327 (16)0.0640 (7)
H1E0.65780.17810.68230.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.061 (2)0.044 (2)0.0024 (16)0.0072 (16)0.0113 (16)
C20.0349 (16)0.050 (2)0.0432 (18)0.0017 (13)0.0034 (14)0.0069 (14)
C30.051 (2)0.0400 (19)0.063 (2)0.0021 (14)0.0118 (17)0.0147 (16)
C40.055 (2)0.0383 (19)0.070 (2)0.0027 (14)0.0155 (18)0.0017 (17)
C50.0488 (19)0.050 (2)0.052 (2)0.0018 (15)0.0117 (16)0.0018 (16)
C60.0300 (16)0.0410 (17)0.0446 (17)0.0024 (12)0.0063 (13)0.0044 (13)
C70.0409 (17)0.0381 (17)0.0426 (18)0.0026 (13)0.0060 (14)0.0031 (13)
C80.0345 (16)0.0416 (17)0.0414 (17)0.0021 (12)0.0074 (13)0.0001 (13)
C90.0359 (16)0.0419 (18)0.0382 (16)0.0003 (12)0.0051 (13)0.0016 (13)
C100.0351 (16)0.0460 (18)0.0361 (16)0.0024 (13)0.0062 (13)0.0013 (13)
C110.053 (2)0.0483 (19)0.0457 (19)0.0018 (15)0.0095 (16)0.0034 (15)
C120.070 (2)0.062 (2)0.0386 (19)0.0111 (17)0.0105 (17)0.0064 (16)
C130.078 (3)0.066 (2)0.0375 (19)0.0088 (19)0.0183 (17)0.0087 (17)
C140.0407 (17)0.0470 (19)0.0357 (16)0.0054 (13)0.0071 (13)0.0038 (13)
C150.0378 (17)0.0422 (18)0.0422 (17)0.0020 (13)0.0077 (14)0.0027 (13)
C160.087 (3)0.0392 (19)0.063 (2)0.0115 (17)0.021 (2)0.0003 (17)
C170.079 (3)0.049 (2)0.052 (2)0.0060 (17)0.0183 (18)0.0075 (16)
C180.064 (2)0.049 (2)0.0429 (18)0.0016 (16)0.0161 (16)0.0037 (15)
C190.0389 (17)0.0409 (18)0.0377 (16)0.0005 (12)0.0099 (13)0.0005 (13)
C200.0347 (16)0.0436 (18)0.0345 (16)0.0030 (12)0.0103 (13)0.0041 (13)
C210.082 (3)0.134 (4)0.092 (3)0.011 (3)0.002 (3)0.042 (3)
N10.071 (2)0.100 (3)0.053 (2)0.0063 (18)0.0090 (17)0.0078 (18)
N20.0423 (15)0.0424 (15)0.0386 (14)0.0004 (11)0.0114 (11)0.0001 (11)
N30.0434 (14)0.0430 (15)0.0322 (13)0.0006 (11)0.0110 (11)0.0003 (11)
N40.073 (2)0.0573 (18)0.0366 (15)0.0024 (14)0.0161 (14)0.0035 (13)
N50.0651 (18)0.0425 (16)0.0489 (16)0.0064 (13)0.0171 (13)0.0016 (12)
O10.0695 (17)0.0778 (17)0.0474 (14)0.0083 (13)0.0177 (13)0.0119 (12)
Geometric parameters (Å, º) top
C1—N11.145 (4)C12—H12A0.9300
C1—C21.444 (4)C13—N41.323 (4)
C2—C31.388 (4)C13—H13A0.9300
C2—C71.393 (4)C14—N41.361 (4)
C3—C41.376 (4)C14—C151.471 (4)
C3—H3A0.9300C15—N51.365 (4)
C4—C51.387 (4)C15—C191.416 (4)
C4—H4A0.9300C16—N51.328 (4)
C5—C61.392 (4)C16—C171.393 (4)
C5—H5A0.9300C16—H16A0.9300
C6—C71.400 (4)C17—C181.362 (4)
C6—C81.465 (4)C17—H17A0.9300
C7—H7A0.9300C18—C191.409 (4)
C8—N21.324 (3)C18—H18A0.9300
C8—N31.371 (3)C19—C201.426 (4)
C9—C201.378 (4)C20—N31.377 (3)
C9—N21.383 (3)C21—O11.400 (4)
C9—C101.439 (4)C21—H21A0.9600
