organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Biimidazolium 5-amino-2,4,6-tri­bromo­isophthalate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 October 2010; accepted 16 October 2010; online 23 October 2010)

In the cation of the title salt, C6H8N42+·C8H2Br3NO42−, the dihedral angle between the two five-membered rings is 2.1 (3)°. In the anion, the mean planes of the carboxyl units are twisted from the benzene ring by 84.3 (4) and 86.2 (3)°. In the crystal, the components are linked by imidazolium–carboxyl­ate N—H⋯O hydrogen bonds, generating a chain running along [1[\overline{1}]0].

Related literature

For the structure of 5-amino-2,4,6-tribromidoisophthalic acid, see: Beck et al. (2009[Beck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237-o239.]). For the structures of other 2,2′-bis­(imid­azolium) carboxyl­ates, see: Gao et al. (2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.]); Li & Yang (2007[Li, Y.-P. & Yang, P. (2007). Chin. J. Chem. 25, 1715-1721.]); Zhou et al. (2009[Zhou, C.-S., Ding, L.-L., Zhang, H., Cao, M.-N. & Meng, X.-G. (2009). Acta Cryst. C65, o51-o53.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N42+·C8H2Br3NO42−

  • Mr = 552.00

  • Triclinic, [P \overline 1]

  • a = 9.0525 (10) Å

  • b = 9.2043 (10) Å

  • c = 11.5252 (12) Å

  • α = 90.262 (1)°

  • β = 108.332 (1)°

  • γ = 93.136 (1)°

  • V = 909.96 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.68 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.203, Tmax = 0.434

  • 8042 measured reflections

  • 4104 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.120

  • S = 1.12

  • 4104 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.88 (1) 1.74 (2) 2.608 (4) 168 (6)
N3—H3⋯O3i 0.88 (1) 1.78 (2) 2.624 (5) 160 (5)
N4—H4⋯O4i 0.88 (1) 1.74 (1) 2.614 (5) 175 (7)
N5—H5⋯O2 0.88 (1) 1.79 (2) 2.636 (4) 160 (4)
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of 5-Amino-2,4,6-tribromoiodoisophthalic acid exists as a chains in which adjacent molecules are linked by O–H···O hydrogen bonds. In addition, pairs of chains are connected by further O–H···O hydrogen bonds (Beck et al., 2009). This acid furnishes a small number of coordination compounds. An attempt to synthesize a lead(II) derivative that can be linked by 2,2'-biimidazole gave instead the title salt, [C6H8N4]2+ [C8H2NO4I3]2–(1). Other examples of crystal structure of 2,2'-bis(imidazolium) carboxylates already appear in the literature (Gao et al., 2009; Li & Yang, 2007; Zhou et al., 2009).

The asymmetric unit of (1) is shown in Fig. 1. The cation is nearly planar as its two five-membered rings are twisted along the Cimidazolyl–Cimidazolyl bond by 2.1 (3) ° only. In the anion, both –CO2 units are almost orthogonal to the bezene ring mean plane [dihedral angles between –CO2 plane and benzene ring (r.m.s. deviation 0.018 Å) are 84.3 (4)° and 86.2 (3) °]. In the crystal structure, cations and anions are linked by Nimidazolyl–H···O hydrogen bonds to generate a chain formation running along [110](Fig. 2).

Related literature top

For the structure of 5-amino-2,4,6-tribromidoisophthalic acid, see: Beck et al. (2009). For the structures of other 2,2'-bis(imidazolium) carboxylates, see: Gao et al. (2009); Li & Yang (2007); Zhou et al. (2009).

Experimental top

An aqueous solution of lead nitrate (0.006 g, 0.2 mmol) in water (5 ml) was added to a mixture of 5-amino-2,4,6-tribromidoisophthalic acid (0.056 g, 0.1 mmol) in water (5 ml) and sodium hydroxide (0.2 ml, 0.5 M). To this solution was added 2,2'-biimidazole (0.014 g, 0.1 mmol) in DMF (5 ml). The solution was filtered; slow evaporation yielded pale yellow crystals which were collected (30% yield). CH&N elemental analysis. Calc. for C14H10Br3N5O4: C 30.46, H 1.83, N 12.69%.; Found: C, 30.38; H, 1.91; N, 12.77%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

The imidazolyl and amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Structure description top

The crystal structure of 5-Amino-2,4,6-tribromoiodoisophthalic acid exists as a chains in which adjacent molecules are linked by O–H···O hydrogen bonds. In addition, pairs of chains are connected by further O–H···O hydrogen bonds (Beck et al., 2009). This acid furnishes a small number of coordination compounds. An attempt to synthesize a lead(II) derivative that can be linked by 2,2'-biimidazole gave instead the title salt, [C6H8N4]2+ [C8H2NO4I3]2–(1). Other examples of crystal structure of 2,2'-bis(imidazolium) carboxylates already appear in the literature (Gao et al., 2009; Li & Yang, 2007; Zhou et al., 2009).

The asymmetric unit of (1) is shown in Fig. 1. The cation is nearly planar as its two five-membered rings are twisted along the Cimidazolyl–Cimidazolyl bond by 2.1 (3) ° only. In the anion, both –CO2 units are almost orthogonal to the bezene ring mean plane [dihedral angles between –CO2 plane and benzene ring (r.m.s. deviation 0.018 Å) are 84.3 (4)° and 86.2 (3) °]. In the crystal structure, cations and anions are linked by Nimidazolyl–H···O hydrogen bonds to generate a chain formation running along [110](Fig. 2).

For the structure of 5-amino-2,4,6-tribromidoisophthalic acid, see: Beck et al. (2009). For the structures of other 2,2'-bis(imidazolium) carboxylates, see: Gao et al. (2009); Li & Yang (2007); Zhou et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C6H8N42+ C8H2NO4Br32– at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
2,2'-Biimidazolium 5-amino-2,4,6-tribromoisophthalate top
Crystal data top
C6H8N42+·C8H2Br3NO42Z = 2
Mr = 552.00F(000) = 532
Triclinic, P1Dx = 2.015 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0525 (10) ÅCell parameters from 2718 reflections
b = 9.2043 (10) Åθ = 2.4–27.4°
c = 11.5252 (12) ŵ = 6.68 mm1
α = 90.262 (1)°T = 293 K
β = 108.332 (1)°Prism, pale yellow
γ = 93.136 (1)°0.35 × 0.25 × 0.15 mm
V = 909.96 (17) Å3
Data collection top
Bruker SMART APEX
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.203, Tmax = 0.434k = 1111
8042 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.430P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.81 e Å3
6 restraintsΔρmin = 0.56 e Å3
Crystal data top
C6H8N42+·C8H2Br3NO42γ = 93.136 (1)°
Mr = 552.00V = 909.96 (17) Å3
Triclinic, P1Z = 2
a = 9.0525 (10) ÅMo Kα radiation
b = 9.2043 (10) ŵ = 6.68 mm1
c = 11.5252 (12) ÅT = 293 K
α = 90.262 (1)°0.35 × 0.25 × 0.15 mm
β = 108.332 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3129 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.434Rint = 0.025
8042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.81 e Å3
4104 reflectionsΔρmin = 0.56 e Å3
259 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44985 (5)0.68067 (5)0.04955 (4)0.03399 (14)
Br20.30262 (7)0.89508 (6)0.45860 (5)0.05335 (18)
Br30.80240 (6)0.52283 (6)0.52786 (5)0.05028 (17)
O10.6388 (4)0.3751 (3)0.2311 (3)0.0364 (7)
O20.8128 (4)0.5529 (3)0.2201 (3)0.0424 (8)
O30.1481 (4)0.8223 (4)0.1385 (3)0.0419 (8)
O40.3322 (4)1.0034 (3)0.1754 (4)0.0465 (9)
N10.5757 (6)0.7119 (6)0.5998 (4)0.0536 (12)
N20.7881 (4)0.1504 (4)0.2018 (4)0.0326 (8)
N30.9353 (4)0.0118 (4)0.1680 (4)0.0356 (9)
N41.1546 (4)0.2242 (4)0.1272 (3)0.0305 (8)
N51.0016 (4)0.3864 (4)0.1539 (3)0.0258 (7)
C10.6952 (5)0.5045 (5)0.2451 (4)0.0300 (9)
C20.6062 (5)0.6121 (4)0.2971 (4)0.0265 (8)
C30.4913 (5)0.6934 (4)0.2216 (4)0.0246 (8)
C40.4030 (5)0.7833 (4)0.2686 (4)0.0276 (9)
C50.4310 (5)0.7852 (5)0.3941 (4)0.0329 (10)
C60.5465 (5)0.7061 (5)0.4750 (4)0.0343 (10)
C70.6352 (5)0.6244 (4)0.4223 (4)0.0293 (9)
C80.2831 (5)0.8777 (4)0.1859 (4)0.0310 (9)
C90.7208 (6)0.0171 (5)0.2144 (5)0.0491 (13)
H90.62930.00040.23370.059*
C100.8132 (6)0.0853 (5)0.1932 (5)0.0485 (13)
H100.79670.18570.19540.058*
C110.9166 (5)0.1302 (4)0.1731 (4)0.0260 (8)
C121.0206 (5)0.2449 (4)0.1518 (4)0.0253 (8)
C131.2192 (5)0.3590 (5)0.1138 (4)0.0343 (10)
H131.31180.37730.09600.041*
C141.1255 (5)0.4600 (4)0.1306 (4)0.0307 (9)
H141.14140.56040.12730.037*
H20.751 (7)0.232 (4)0.217 (5)0.068 (19)*
H31.005 (5)0.054 (5)0.143 (5)0.054 (16)*
H41.215 (6)0.151 (5)0.139 (6)0.09 (2)*
H50.923 (4)0.424 (5)0.171 (4)0.035 (13)*
H110.519 (6)0.764 (6)0.631 (5)0.07 (2)*
H120.624 (6)0.640 (4)0.643 (4)0.056 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0363 (3)0.0361 (3)0.0319 (2)0.01227 (19)0.01250 (19)0.00142 (18)
Br20.0560 (4)0.0543 (4)0.0623 (4)0.0200 (3)0.0340 (3)0.0138 (3)
Br30.0441 (3)0.0611 (4)0.0420 (3)0.0224 (3)0.0049 (2)0.0071 (2)
O10.0342 (17)0.0232 (15)0.060 (2)0.0058 (13)0.0254 (15)0.0047 (14)
O20.0372 (19)0.0282 (17)0.075 (2)0.0075 (14)0.0350 (18)0.0010 (16)
O30.0223 (16)0.0374 (19)0.063 (2)0.0091 (14)0.0084 (15)0.0072 (16)
O40.0372 (19)0.0170 (16)0.088 (3)0.0121 (14)0.0217 (18)0.0094 (16)
N10.067 (3)0.062 (3)0.036 (2)0.020 (3)0.019 (2)0.005 (2)
N20.0230 (18)0.0250 (19)0.055 (2)0.0067 (15)0.0198 (17)0.0002 (17)
N30.028 (2)0.0250 (19)0.059 (2)0.0073 (16)0.0192 (18)0.0025 (17)
N40.0188 (17)0.034 (2)0.042 (2)0.0098 (15)0.0134 (15)0.0030 (16)
N50.0170 (16)0.0258 (18)0.0388 (19)0.0093 (14)0.0134 (14)0.0022 (15)
C10.034 (2)0.030 (2)0.030 (2)0.0114 (19)0.0135 (18)0.0013 (17)
C20.027 (2)0.0187 (19)0.036 (2)0.0059 (16)0.0125 (17)0.0015 (16)
C30.028 (2)0.020 (2)0.0280 (19)0.0052 (16)0.0116 (17)0.0030 (15)
C40.024 (2)0.021 (2)0.041 (2)0.0066 (16)0.0145 (18)0.0016 (17)
C50.031 (2)0.030 (2)0.044 (2)0.0102 (19)0.019 (2)0.0103 (19)
C60.034 (2)0.036 (2)0.036 (2)0.005 (2)0.015 (2)0.0061 (19)
C70.025 (2)0.024 (2)0.039 (2)0.0078 (17)0.0091 (18)0.0007 (17)
C80.031 (2)0.020 (2)0.048 (3)0.0161 (18)0.018 (2)0.0008 (18)
C90.041 (3)0.034 (3)0.084 (4)0.002 (2)0.035 (3)0.002 (3)
C100.042 (3)0.023 (2)0.088 (4)0.002 (2)0.031 (3)0.003 (2)
C110.029 (2)0.0151 (19)0.034 (2)0.0067 (16)0.0089 (17)0.0003 (16)
C120.030 (2)0.0144 (18)0.033 (2)0.0075 (16)0.0107 (17)0.0003 (15)
C130.036 (2)0.027 (2)0.045 (3)0.0033 (19)0.019 (2)0.0031 (19)
C140.035 (2)0.0154 (19)0.042 (2)0.0045 (17)0.0125 (19)0.0054 (17)
Geometric parameters (Å, º) top
Br1—C31.901 (4)N5—C121.325 (5)
Br2—C51.895 (4)N5—C141.377 (5)
Br3—C71.911 (4)N5—H50.882 (10)
O1—C11.259 (5)C1—C21.541 (5)
O2—C11.248 (5)C2—C71.386 (6)
O3—C81.250 (5)C2—C31.386 (5)
O4—C81.237 (5)C3—C41.399 (5)
N1—C61.378 (6)C4—C51.388 (6)
N1—H110.877 (10)C4—C81.517 (6)
N1—H120.879 (10)C5—C61.403 (6)
N2—C111.327 (5)C6—C71.396 (6)
N2—C91.369 (6)C9—C101.364 (7)
N2—H20.880 (10)C9—H90.9300
N3—C111.330 (5)C10—H100.9300
N3—C101.373 (6)C11—C121.449 (6)
N3—H30.879 (10)C13—C141.346 (6)
N4—C121.352 (5)C13—H130.9300
N4—C131.373 (6)C14—H140.9300
N4—H40.880 (10)
C6—N1—H11120 (4)C6—C5—Br2118.5 (3)
C6—N1—H12118 (4)N1—C6—C7121.3 (4)
H11—N1—H12119 (6)N1—C6—C5122.5 (4)
C11—N2—C9108.4 (4)C7—C6—C5116.1 (4)
C11—N2—H2129 (4)C2—C7—C6123.0 (4)
C9—N2—H2122 (4)C2—C7—Br3118.6 (3)
C11—N3—C10108.3 (4)C6—C7—Br3118.4 (3)
C11—N3—H3127 (4)O4—C8—O3127.7 (4)
C10—N3—H3124 (4)O4—C8—C4114.7 (4)
C12—N4—C13107.4 (4)O3—C8—C4117.7 (4)
C12—N4—H4132 (4)C10—C9—N2107.2 (4)
C13—N4—H4117 (4)C10—C9—H9126.4
C12—N5—C14108.8 (3)N2—C9—H9126.4
C12—N5—H5124 (3)C9—C10—N3106.9 (4)
C14—N5—H5127 (3)C9—C10—H10126.6
O2—C1—O1126.7 (4)N3—C10—H10126.6
O2—C1—C2117.9 (4)N2—C11—N3109.2 (4)
O1—C1—C2115.4 (4)N2—C11—C12125.3 (4)
C7—C2—C3118.2 (4)N3—C11—C12125.5 (4)
C7—C2—C1119.9 (4)N5—C12—N4108.7 (3)
C3—C2—C1121.8 (4)N5—C12—C11126.1 (4)
C2—C3—C4121.7 (4)N4—C12—C11125.2 (4)
C2—C3—Br1119.4 (3)C14—C13—N4108.2 (4)
C4—C3—Br1118.9 (3)C14—C13—H13125.9
C5—C4—C3117.6 (4)N4—C13—H13125.9
C5—C4—C8121.0 (3)C13—C14—N5106.9 (4)
C3—C4—C8121.3 (4)C13—C14—H14126.5
C4—C5—C6123.2 (4)N5—C14—H14126.5
C4—C5—Br2118.3 (3)
O2—C1—C2—C796.8 (5)C5—C6—C7—C24.4 (6)
O1—C1—C2—C783.9 (5)N1—C6—C7—Br31.2 (6)
O2—C1—C2—C386.3 (5)C5—C6—C7—Br3176.5 (3)
O1—C1—C2—C393.0 (5)C5—C4—C8—O485.3 (5)
C7—C2—C3—C41.5 (6)C3—C4—C8—O493.6 (5)
C1—C2—C3—C4175.4 (4)C5—C4—C8—O393.5 (5)
C7—C2—C3—Br1179.4 (3)C3—C4—C8—O387.6 (5)
C1—C2—C3—Br13.7 (5)C11—N2—C9—C100.4 (6)
C2—C3—C4—C52.0 (6)N2—C9—C10—N30.0 (7)
Br1—C3—C4—C5177.1 (3)C11—N3—C10—C90.4 (6)
C2—C3—C4—C8176.9 (4)C9—N2—C11—N30.7 (5)
Br1—C3—C4—C84.1 (5)C9—N2—C11—C12179.9 (4)
C3—C4—C5—C62.5 (6)C10—N3—C11—N20.7 (5)
C8—C4—C5—C6176.4 (4)C10—N3—C11—C12179.9 (4)
C3—C4—C5—Br2175.5 (3)C14—N5—C12—N40.2 (5)
C8—C4—C5—Br25.6 (6)C14—N5—C12—C11179.4 (4)
C4—C5—C6—N1178.2 (5)C13—N4—C12—N50.0 (5)
Br2—C5—C6—N13.8 (6)C13—N4—C12—C11179.7 (4)
C4—C5—C6—C70.6 (7)N2—C11—C12—N52.3 (7)
Br2—C5—C6—C7178.6 (3)N3—C11—C12—N5178.4 (4)
C3—C2—C7—C64.9 (6)N2—C11—C12—N4177.3 (4)
C1—C2—C7—C6172.0 (4)N3—C11—C12—N42.0 (7)
C3—C2—C7—Br3176.0 (3)C12—N4—C13—C140.2 (5)
C1—C2—C7—Br37.0 (5)N4—C13—C14—N50.4 (5)
N1—C6—C7—C2177.9 (4)C12—N5—C14—C130.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.88 (1)1.74 (2)2.608 (4)168 (6)
N3—H3···O3i0.88 (1)1.78 (2)2.624 (5)160 (5)
N4—H4···O4i0.88 (1)1.74 (1)2.614 (5)175 (7)
N5—H5···O20.88 (1)1.79 (2)2.636 (4)160 (4)
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H8N42+·C8H2Br3NO42
Mr552.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0525 (10), 9.2043 (10), 11.5252 (12)
α, β, γ (°)90.262 (1), 108.332 (1), 93.136 (1)
V3)909.96 (17)
Z2
Radiation typeMo Kα
µ (mm1)6.68
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.203, 0.434
No. of measured, independent and
observed [I > 2σ(I)] reflections
8042, 4104, 3129
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.120, 1.12
No. of reflections4104
No. of parameters259
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.88 (1)1.74 (2)2.608 (4)168 (6)
N3—H3···O3i0.88 (1)1.78 (2)2.624 (5)160 (5)
N4—H4···O4i0.88 (1)1.74 (1)2.614 (5)175 (7)
N5—H5···O20.88 (1)1.79 (2)2.636 (4)160 (4)
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237–o239.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-P. & Yang, P. (2007). Chin. J. Chem. 25, 1715–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C.-S., Ding, L.-L., Zhang, H., Cao, M.-N. & Meng, X.-G. (2009). Acta Cryst. C65, o51–o53.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds