metal-organic compounds
catena-Poly[[diaquacalcium(II)]-bis(μ-quinoline-3-carboxylato)]
aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com
In the title complex, [Ca(C10H6NO2)2(H2O)2]n, the CaII ion is eight-coordinated by six carboxylate O atoms from four separate quinoline-3-carboxylate ligands, two of which are bidentate chelate and two bridging, and two water molecules in a distorted square-antiprismatic geometry. The bridging groups form a polymeric chain extending along the c axis, the chains being connected by coordinated-water O—H⋯N and O—H⋯Ocarboxylate hydrogen bonds into a three-dimensional framework structure.
Related literature
For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxylate ligand, see: Hu et al. (2007). For related structures, see: Martell & Smith (1974); Haendler (1986, 1996); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002); Odoko et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810039401/zs2067sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039401/zs2067Isup2.hkl
A mixture of CaCl2 (0.02 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.
Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 Å and N—H = 0.86 Å and Uiso(H) = 1.2 or 1.5Ueq(C, N).
Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with MnII (Haendler, 1996; Okabe & Koizumi, 1997), CuII (Haendler, 1986), VIV (Okabe & Muranishi, 2002). FeII and CoII (Okabe & Makino, 1998, 1999), and NiII (Odoko et al., 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with ZnII (Hu et al.,2007). In this paper, we report the synthesis and structure of a new CaII complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl2 under hydrothermal condition, the title compound [Ca(C20H12N2O4)(H2O)2]n (I).
In the title complex molecule the CaII atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted square-antiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate CaII centres forming a one-dimensional chain
extended along c (Fig.2). The chains are inter-connected by coordinated-water O—H···N and O—H···Ocarboxylate hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxylate ligand, see: Hu et al. (2007). For related structures, see: Martell & Smith (1974); Haendler (1986), 1996); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002); Odoko et al. (2001).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ca(C10H6NO2)2(H2O)2] | F(000) = 872 |
Mr = 420.43 | Dx = 1.470 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3600 reflections |
a = 16.0115 (16) Å | θ = 1.4–25.0° |
b = 15.3636 (16) Å | µ = 0.37 mm−1 |
c = 7.7962 (8) Å | T = 296 K |
β = 97.928 (1)° | Block, colorless |
V = 1899.5 (3) Å3 | 0.30 × 0.26 × 0.25 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3411 independent reflections |
Radiation source: fine-focus sealed tube | 2433 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scan | θmax = 25.2°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −19→16 |
Tmin = 0.897, Tmax = 0.913 | k = −18→18 |
9735 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0344P)2 + 0.6204P] where P = (Fo2 + 2Fc2)/3 |
3411 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.25 e Å−3 |
6 restraints | Δρmin = −0.26 e Å−3 |
[Ca(C10H6NO2)2(H2O)2] | V = 1899.5 (3) Å3 |
Mr = 420.43 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.0115 (16) Å | µ = 0.37 mm−1 |
b = 15.3636 (16) Å | T = 296 K |
c = 7.7962 (8) Å | 0.30 × 0.26 × 0.25 mm |
β = 97.928 (1)° |
Bruker APEXII area-detector diffractometer | 3411 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2433 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.913 | Rint = 0.032 |
9735 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 6 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.25 e Å−3 |
3411 reflections | Δρmin = −0.26 e Å−3 |
262 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.24944 (3) | 0.78080 (3) | 0.25589 (6) | 0.02366 (14) | |
C1 | 0.45779 (14) | 0.63295 (14) | 0.1201 (3) | 0.0284 (5) | |
N2 | 0.58144 (13) | 0.54488 (14) | 0.1998 (3) | 0.0420 (6) | |
C2 | 0.48749 (15) | 0.65988 (16) | −0.0265 (3) | 0.0349 (6) | |
H2 | 0.4562 | 0.6989 | −0.1008 | 0.042* | |
C10 | 0.50824 (16) | 0.57576 (17) | 0.2313 (3) | 0.0394 (6) | |
H10 | 0.4887 | 0.5587 | 0.3331 | 0.047* | |
C11 | 0.37390 (15) | 0.66290 (14) | 0.1614 (3) | 0.0278 (5) | |
C8 | 0.61064 (15) | 0.57047 (16) | 0.0508 (3) | 0.0360 (6) | |
C3 | 0.56531 (16) | 0.62891 (17) | −0.0660 (3) | 0.0374 (6) | |
C7 | 0.68710 (17) | 0.53586 (18) | 0.0112 (4) | 0.0471 (7) | |
H7 | 0.7182 | 0.4980 | 0.0885 | 0.057* | |
C4 | 0.59749 (19) | 0.6509 (2) | −0.2199 (4) | 0.0626 (9) | |
H4 | 0.5687 | 0.6903 | −0.2970 | 0.075* | |
C6 | 0.71558 (19) | 0.5574 (2) | −0.1385 (4) | 0.0634 (9) | |
H6 | 0.7659 | 0.5337 | −0.1638 | 0.076* | |
C5 | 0.6704 (2) | 0.6145 (3) | −0.2557 (5) | 0.0743 (11) | |
H5 | 0.6904 | 0.6279 | −0.3590 | 0.089* | |
N1 | 0.00972 (12) | 0.44091 (13) | 0.2997 (3) | 0.0352 (5) | |
C22 | 0.15016 (13) | 0.63803 (14) | 0.3447 (3) | 0.0244 (5) | |
C12 | 0.11785 (14) | 0.54892 (15) | 0.3760 (3) | 0.0272 (5) | |
C21 | 0.04213 (15) | 0.51849 (15) | 0.2802 (3) | 0.0323 (6) | |
H21 | 0.0134 | 0.5556 | 0.1982 | 0.039* | |
C13 | 0.16177 (15) | 0.49416 (16) | 0.4924 (3) | 0.0319 (6) | |
H13 | 0.2113 | 0.5129 | 0.5586 | 0.038* | |
C18 | 0.02177 (17) | 0.30129 (17) | 0.4363 (4) | 0.0423 (7) | |
H18 | −0.0301 | 0.2856 | 0.3752 | 0.051* | |
C14 | 0.13216 (16) | 0.40902 (15) | 0.5126 (3) | 0.0327 (6) | |
C19 | 0.05460 (16) | 0.38521 (15) | 0.4152 (3) | 0.0329 (6) | |
C17 | 0.0653 (2) | 0.24367 (19) | 0.5447 (4) | 0.0543 (8) | |
H17 | 0.0433 | 0.1884 | 0.5569 | 0.065* | |
C15 | 0.17626 (18) | 0.34683 (18) | 0.6242 (4) | 0.0470 (7) | |
H15 | 0.2280 | 0.3612 | 0.6876 | 0.056* | |
C16 | 0.1433 (2) | 0.26606 (19) | 0.6392 (4) | 0.0579 (9) | |
H16 | 0.1727 | 0.2254 | 0.7126 | 0.069* | |
O3 | 0.18843 (9) | 0.67991 (10) | 0.47024 (19) | 0.0292 (4) | |
O4 | 0.14006 (10) | 0.66737 (10) | 0.1932 (2) | 0.0335 (4) | |
O1 | 0.36040 (11) | 0.66234 (11) | 0.3145 (2) | 0.0405 (4) | |
O2 | 0.32086 (9) | 0.69201 (10) | 0.0404 (2) | 0.0312 (4) | |
O1W | 0.15496 (10) | 0.88329 (10) | 0.3557 (2) | 0.0360 (4) | |
H1W | 0.1487 | 0.8714 | 0.4588 | 0.054* | |
H2W | 0.1156 | 0.9051 | 0.3282 | 0.054* | |
O2W | 0.34752 (10) | 0.88362 (11) | 0.1592 (2) | 0.0414 (5) | |
H3W | 0.3577 | 0.8785 | 0.0459 | 0.062* | |
H4W | 0.3751 | 0.9313 | 0.1964 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0245 (3) | 0.0257 (2) | 0.0204 (3) | −0.0003 (2) | 0.00171 (18) | 0.00021 (19) |
C1 | 0.0283 (13) | 0.0289 (13) | 0.0266 (13) | 0.0030 (10) | −0.0005 (10) | −0.0037 (10) |
N2 | 0.0387 (13) | 0.0447 (13) | 0.0421 (14) | 0.0147 (11) | 0.0040 (10) | 0.0051 (11) |
C2 | 0.0309 (14) | 0.0390 (14) | 0.0332 (15) | 0.0070 (11) | −0.0014 (11) | 0.0048 (12) |
C10 | 0.0383 (16) | 0.0442 (16) | 0.0357 (15) | 0.0123 (12) | 0.0049 (12) | 0.0048 (12) |
C11 | 0.0328 (14) | 0.0238 (12) | 0.0261 (14) | 0.0012 (10) | 0.0009 (11) | −0.0020 (10) |
C8 | 0.0306 (15) | 0.0365 (14) | 0.0398 (16) | 0.0041 (11) | 0.0015 (12) | −0.0056 (12) |
C3 | 0.0332 (15) | 0.0424 (15) | 0.0370 (15) | 0.0036 (12) | 0.0057 (12) | 0.0014 (12) |
C7 | 0.0353 (16) | 0.0483 (17) | 0.058 (2) | 0.0118 (13) | 0.0067 (14) | −0.0031 (14) |
C4 | 0.051 (2) | 0.086 (2) | 0.056 (2) | 0.0174 (17) | 0.0216 (16) | 0.0237 (18) |
C6 | 0.0412 (19) | 0.077 (2) | 0.076 (2) | 0.0149 (17) | 0.0228 (17) | −0.006 (2) |
C5 | 0.057 (2) | 0.111 (3) | 0.062 (2) | 0.017 (2) | 0.0312 (18) | 0.017 (2) |
N1 | 0.0315 (12) | 0.0328 (12) | 0.0405 (13) | −0.0059 (9) | 0.0020 (10) | −0.0042 (10) |
C22 | 0.0215 (12) | 0.0274 (12) | 0.0248 (13) | −0.0006 (10) | 0.0051 (10) | −0.0045 (10) |
C12 | 0.0283 (13) | 0.0287 (12) | 0.0250 (13) | −0.0030 (10) | 0.0052 (10) | −0.0035 (10) |
C21 | 0.0309 (14) | 0.0326 (14) | 0.0326 (14) | −0.0038 (11) | 0.0016 (11) | −0.0008 (11) |
C13 | 0.0314 (14) | 0.0352 (14) | 0.0291 (14) | −0.0056 (11) | 0.0040 (11) | −0.0029 (11) |
C18 | 0.0436 (17) | 0.0392 (15) | 0.0453 (18) | −0.0111 (13) | 0.0105 (13) | −0.0021 (13) |
C14 | 0.0363 (15) | 0.0330 (14) | 0.0293 (14) | −0.0026 (11) | 0.0061 (11) | 0.0002 (11) |
C19 | 0.0351 (15) | 0.0317 (14) | 0.0336 (15) | −0.0060 (11) | 0.0107 (11) | −0.0065 (11) |
C17 | 0.072 (2) | 0.0379 (16) | 0.055 (2) | −0.0167 (15) | 0.0147 (17) | 0.0054 (14) |
C15 | 0.0496 (18) | 0.0432 (16) | 0.0461 (18) | −0.0063 (14) | −0.0005 (14) | 0.0062 (13) |
C16 | 0.073 (2) | 0.0407 (17) | 0.058 (2) | −0.0011 (16) | 0.0035 (17) | 0.0175 (15) |
O3 | 0.0333 (9) | 0.0287 (9) | 0.0246 (9) | −0.0058 (7) | 0.0010 (7) | −0.0030 (7) |
O4 | 0.0404 (10) | 0.0370 (10) | 0.0225 (9) | −0.0079 (8) | 0.0019 (7) | 0.0020 (7) |
O1 | 0.0460 (11) | 0.0530 (11) | 0.0231 (10) | 0.0156 (9) | 0.0070 (8) | 0.0015 (8) |
O2 | 0.0275 (9) | 0.0386 (10) | 0.0263 (10) | 0.0074 (7) | 0.0000 (7) | 0.0015 (7) |
O1W | 0.0361 (10) | 0.0431 (10) | 0.0285 (10) | 0.0110 (8) | 0.0035 (8) | 0.0025 (8) |
O2W | 0.0474 (12) | 0.0481 (11) | 0.0292 (10) | −0.0211 (9) | 0.0070 (8) | −0.0055 (8) |
Ca1—O3i | 2.3829 (16) | C5—H5 | 0.9300 |
Ca1—O1W | 2.3871 (16) | N1—C21 | 1.317 (3) |
Ca1—O2ii | 2.3877 (16) | N1—C19 | 1.371 (3) |
Ca1—O2W | 2.4202 (17) | C22—O4 | 1.254 (3) |
Ca1—O4 | 2.4712 (16) | C22—O3 | 1.258 (3) |
Ca1—O1 | 2.5404 (17) | C22—C12 | 1.495 (3) |
Ca1—O2 | 2.5538 (16) | C12—C13 | 1.360 (3) |
Ca1—O3 | 2.5689 (16) | C12—C21 | 1.413 (3) |
Ca1—H1W | 2.7828 | C21—H21 | 0.9300 |
C1—C2 | 1.362 (3) | C13—C14 | 1.407 (3) |
C1—C10 | 1.408 (3) | C13—H13 | 0.9300 |
C1—C11 | 1.496 (3) | C18—C17 | 1.350 (4) |
N2—C10 | 1.318 (3) | C18—C19 | 1.410 (3) |
N2—C8 | 1.368 (3) | C18—H18 | 0.9300 |
C2—C3 | 1.407 (3) | C14—C19 | 1.412 (3) |
C2—H2 | 0.9300 | C14—C15 | 1.414 (4) |
C10—H10 | 0.9300 | C17—C16 | 1.402 (4) |
C11—O1 | 1.242 (3) | C17—H17 | 0.9300 |
C11—O2 | 1.261 (3) | C15—C16 | 1.360 (4) |
C8—C3 | 1.407 (3) | C15—H15 | 0.9300 |
C8—C7 | 1.408 (3) | C16—H16 | 0.9300 |
C3—C4 | 1.410 (4) | O3—Ca1ii | 2.3829 (16) |
C7—C6 | 1.352 (4) | O2—Ca1i | 2.3877 (16) |
C7—H7 | 0.9300 | O1W—H1W | 0.8432 |
C4—C5 | 1.357 (4) | O1W—H2W | 0.7195 |
C4—H4 | 0.9300 | O2W—H3W | 0.9231 |
C6—C5 | 1.395 (4) | O2W—H4W | 0.8836 |
C6—H6 | 0.9300 | ||
O3i—Ca1—O1W | 86.63 (5) | O1—C11—C1 | 119.0 (2) |
O3i—Ca1—O2ii | 154.94 (6) | O2—C11—C1 | 118.7 (2) |
O1W—Ca1—O2ii | 79.95 (6) | N2—C8—C3 | 121.8 (2) |
O3i—Ca1—O2W | 75.13 (6) | N2—C8—C7 | 119.1 (2) |
O1W—Ca1—O2W | 97.97 (6) | C3—C8—C7 | 119.1 (3) |
O2ii—Ca1—O2W | 85.81 (5) | C2—C3—C8 | 117.8 (2) |
O3i—Ca1—O4 | 78.80 (5) | C2—C3—C4 | 122.9 (2) |
O1W—Ca1—O4 | 93.79 (6) | C8—C3—C4 | 119.1 (2) |
O2ii—Ca1—O4 | 122.87 (5) | C6—C7—C8 | 120.3 (3) |
O2W—Ca1—O4 | 150.61 (6) | C6—C7—H7 | 119.9 |
O3i—Ca1—O1 | 122.42 (5) | C8—C7—H7 | 119.9 |
O1W—Ca1—O1 | 150.78 (6) | C5—C4—C3 | 120.1 (3) |
O2ii—Ca1—O1 | 74.02 (6) | C5—C4—H4 | 119.9 |
O2W—Ca1—O1 | 93.21 (6) | C3—C4—H4 | 119.9 |
O4—Ca1—O1 | 89.39 (6) | C7—C6—C5 | 120.9 (3) |
O3i—Ca1—O2 | 71.54 (5) | C7—C6—H6 | 119.6 |
O1W—Ca1—O2 | 158.17 (6) | C5—C6—H6 | 119.6 |
O2ii—Ca1—O2 | 120.27 (6) | C4—C5—C6 | 120.5 (3) |
O2W—Ca1—O2 | 76.99 (6) | C4—C5—H5 | 119.8 |
O4—Ca1—O2 | 82.10 (5) | C6—C5—H5 | 119.8 |
O1—Ca1—O2 | 50.97 (5) | C21—N1—C19 | 117.5 (2) |
O3i—Ca1—O3 | 128.11 (6) | O4—C22—O3 | 122.3 (2) |
O1W—Ca1—O3 | 82.58 (5) | O4—C22—C12 | 118.7 (2) |
O2ii—Ca1—O3 | 71.20 (5) | O3—C22—C12 | 119.0 (2) |
O2W—Ca1—O3 | 156.61 (6) | C13—C12—C21 | 118.4 (2) |
O4—Ca1—O3 | 51.72 (5) | C13—C12—C22 | 121.1 (2) |
O1—Ca1—O3 | 76.70 (5) | C21—C12—C22 | 120.5 (2) |
O2—Ca1—O3 | 110.53 (5) | N1—C21—C12 | 124.2 (2) |
O3i—Ca1—Ca1i | 37.49 (4) | N1—C21—H21 | 117.9 |
O1W—Ca1—Ca1i | 123.88 (4) | C12—C21—H21 | 117.9 |
O2ii—Ca1—Ca1i | 151.60 (4) | C12—C13—C14 | 119.9 (2) |
O2W—Ca1—Ca1i | 76.36 (4) | C12—C13—H13 | 120.1 |
O4—Ca1—Ca1i | 74.71 (4) | C14—C13—H13 | 120.1 |
O1—Ca1—Ca1i | 84.96 (4) | C17—C18—C19 | 120.3 (3) |
O2—Ca1—Ca1i | 34.37 (4) | C17—C18—H18 | 119.9 |
O3—Ca1—Ca1i | 122.74 (4) | C19—C18—H18 | 119.9 |
O3i—Ca1—Ca1ii | 155.93 (4) | C13—C14—C19 | 117.7 (2) |
O1W—Ca1—Ca1ii | 75.75 (4) | C13—C14—C15 | 123.3 (2) |
O2ii—Ca1—Ca1ii | 37.14 (4) | C19—C14—C15 | 118.9 (2) |
O2W—Ca1—Ca1ii | 122.94 (4) | N1—C19—C18 | 118.5 (2) |
O4—Ca1—Ca1ii | 86.04 (4) | N1—C19—C14 | 122.3 (2) |
O1—Ca1—Ca1ii | 75.51 (4) | C18—C19—C14 | 119.2 (2) |
O2—Ca1—Ca1ii | 124.99 (4) | C18—C17—C16 | 120.9 (3) |
O3—Ca1—Ca1ii | 34.37 (3) | C18—C17—H17 | 119.5 |
Ca1i—Ca1—Ca1ii | 152.71 (2) | C16—C17—H17 | 119.5 |
O3i—Ca1—H1W | 102.1 | C16—C15—C14 | 120.2 (3) |
O1W—Ca1—H1W | 16.6 | C16—C15—H15 | 119.9 |
O2ii—Ca1—H1W | 68.0 | C14—C15—H15 | 119.9 |
O2W—Ca1—H1W | 107.6 | C15—C16—C17 | 120.5 (3) |
O4—Ca1—H1W | 90.8 | C15—C16—H16 | 119.8 |
O1—Ca1—H1W | 134.6 | C17—C16—H16 | 119.8 |
O2—Ca1—H1W | 171.3 | C22—O3—Ca1ii | 161.76 (15) |
O3—Ca1—H1W | 68.3 | C22—O3—Ca1 | 89.47 (13) |
Ca1i—Ca1—H1W | 138.4 | Ca1ii—O3—Ca1 | 108.15 (6) |
Ca1ii—Ca1—H1W | 59.2 | C22—O4—Ca1 | 94.08 (13) |
C2—C1—C10 | 118.0 (2) | C11—O1—Ca1 | 91.84 (14) |
C2—C1—C11 | 121.0 (2) | C11—O2—Ca1i | 160.71 (15) |
C10—C1—C11 | 121.0 (2) | C11—O2—Ca1 | 90.76 (13) |
C10—N2—C8 | 118.1 (2) | Ca1i—O2—Ca1 | 108.49 (6) |
C1—C2—C3 | 120.2 (2) | Ca1—O1W—H1W | 109.4 |
C1—C2—H2 | 119.9 | Ca1—O1W—H2W | 141.1 |
C3—C2—H2 | 119.9 | H1W—O1W—H2W | 99.8 |
N2—C10—C1 | 124.0 (2) | Ca1—O2W—H3W | 116.8 |
N2—C10—H10 | 118.0 | Ca1—O2W—H4W | 139.0 |
C1—C10—H10 | 118.0 | H3W—O2W—H4W | 103.8 |
O1—C11—O2 | 122.2 (2) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H4W···N2iii | 0.88 | 2.01 | 2.880 (3) | 170 |
O2W—H3W···O1i | 0.92 | 1.92 | 2.813 (2) | 163 |
O1W—H2W···N1iv | 0.72 | 2.18 | 2.885 (2) | 165 |
O1W—H1W···O4ii | 0.84 | 1.94 | 2.785 (2) | 174 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ca(C10H6NO2)2(H2O)2] |
Mr | 420.43 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 16.0115 (16), 15.3636 (16), 7.7962 (8) |
β (°) | 97.928 (1) |
V (Å3) | 1899.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.30 × 0.26 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.897, 0.913 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9735, 3411, 2433 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.090, 1.02 |
No. of reflections | 3411 |
No. of parameters | 262 |
No. of restraints | 6 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.26 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H4W···N2i | 0.88 | 2.01 | 2.880 (3) | 169.5 |
O2W—H3W···O1ii | 0.92 | 1.92 | 2.813 (2) | 163.4 |
O1W—H2W···N1iii | 0.72 | 2.18 | 2.885 (2) | 164.7 |
O1W—H1W···O4iv | 0.84 | 1.94 | 2.785 (2) | 174.1 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, y+1/2, −z+1/2; (iv) x, −y+3/2, z+1/2. |
Acknowledgements
The work was supported by the Non-profit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No·A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haendler, H. M. (1986). Acta Cryst. C42, 147–149. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Haendler, H. M. (1996). Acta Cryst. C52, 801–803. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press. Google Scholar
Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with MnII (Haendler, 1996; Okabe & Koizumi, 1997), CuII (Haendler, 1986), VIV (Okabe & Muranishi, 2002). FeII and CoII (Okabe & Makino, 1998, 1999), and NiII (Odoko et al., 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with ZnII (Hu et al.,2007). In this paper, we report the synthesis and structure of a new CaII complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl2 under hydrothermal condition, the title compound [Ca(C20H12N2O4)(H2O)2]n (I).
In the title complex molecule the CaII atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted square-antiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate CaII centres forming a one-dimensional chain substructure extended along c (Fig.2). The chains are inter-connected by coordinated-water O—H···N and O—H···Ocarboxylate hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).