C10—C111.403 (4)C21—H21B0.9600
C10—C141.412 (4)C21—H21C0.9600
C11—C121.371 (4)N3—H3B0.8600
C11—H11A0.9300O1—H1E0.9842
C12—C131.392 (5)
N1—C1—C2179.2 (4)C12—C13—H13A117.4
C3—C2—C7120.2 (3)N4—C14—C10122.4 (3)
C3—C2—C1120.2 (3)N4—C14—C15117.3 (3)
C7—C2—C1119.5 (3)C10—C14—C15120.3 (3)
C4—C3—C2119.6 (3)N5—C15—C19121.3 (3)
C4—C3—H3A120.2N5—C15—C14118.0 (3)
C2—C3—H3A120.2C19—C15—C14120.8 (3)
C3—C4—C5120.6 (3)N5—C16—C17124.4 (3)
C3—C4—H4A119.7N5—C16—H16A117.8
C5—C4—H4A119.7C17—C16—H16A117.8
C4—C5—C6120.8 (3)C18—C17—C16118.6 (3)
C4—C5—H5A119.6C18—C17—H17A120.7
C6—C5—H5A119.6C16—C17—H17A120.7
C5—C6—C7118.4 (3)C17—C18—C19119.3 (3)
C5—C6—C8119.6 (3)C17—C18—H18A120.3
C7—C6—C8122.0 (3)C19—C18—H18A120.3
C2—C7—C6120.4 (3)C18—C19—C15118.5 (3)
C2—C7—H7A119.8C18—C19—C20125.1 (3)
C6—C7—H7A119.8C15—C19—C20116.4 (3)
N2—C8—N3112.4 (2)N3—C20—C9105.4 (2)
N2—C8—C6124.3 (3)N3—C20—C19131.0 (3)
N3—C8—C6123.2 (3)C9—C20—C19123.6 (3)
C20—C9—N2111.0 (3)O1—C21—H21A109.5
C20—C9—C10120.9 (3)O1—C21—H21B109.5
N2—C9—C10128.1 (3)H21A—C21—H21B109.5
C11—C10—C14118.3 (3)O1—C21—H21C109.5
C11—C10—C9124.1 (3)H21A—C21—H21C109.5
C14—C10—C9117.6 (3)H21B—C21—H21C109.5
C12—C11—C10119.0 (3)C8—N2—C9104.4 (2)
C12—C11—H11A120.5C8—N3—C20106.8 (2)
C10—C11—H11A120.5C8—N3—H3B126.6
C11—C12—C13118.4 (3)C20—N3—H3B126.6
C11—C12—H12A120.8C13—N4—C14116.7 (3)
C13—C12—H12A120.8C16—N5—C15117.8 (3)
N4—C13—C12125.2 (3)C21—O1—H1E108.4
N4—C13—H13A117.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.861.952.803 (3)174
O1—H1E···N5i0.981.892.857 (3)168
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H11N5·CH4O
Mr353.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.115 (1), 18.385 (2), 13.5576 (12)
β (°) 99.956 (19)
V3)1746.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerRigaku, SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15971, 3432, 2018
Rint0.099
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.179, 1.04
No. of reflections3432
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.861.952.803 (3)174.2
O1—H1E···N5i0.981.892.857 (3)167.9
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Beihua University, China.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M., Chen, G., Ling, B.-P. & Liu, Y.-X. (2007). Acta Cryst. E63, o1210–o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, G.-Q. (2008). Acta Cryst. E64, o1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-Z., Li, L. & Xiao, Y.-H. (2008). Acta Cryst. E64, o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds