metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m451-m452

Di-μ-thio­cyanato-bis­­[bis­­(tri-p-tolyl­phosphine)silver(I)] 0.35-hydrate

aSynthesis and Catalysis Research Centre, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 12 March 2010; accepted 17 March 2010; online 27 March 2010)

In the binuclear centrosymmetric title compound, [Ag2(NCS)2(C21H21P)4]·0.35H2O, a pseudo-polymorph of [Ag2(NCS)2(C21H21P)4]·2CH3CN, the Ag atom is coordinated by two phosphine ligands and two bridging thio­cyanate ligands in a distorted tetra­hedral configuration. The crystal structure exhibits inter­molecular C—H⋯π inter­actions.

Related literature

For a general introduction to the coordination chemistry of silver–phosphine complexes, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). For the original preparation of silver–phosphine complexes, see: Mann et al. (1937[Mann, F. G., Wells, A. F. & Purdue, D. (1937). J. Chem. Soc. pp. 1828-1836.]). For related silver(I)–thio­cyanate complexes, see: Bowmaker et al. (1997[Bowmaker, G. A., Effendy, Hart, R. D., Kildea, J. D., De Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627-640.]); Effendy et al. (2005[Effendy, Di Nicola, C., Fianchini, M., Pettinari, C., Skelton, B.W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 763-795.]), Venter et al. (2007[Venter, G. J. S., Meijboom, R. & Roodt, A. (2007). Acta Cryst. E63, m3076-m3077.]), Omondi & Meijboom (2010[Omondi, B. & Meijboom, R. (2010). Acta Cryst. B66, 69-75.]). For related silver(I)–tri-p-tolyl­phosphine complexes, see: Meijboom et al. (2006[Meijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m2162-m2164.]); Meijboom (2006[Meijboom, R. (2006). Acta Cryst. E62, m2698-m2700.], 2007[Meijboom, R. (2007). Acta Cryst. E63, m78-m79.]); Meijboom & Muller (2006[Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.]); Venter et al. (2006[Venter, G. J. S., Meijboom, R. & Roodt, A. (2006). Acta Cryst. E62, m3453-m3455.]). For bond-length data, see: Allen (2002[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NCS)2(C21H21P)4]·0.35H2O

  • Mr = 1554.94

  • Triclinic, [P \overline 1]

  • a = 10.5470 (6) Å

  • b = 13.5063 (8) Å

  • c = 14.9779 (8) Å

  • α = 91.575 (1)°

  • β = 110.064 (1)°

  • γ = 105.615 (1)°

  • V = 1913.15 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.42 × 0.35 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.903

  • 23789 measured reflections

  • 9487 independent reflections

  • 8868 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 0.85

  • 9487 reflections

  • 425 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −1.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

C—N 1.160 (3)
C—S 1.656 (2)
N—Ag 2.3519 (18)
Ag—P1 2.4516 (5)
Ag—P2 2.4987 (5)
Ag—Si 2.6062 (6)
N—C—S 178.0 (2)
C—N—Ag 142.81 (16)
C—S—Agi 97.85 (7)
N—Ag—P1 115.23 (5)
N—Ag—P2 91.90 (5)
P1—Ag—P2 119.826 (18)
N—Ag—Si 105.61 (5)
P1—Ag—Si 111.461 (18)
P2—Ag—Si 110.655 (19)
C—N—Ag—Si 51.7 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg6 are the centroids of the C111–C116 and C231–C236 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C135—H135⋯Cg6ii 0.95 2.86 3.772 (2) 161
C225—H225⋯Cg1iii 0.95 2.73 3.568 (2) 147
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Silver(I) complexes of the type [AgLnX] (L is a tertiary phosphine or arsine, n = 1–4 and X is a coordinating or noncoordinating anion) were first prepared by Mann et al. (1937) and were the first crystallographic examples of metal phosphine complexes. These compounds display a rich diversity of structural types due to the interplay of parameters such as the geometric flexibility of Ag(I), the bite angle, the electronic properties of the group 15 donor ligand, the coordination of the supporting ligand, etc. (Meijboom et al., 2009).

As part of work that was aimed at the identification of roles the above mentioned properties play during the crystallization of simple silver(I) salts with Group 15 donor ligands with initial focus on tri-p-tolylphosphine complexes (Meijboom et al., 2006; Meijboom, 2006; Meijboom & Muller, 2006; Venter et al., 2006; Meijboom, 2007), we present here a pseudo-polymorph of the previously reported [Ag2(NCS)2(C21H21P)4]2CH3CN (Venter et al., 2007), [Ag2(NCS)2(C21H21P)4]0.35H2O (I). Complex (I) was left standing on the bench top in the lab for a long period of time during which it supposedly absorbed moisture into its structure.

The asymmetric unit of the title compound, Fig. 1, comprises half a unit of the AgI complex (the other half generated by the symmetry operator -x+1, -y+1, -z+1) and 0.35 molecule of H2O. The bond lengths (Allen et al., 1987) and angles (Table 1) are within the normal ranges and are comparable to those of related complexes such as the pseudo-polymorph [Ag2(NCS)2(C21H21P)4].2CH3CN (Venter et al. 2007), [Ag2(NCS)2{P(4—FC6H4)3}4] (Omondi & Meijboom, 2010) and other silver(I) thiocyanate complexes, (Bowmaker et al. 1997; Effendy et al. 2005).

The geometry around the Ag(I) atom is a slightly distorted tetrahedral which is coordinated by the two SCN anions and two phosphine ligands resulting in a dimeric species in which the two Ag(I) centres are bridged by the SCN anions (Table 1).

The crystal structure is stabilized by pairs of C—H···π intermolecular interactions along the crystallographic a and c axes [H225···Cg1 = 2.73 Å, C225—H225···Cg1 = 147° and H135···Cg6 = 2.86 Å, C135—H135···Cg6 = 161° (Fig. 2). Cg1 and Cg6 are the centroids of the C111/C112/C113/C114/C115/C116 and C231/C232/C233/C234/C235/C236 benzene rings]. The symmetry operator for the two interactions is -x, -y+1, -z+1. The two C—H···π interactions result in dimeric pairs of the adjacent molecules involved.

Related literature top

For a general introduction to the coordination chemistry of silver–phosphine complexes, see: Meijboom et al. (2009). For the original preparation of silver–phosphine complexes, see: Mann et al. (1937). For related silver(I)–thiocyanate complexes, see: Bowmaker et al. (1997); Effendy et al. (2005), Venter et al. (2007), Omondi & Meijboom (2010). For related silver(I)–tri-p-tolylphosphine complexes, see: Meijboom et al. (2006); Meijboom (2006, 2007); Meijboom & Muller (2006); Venter et al. (2006). For bond-length data, see: Allen (2002).

Experimental top

AgSCN (0.08g, 0.49 mmol) and P(p</>-tol)3 (0.30g, 0.98 mmol) were dissolved in warm pyridine to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of [Ag2(NCS)2(C21H21P)4].H2O in good yield.

Refinement top

All hydrogen atoms were positioned geometrically, with C–H = 0.95 Å for aromatic hydrogens and 0.98 Å for methyl hydrogens, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

CheckCif Alerts explanations

Applying restraints does not seem to remove Hirshfeld Test Diff. There is partial occupation of the O atom. EADP restaraints were applied. The su's on the Cell Angles are true values. The Solvent Disorder fraction too small.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Primed atoms were generated by symmetry operator (1-x, 1-y, 1-z).
[Figure 2] Fig. 2. Packing pattern of (I) as viewed down the crystallographic b axis where the C—H···π intermolecular interactions are shown in dashed lines [Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1 and (iii) x+1, y, z].
Di-µ-thiocyanato-bis[bis(tri-p-tolylphosphine)silver(I)] 0.35-hydrate top
Crystal data top
[Ag2(NCS)2(C21H21P)4]·0.35H2OZ = 1
Mr = 1554.94F(000) = 803.2
Triclinic, P1Dx = 1.35 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5470 (6) ÅCell parameters from 19388 reflections
b = 13.5063 (8) Åθ = 1.5–28.4°
c = 14.9779 (8) ŵ = 0.70 mm1
α = 91.575 (1)°T = 173 K
β = 110.064 (1)°Plate, colourless
γ = 105.615 (1)°0.42 × 0.35 × 0.15 mm
V = 1913.15 (19) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8868 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.4°, θmin = 1.5°
Tmin = 0.758, Tmax = 0.903h = 1314
23789 measured reflectionsk = 1717
9487 independent reflectionsl = 1919
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0542P)2 + 4.2409P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 0.85Δρmax = 1.67 e Å3
9487 reflectionsΔρmin = 1.70 e Å3
425 parameters
Crystal data top
[Ag2(NCS)2(C21H21P)4]·0.35H2Oγ = 105.615 (1)°
Mr = 1554.94V = 1913.15 (19) Å3
Triclinic, P1Z = 1
a = 10.5470 (6) ÅMo Kα radiation
b = 13.5063 (8) ŵ = 0.70 mm1
c = 14.9779 (8) ÅT = 173 K
α = 91.575 (1)°0.42 × 0.35 × 0.15 mm
β = 110.064 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
9487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
8868 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.903Rint = 0.022
23789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0325 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.85Δρmax = 1.67 e Å3
9487 reflectionsΔρmin = 1.70 e Å3
425 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C0.3928 (2)0.51437 (16)0.57467 (14)0.0177 (4)
C1110.0803 (2)0.40359 (15)0.16962 (14)0.0156 (4)
C1120.0451 (2)0.47931 (16)0.11306 (15)0.0195 (4)
H1120.03840.48790.09930.023*
C1130.1307 (2)0.54193 (16)0.07693 (16)0.0209 (4)
H1130.10540.59250.03830.025*
C1140.2536 (2)0.53172 (16)0.09658 (15)0.0201 (4)
C1150.2896 (2)0.45523 (18)0.15105 (15)0.0218 (4)
H1150.37380.44620.1640.026*
C1160.2048 (2)0.39130 (17)0.18733 (15)0.0194 (4)
H1160.23190.33930.22420.023*
C1170.3407 (3)0.60450 (19)0.06084 (18)0.0288 (5)
H11A0.41740.59120.08580.043*
H11B0.38070.59320.00940.043*
H11C0.28050.67640.08290.043*
C1210.0701 (2)0.26637 (15)0.13329 (14)0.0161 (4)
C1220.0348 (2)0.23392 (16)0.04197 (14)0.0186 (4)
H1220.11810.25480.02580.022*
C1230.0171 (2)0.17082 (17)0.02548 (15)0.0223 (4)
H1230.08910.14910.08730.027*
C1240.1038 (2)0.13926 (16)0.00379 (15)0.0219 (4)
C1250.2092 (2)0.17344 (17)0.08672 (16)0.0230 (4)
H1250.29330.15350.10230.028*
C1260.1929 (2)0.23641 (17)0.15464 (15)0.0203 (4)
H1260.26590.25920.2160.024*
C1270.1228 (3)0.06905 (19)0.07552 (17)0.0303 (5)
H12A0.19330.10910.09990.045*
H12B0.03250.03970.12890.045*
H12C0.15480.01280.04420.045*
C1310.0335 (2)0.23911 (15)0.28655 (14)0.0156 (4)
C1320.1165 (2)0.14053 (16)0.23791 (15)0.0204 (4)
H1320.13560.12590.17140.024*
C1330.1715 (2)0.06369 (16)0.28579 (16)0.0224 (4)
H1330.22780.00280.25140.027*
C1340.1454 (2)0.08243 (16)0.38360 (16)0.0203 (4)
C1350.0651 (2)0.18157 (17)0.43150 (15)0.0231 (4)
H1350.04860.19670.49760.028*
C1360.0086 (2)0.25880 (16)0.38437 (15)0.0205 (4)
H1360.04720.32540.41880.025*
C1370.1997 (3)0.00233 (18)0.43636 (18)0.0270 (5)
H13A0.2940.04560.39490.04*
H13B0.2050.02860.49440.04*
H13C0.13540.04510.45410.04*
C2110.4186 (2)0.74299 (19)0.44628 (18)0.0284 (3)
C2120.5508 (2)0.72876 (19)0.48426 (18)0.0284 (3)
H2120.56920.67240.45680.034*
C2130.6573 (2)0.79579 (17)0.56212 (16)0.0215 (4)
H2130.74790.78520.58620.026*
C2140.6338 (2)0.87726 (17)0.60492 (15)0.0223 (4)
C2150.4993 (2)0.88878 (19)0.56982 (18)0.0284 (3)
H2150.47990.94290.59970.034*
C2160.3917 (3)0.82230 (19)0.49124 (18)0.0284 (3)
H2160.30010.83130.46850.034*
C2170.7509 (3)0.95257 (19)0.68683 (17)0.0298 (5)
H21A0.77941.01960.66460.045*
H21B0.8320.92540.71010.045*
H21C0.71720.96160.7390.045*
C2210.3423 (2)0.71958 (16)0.24398 (15)0.0178 (4)
C2220.3987 (2)0.82711 (16)0.24913 (16)0.0221 (4)
H2220.41150.87150.30380.026*
C2230.4360 (2)0.86902 (17)0.17507 (18)0.0254 (4)
H2230.47380.94210.17970.03*
C2240.4194 (2)0.80636 (18)0.09378 (17)0.0233 (4)
C2250.3644 (2)0.69922 (17)0.08922 (16)0.0210 (4)
H2250.35230.65490.03470.025*
C2260.3273 (2)0.65665 (16)0.16311 (15)0.0182 (4)
H2260.2910.58350.15870.022*
C2270.4579 (3)0.8511 (2)0.0122 (2)0.0364 (6)
H22A0.37540.86480.03480.055*
H22B0.48820.80170.01850.055*
H22C0.5350.91610.0370.055*
C2310.1245 (2)0.68002 (15)0.32687 (14)0.0171 (4)
C2320.0794 (2)0.76033 (17)0.28263 (16)0.0210 (4)
H2320.13690.80670.25550.025*
C2330.0494 (2)0.77291 (17)0.27792 (16)0.0229 (4)
H2330.07780.82880.24850.028*
C2340.1373 (2)0.70543 (17)0.31532 (15)0.0203 (4)
C2350.0920 (2)0.62480 (17)0.35919 (16)0.0223 (4)
H2350.15020.57770.38530.027*
C2360.0369 (2)0.61247 (16)0.36516 (15)0.0207 (4)
H2360.0660.55740.39570.025*
C2370.2777 (2)0.7183 (2)0.30916 (19)0.0288 (5)
H23A0.270.74750.37210.043*
H23B0.350.65060.28940.043*
H23C0.30440.76510.26210.043*
N0.3107 (2)0.47534 (14)0.49960 (13)0.0211 (3)
S0.50745 (5)0.56667 (5)0.68345 (4)0.02352 (11)
Ag0.270935 (15)0.468455 (11)0.334821 (10)0.01632 (5)
P10.05204 (5)0.34022 (4)0.22977 (3)0.01412 (10)
P20.29159 (5)0.65734 (4)0.33849 (4)0.01642 (10)
O0.5565 (9)0.2031 (7)0.2512 (6)0.0211 (3)0.176 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C0.0168 (8)0.0207 (9)0.0169 (7)0.0042 (7)0.0089 (6)0.0024 (7)
C1110.0150 (8)0.0153 (9)0.0141 (8)0.0037 (7)0.0032 (7)0.0010 (7)
C1120.0170 (9)0.0190 (9)0.0220 (10)0.0041 (7)0.0073 (8)0.0036 (8)
C1130.0211 (10)0.0167 (9)0.0219 (10)0.0031 (7)0.0058 (8)0.0048 (7)
C1140.0200 (9)0.0182 (9)0.0182 (9)0.0074 (8)0.0014 (8)0.0024 (7)
C1150.0187 (9)0.0292 (11)0.0191 (9)0.0094 (8)0.0071 (8)0.0007 (8)
C1160.0186 (9)0.0226 (10)0.0171 (9)0.0056 (8)0.0069 (8)0.0040 (7)
C1170.0273 (11)0.0261 (11)0.0314 (12)0.0150 (9)0.0032 (9)0.0020 (9)
C1210.0167 (9)0.0156 (8)0.0154 (9)0.0034 (7)0.0064 (7)0.0009 (7)
C1220.0200 (9)0.0187 (9)0.0153 (9)0.0050 (7)0.0048 (7)0.0017 (7)
C1230.0284 (11)0.0206 (10)0.0139 (9)0.0041 (8)0.0053 (8)0.0001 (7)
C1240.0310 (11)0.0165 (9)0.0196 (10)0.0037 (8)0.0135 (9)0.0015 (7)
C1250.0224 (10)0.0226 (10)0.0259 (11)0.0071 (8)0.0112 (9)0.0001 (8)
C1260.0177 (9)0.0216 (10)0.0188 (9)0.0041 (8)0.0046 (8)0.0017 (8)
C1270.0455 (14)0.0276 (12)0.0223 (11)0.0124 (10)0.0170 (10)0.0010 (9)
C1310.0154 (8)0.0156 (9)0.0154 (9)0.0045 (7)0.0051 (7)0.0017 (7)
C1320.0229 (10)0.0175 (9)0.0185 (9)0.0021 (8)0.0081 (8)0.0011 (7)
C1330.0248 (10)0.0155 (9)0.0253 (10)0.0019 (8)0.0107 (9)0.0007 (8)
C1340.0202 (10)0.0196 (9)0.0232 (10)0.0063 (8)0.0100 (8)0.0056 (8)
C1350.0270 (11)0.0229 (10)0.0168 (9)0.0036 (8)0.0079 (8)0.0008 (8)
C1360.0234 (10)0.0171 (9)0.0167 (9)0.0015 (8)0.0059 (8)0.0006 (7)
C1370.0323 (12)0.0228 (10)0.0300 (11)0.0066 (9)0.0172 (10)0.0089 (9)
C2110.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)0.0100 (4)
C2120.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)0.0100 (4)
C2130.0157 (9)0.0235 (10)0.0219 (10)0.0043 (8)0.0040 (8)0.0012 (8)
C2140.0220 (10)0.0180 (9)0.0198 (10)0.0035 (8)0.0011 (8)0.0003 (8)
C2150.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)0.0100 (4)
C2160.0235 (6)0.0269 (6)0.0285 (6)0.0104 (4)0.0006 (4)0.0100 (4)
C2170.0292 (12)0.0235 (11)0.0245 (11)0.0036 (9)0.0015 (9)0.0037 (9)
C2210.0143 (9)0.0165 (9)0.0207 (9)0.0033 (7)0.0052 (7)0.0007 (7)
C2220.0203 (10)0.0163 (9)0.0267 (11)0.0026 (8)0.0075 (8)0.0009 (8)
C2230.0206 (10)0.0180 (10)0.0342 (12)0.0013 (8)0.0091 (9)0.0048 (9)
C2240.0164 (9)0.0272 (11)0.0260 (11)0.0055 (8)0.0078 (8)0.0087 (9)
C2250.0173 (9)0.0243 (10)0.0205 (10)0.0065 (8)0.0058 (8)0.0012 (8)
C2260.0151 (9)0.0171 (9)0.0197 (9)0.0034 (7)0.0043 (7)0.0004 (7)
C2270.0356 (14)0.0398 (14)0.0342 (13)0.0050 (11)0.0173 (11)0.0149 (11)
C2310.0157 (9)0.0165 (9)0.0153 (9)0.0024 (7)0.0031 (7)0.0022 (7)
C2320.0193 (10)0.0196 (10)0.0230 (10)0.0041 (8)0.0075 (8)0.0047 (8)
C2330.0227 (10)0.0222 (10)0.0232 (10)0.0082 (8)0.0062 (8)0.0049 (8)
C2340.0184 (9)0.0214 (10)0.0178 (9)0.0027 (8)0.0055 (8)0.0037 (7)
C2350.0234 (10)0.0196 (10)0.0248 (10)0.0038 (8)0.0120 (8)0.0016 (8)
C2360.0237 (10)0.0179 (9)0.0219 (10)0.0054 (8)0.0105 (8)0.0028 (8)
C2370.0226 (11)0.0303 (12)0.0359 (13)0.0099 (9)0.0121 (10)0.0022 (10)
N0.0218 (8)0.0235 (9)0.0175 (6)0.0056 (7)0.0077 (6)0.0034 (6)
S0.0158 (2)0.0346 (3)0.0168 (2)0.0025 (2)0.00627 (18)0.0048 (2)
Ag0.01599 (8)0.01542 (8)0.01422 (8)0.00279 (5)0.00302 (5)0.00025 (5)
P10.0136 (2)0.0137 (2)0.0132 (2)0.00289 (17)0.00369 (17)0.00016 (17)
P20.0160 (2)0.0139 (2)0.0169 (2)0.00268 (18)0.00463 (18)0.00128 (17)
O0.0218 (8)0.0235 (9)0.0175 (6)0.0056 (7)0.0077 (6)0.0034 (6)
Geometric parameters (Å, º) top
C—N1.160 (3)C211—P21.822 (2)
C—S1.656 (2)C212—C2131.392 (3)
C111—C1161.395 (3)C212—H2120.95
C111—C1121.400 (3)C213—C2141.379 (3)
C111—P11.820 (2)C213—H2130.95
C112—C1131.387 (3)C214—C2151.387 (3)
C112—H1120.95C214—C2171.510 (3)
C113—C1141.397 (3)C215—C2161.399 (3)
C113—H1130.95C215—H2150.95
C114—C1151.387 (3)C216—H2160.95
C114—C1171.508 (3)C217—H21A0.98
C115—C1161.396 (3)C217—H21B0.98
C115—H1150.95C217—H21C0.98
C116—H1160.95C221—C2261.398 (3)
C117—H11A0.98C221—C2221.402 (3)
C117—H11B0.98C221—P21.827 (2)
C117—H11C0.98C222—C2231.385 (3)
C121—C1261.396 (3)C222—H2220.95
C121—C1221.398 (3)C223—C2241.395 (3)
C121—P11.825 (2)C223—H2230.95
C122—C1231.396 (3)C224—C2251.397 (3)
C122—H1220.95C224—C2271.507 (3)
C123—C1241.389 (3)C225—C2261.386 (3)
C123—H1230.95C225—H2250.95
C124—C1251.393 (3)C226—H2260.95
C124—C1271.512 (3)C227—H22A0.98
C125—C1261.393 (3)C227—H22B0.98
C125—H1250.95C227—H22C0.98
C126—H1260.95C231—C2321.394 (3)
C127—H12A0.98C231—C2361.398 (3)
C127—H12B0.98C231—P21.820 (2)
C127—H12C0.98C232—C2331.392 (3)
C131—C1321.397 (3)C232—H2320.95
C131—C1361.401 (3)C233—C2341.391 (3)
C131—P11.825 (2)C233—H2330.95
C132—C1331.389 (3)C234—C2351.397 (3)
C132—H1320.95C234—C2371.509 (3)
C133—C1341.397 (3)C235—C2361.386 (3)
C133—H1330.95C235—H2350.95
C134—C1351.395 (3)C236—H2360.95
C134—C1371.507 (3)C237—H23A0.98
C135—C1361.391 (3)C237—H23B0.98
C135—H1350.95C237—H23C0.98
C136—H1360.95N—Ag2.3519 (18)
C137—H13A0.98S—Agi2.6062 (6)
C137—H13B0.98Ag—P12.4516 (5)
C137—H13C0.98Ag—P22.4987 (5)
C211—C2121.382 (3)Ag—Si2.6062 (6)
C211—C2161.392 (3)
N—C—S178.0 (2)C213—C214—C217121.2 (2)
C116—C111—C112118.43 (18)C215—C214—C217120.8 (2)
C116—C111—P1123.51 (16)C214—C215—C216121.3 (2)
C112—C111—P1117.43 (15)C214—C215—H215119.3
C113—C112—C111120.79 (19)C216—C215—H215119.3
C113—C112—H112119.6C211—C216—C215120.0 (2)
C111—C112—H112119.6C211—C216—H216120
C112—C113—C114121.0 (2)C215—C216—H216120
C112—C113—H113119.5C214—C217—H21A109.5
C114—C113—H113119.5C214—C217—H21B109.5
C115—C114—C113118.09 (19)H21A—C217—H21B109.5
C115—C114—C117122.0 (2)C214—C217—H21C109.5
C113—C114—C117119.9 (2)H21A—C217—H21C109.5
C114—C115—C116121.5 (2)H21B—C217—H21C109.5
C114—C115—H115119.3C226—C221—C222118.1 (2)
C116—C115—H115119.3C226—C221—P2118.37 (15)
C115—C116—C111120.2 (2)C222—C221—P2123.54 (16)
C115—C116—H116119.9C223—C222—C221120.5 (2)
C111—C116—H116119.9C223—C222—H222119.8
C114—C117—H11A109.5C221—C222—H222119.8
C114—C117—H11B109.5C222—C223—C224121.5 (2)
H11A—C117—H11B109.5C222—C223—H223119.3
C114—C117—H11C109.5C224—C223—H223119.3
H11A—C117—H11C109.5C223—C224—C225117.9 (2)
H11B—C117—H11C109.5C223—C224—C227122.0 (2)
C126—C121—C122118.87 (18)C225—C224—C227120.1 (2)
C126—C121—P1117.34 (15)C226—C225—C224121.0 (2)
C122—C121—P1123.70 (15)C226—C225—H225119.5
C123—C122—C121120.1 (2)C224—C225—H225119.5
C123—C122—H122120C225—C226—C221121.07 (19)
C121—C122—H122120C225—C226—H226119.5
C124—C123—C122121.2 (2)C221—C226—H226119.5
C124—C123—H123119.4C224—C227—H22A109.5
C122—C123—H123119.4C224—C227—H22B109.5
C123—C124—C125118.55 (19)H22A—C227—H22B109.5
C123—C124—C127121.7 (2)C224—C227—H22C109.5
C125—C124—C127119.8 (2)H22A—C227—H22C109.5
C124—C125—C126120.8 (2)H22B—C227—H22C109.5
C124—C125—H125119.6C232—C231—C236118.39 (19)
C126—C125—H125119.6C232—C231—P2124.08 (16)
C125—C126—C121120.49 (19)C236—C231—P2117.53 (16)
C125—C126—H126119.8C233—C232—C231120.4 (2)
C121—C126—H126119.8C233—C232—H232119.8
C124—C127—H12A109.5C231—C232—H232119.8
C124—C127—H12B109.5C232—C233—C234121.4 (2)
H12A—C127—H12B109.5C232—C233—H233119.3
C124—C127—H12C109.5C234—C233—H233119.3
H12A—C127—H12C109.5C233—C234—C235118.0 (2)
H12B—C127—H12C109.5C233—C234—C237121.4 (2)
C132—C131—C136118.36 (19)C235—C234—C237120.6 (2)
C132—C131—P1122.71 (15)C236—C235—C234120.9 (2)
C136—C131—P1118.84 (15)C236—C235—H235119.5
C133—C132—C131120.69 (19)C234—C235—H235119.5
C133—C132—H132119.7C235—C236—C231120.9 (2)
C131—C132—H132119.7C235—C236—H236119.6
C132—C133—C134121.21 (19)C231—C236—H236119.6
C132—C133—H133119.4C234—C237—H23A109.5
C134—C133—H133119.4C234—C237—H23B109.5
C133—C134—C135118.0 (2)H23A—C237—H23B109.5
C133—C134—C137121.1 (2)C234—C237—H23C109.5
C135—C134—C137120.9 (2)H23A—C237—H23C109.5
C136—C135—C134121.3 (2)H23B—C237—H23C109.5
C136—C135—H135119.4C—N—Ag142.81 (16)
C134—C135—H135119.4C—S—Agi97.85 (7)
C135—C136—C131120.51 (19)N—Ag—P1115.23 (5)
C135—C136—H136119.7N—Ag—P291.90 (5)
C131—C136—H136119.7P1—Ag—P2119.826 (18)
C134—C137—H13A109.5N—Ag—Si105.61 (5)
C134—C137—H13B109.5P1—Ag—Si111.461 (18)
H13A—C137—H13B109.5P2—Ag—Si110.655 (19)
C134—C137—H13C109.5C111—P1—C121104.99 (9)
H13A—C137—H13C109.5C111—P1—C131105.85 (9)
H13B—C137—H13C109.5C121—P1—C131102.91 (9)
C212—C211—C216118.4 (2)C111—P1—Ag110.53 (6)
C212—C211—P2117.33 (17)C121—P1—Ag114.81 (7)
C216—C211—P2124.24 (18)C131—P1—Ag116.68 (7)
C211—C212—C213120.9 (2)C231—P2—C211103.99 (10)
C211—C212—H212119.5C231—P2—C221105.56 (9)
C213—C212—H212119.5C211—P2—C221102.21 (11)
C214—C213—C212121.2 (2)C231—P2—Ag111.11 (7)
C214—C213—H213119.4C211—P2—Ag117.23 (8)
C212—C213—H213119.4C221—P2—Ag115.42 (7)
C213—C214—C215117.99 (19)
C116—C111—C112—C1131.2 (3)P2—C231—C236—C235179.95 (16)
P1—C111—C112—C113170.13 (16)C—N—Ag—P1175.2 (3)
C111—C112—C113—C1140.5 (3)C—N—Ag—P260.3 (3)
C112—C113—C114—C1151.7 (3)C—N—Ag—Si51.7 (3)
C112—C113—C114—C117176.8 (2)C116—C111—P1—C121122.96 (17)
C113—C114—C115—C1161.4 (3)C112—C111—P1—C12166.24 (17)
C117—C114—C115—C116177.1 (2)C116—C111—P1—C13114.51 (19)
C114—C115—C116—C1110.3 (3)C112—C111—P1—C131174.69 (15)
C112—C111—C116—C1151.5 (3)C116—C111—P1—Ag112.70 (16)
P1—C111—C116—C115169.17 (16)C112—C111—P1—Ag58.10 (16)
C126—C121—C122—C1231.3 (3)C126—C121—P1—C111160.41 (16)
P1—C121—C122—C123175.01 (16)C122—C121—P1—C11123.2 (2)
C121—C122—C123—C1240.1 (3)C126—C121—P1—C13189.01 (17)
C122—C123—C124—C1251.1 (3)C122—C121—P1—C13187.39 (19)
C122—C123—C124—C127178.7 (2)C126—C121—P1—Ag38.83 (18)
C123—C124—C125—C1261.1 (3)C122—C121—P1—Ag144.77 (16)
C127—C124—C125—C126178.7 (2)C132—C131—P1—C11184.96 (19)
C124—C125—C126—C1210.1 (3)C136—C131—P1—C11198.78 (17)
C122—C121—C126—C1251.4 (3)C132—C131—P1—C12125.0 (2)
P1—C121—C126—C125175.23 (17)C136—C131—P1—C121151.28 (17)
C136—C131—C132—C1330.8 (3)C132—C131—P1—Ag151.62 (15)
P1—C131—C132—C133175.47 (17)C136—C131—P1—Ag24.63 (19)
C131—C132—C133—C1340.1 (3)N—Ag—P1—C111104.30 (9)
C132—C133—C134—C1351.4 (3)P2—Ag—P1—C1113.90 (7)
C132—C133—C134—C137177.3 (2)Si—Ag—P1—C111135.37 (7)
C133—C134—C135—C1362.0 (3)N—Ag—P1—C121137.18 (9)
C137—C134—C135—C136176.7 (2)P2—Ag—P1—C121114.62 (7)
C134—C135—C136—C1311.1 (3)Si—Ag—P1—C12116.86 (8)
C132—C131—C136—C1350.3 (3)N—Ag—P1—C13116.66 (9)
P1—C131—C136—C135176.14 (17)P2—Ag—P1—C131124.87 (7)
C216—C211—C212—C2133.8 (4)Si—Ag—P1—C131103.66 (7)
P2—C211—C212—C213175.1 (2)C232—C231—P2—C21184.7 (2)
C211—C212—C213—C2141.2 (4)C236—C231—P2—C21195.14 (18)
C212—C213—C214—C2151.8 (4)C232—C231—P2—C22122.5 (2)
C212—C213—C214—C217177.5 (2)C236—C231—P2—C221157.67 (16)
C213—C214—C215—C2162.2 (4)C232—C231—P2—Ag148.33 (16)
C217—C214—C215—C216177.1 (2)C236—C231—P2—Ag31.86 (17)
C212—C211—C216—C2153.4 (4)C212—C211—P2—C231167.9 (2)
P2—C211—C216—C215175.4 (2)C216—C211—P2—C23113.3 (3)
C214—C215—C216—C2110.4 (4)C212—C211—P2—C22182.4 (2)
C226—C221—C222—C2231.0 (3)C216—C211—P2—C22196.4 (3)
P2—C221—C222—C223179.46 (17)C212—C211—P2—Ag44.8 (3)
C221—C222—C223—C2240.2 (3)C216—C211—P2—Ag136.4 (2)
C222—C223—C224—C2250.4 (3)C226—C221—P2—C231105.37 (17)
C222—C223—C224—C227179.2 (2)C222—C221—P2—C23176.19 (19)
C223—C224—C225—C2260.1 (3)C226—C221—P2—C211146.15 (17)
C227—C224—C225—C226179.4 (2)C222—C221—P2—C21132.3 (2)
C224—C225—C226—C2210.7 (3)C226—C221—P2—Ag17.74 (18)
C222—C221—C226—C2251.2 (3)C222—C221—P2—Ag160.69 (16)
P2—C221—C226—C225179.76 (16)N—Ag—P2—C23184.01 (8)
C236—C231—C232—C2330.6 (3)P1—Ag—P2—C23136.69 (7)
P2—C231—C232—C233179.18 (16)Si—Ag—P2—C231168.51 (7)
C231—C232—C233—C2341.1 (3)N—Ag—P2—C21135.34 (11)
C232—C233—C234—C2350.8 (3)P1—Ag—P2—C211156.04 (10)
C232—C233—C234—C237179.3 (2)Si—Ag—P2—C21172.14 (10)
C233—C234—C235—C2360.0 (3)N—Ag—P2—C221155.87 (9)
C237—C234—C235—C236180.0 (2)P1—Ag—P2—C22183.43 (7)
C234—C235—C236—C2310.4 (3)Si—Ag—P2—C22148.39 (7)
C232—C231—C236—C2350.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg6 are the centroids of the C111–C116 and C231–C236 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C135—H135···Cg6ii0.952.863.772 (2)161
C225—H225···Cg1iii0.952.733.568 (2)147
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(NCS)2(C21H21P)4]·0.35H2O
Mr1554.94
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.5470 (6), 13.5063 (8), 14.9779 (8)
α, β, γ (°)91.575 (1), 110.064 (1), 105.615 (1)
V3)1913.15 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.42 × 0.35 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.758, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
23789, 9487, 8868
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 0.85
No. of reflections9487
No. of parameters425
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.67, 1.70

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C—N1.160 (3)Ag—P12.4516 (5)
C—S1.656 (2)Ag—P22.4987 (5)
N—Ag2.3519 (18)Ag—Si2.6062 (6)
N—C—S178.0 (2)P1—Ag—P2119.826 (18)
C—N—Ag142.81 (16)N—Ag—Si105.61 (5)
C—S—Agi97.85 (7)P1—Ag—Si111.461 (18)
N—Ag—P1115.23 (5)P2—Ag—Si110.655 (19)
N—Ag—P291.90 (5)
C—N—Ag—Si51.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg6 are the centroids of the C111–C116 and C231–C236 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C135—H135···Cg6ii0.952.863.772 (2)161
C225—H225···Cg1iii0.952.733.568 (2)147
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

NMK thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBowmaker, G. A., Effendy, Hart, R. D., Kildea, J. D., De Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627–640.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEffendy, Di Nicola, C., Fianchini, M., Pettinari, C., Skelton, B.W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 763–795.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMann, F. G., Wells, A. F. & Purdue, D. (1937). J. Chem. Soc. pp. 1828–1836.  CrossRef Google Scholar
First citationMeijboom, R. (2006). Acta Cryst. E62, m2698–m2700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R. (2007). Acta Cryst. E63, m78–m79.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMeijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m2162–m2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B. & Meijboom, R. (2010). Acta Cryst. B66, 69–75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenter, G. J. S., Meijboom, R. & Roodt, A. (2006). Acta Cryst. E62, m3453–m3455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Meijboom, R. & Roodt, A. (2007). Acta Cryst. E63, m3076–m3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m451-m452
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds