metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridozinc(II)]-μ-1,4-bis­­(1H-imidazol-1-yl)benzene]

aTraditional Chinese Medicine College of Ningxia Medical University, Yinchuan, Ningxia Province 750004, People's Republic of China, bPharmacy College of Ningxia Medical University, Yinchuan, Ningxia, Province 750004, People's Republic of China, and cThe Second Hospital of Jilin University, Changchun, Jilin Province 130041, People's Republic of China
*Correspondence e-mail: nanyiailing@yeah.net

(Received 28 October 2010; accepted 30 October 2010; online 6 November 2010)

In the title one-dimensional coordination polymer, [ZnCl2(C12H10N4)]n, the ZnII atom (site symmetry 2) is coordinated by two chloride ions and two 1,4-bis­(imidazol-1-yl)benzene ligands, generating a distorted tetra­hedral ZnCl2N2 geometry for the metal ion. The bridging ligand, which is completed by crystallographic inversion symmetry, links the ZnII atoms into zigzag chains propagating in [101]. Within the ligand, the dihedral angle between the central benzene ring and terminal imidazole ring is 27.82 (13)°.

Related literature

For background to coordination polymers containing imidazole-derived ligands, see: Jin et al. (2006[Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039-5041.]); Li et al. (2010[Li, Z. X., Hu, T. L., Ma, H., Zeng, Y. F., Li, C. J., Tong, M. L. & Bu, X. H. (2010). Cryst. Growth Des. 10, 1138-1144.]); Lin et al. (2008[Lin, J. D., Cheng, J. W. & Du, S. W. (2008). Cryst. Growth Des. 8, 3345-3353.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C12H10N4)]

  • Mr = 346.51

  • Monoclinic, C 2/c

  • a = 13.196 (3) Å

  • b = 6.3780 (13) Å

  • c = 16.431 (3) Å

  • β = 93.75 (3)°

  • V = 1379.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.589, Tmax = 0.650

  • 5725 measured reflections

  • 1209 independent reflections

  • 1136 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.058

  • S = 1.18

  • 1209 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.0248 (19)
Zn1—Cl1 2.2643 (8)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole derivates has been well used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied (Jin et al., 2006; Lin et al., 2008). However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2010).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the Zn(II) ion is surrounded by two imidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig 1). Notably, as shown in Fig 2, the four-coordinated Zn(II) center is connected by the linear ligand L into an infinite one-dimensional zigzag chain.

Related literature top

For background to coordination polymers containing imidazole-derived ligands, see: Jin et al. (2006); Li et al. (2010); Lin et al. (2008).

Experimental top

A mixture of C2H5OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of ZnCl2 (0.02 mmol) in H2O (6 ml). Then a solution of 1,4-Bis(imidazol-1-yl)phenyl (L, 0.06 mmol) in C2H5OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, colorless blocks of (I) appeared at the boundary. Yield: ~30% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq.

Structure description top

Imidazole derivates has been well used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied (Jin et al., 2006; Lin et al., 2008). However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2010).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the Zn(II) ion is surrounded by two imidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig 1). Notably, as shown in Fig 2, the four-coordinated Zn(II) center is connected by the linear ligand L into an infinite one-dimensional zigzag chain.

For background to coordination polymers containing imidazole-derived ligands, see: Jin et al. (2006); Li et al. (2010); Lin et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[dichloridozinc(II)]-µ-1,4-bis(1H- imidazol-1-yl)benzene] top
Crystal data top
[ZnCl2(C12H10N4)]F(000) = 696
Mr = 346.51Dx = 1.668 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6568 reflections
a = 13.196 (3) Åθ = 6.2–54.8°
b = 6.3780 (13) ŵ = 2.16 mm1
c = 16.431 (3) ÅT = 293 K
β = 93.75 (3)°Block, colorless
V = 1379.9 (5) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
1209 independent reflections
Radiation source: fine-focus sealed tube1136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 77
Tmin = 0.589, Tmax = 0.650l = 1919
5725 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.022P)2 + 1.5504P]
where P = (Fo2 + 2Fc2)/3
1209 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[ZnCl2(C12H10N4)]V = 1379.9 (5) Å3
Mr = 346.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.196 (3) ŵ = 2.16 mm1
b = 6.3780 (13) ÅT = 293 K
c = 16.431 (3) Å0.25 × 0.22 × 0.20 mm
β = 93.75 (3)°
Data collection top
Rigaku Mercury
diffractometer
1209 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1136 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.650Rint = 0.028
5725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.18Δρmax = 0.26 e Å3
1209 reflectionsΔρmin = 0.33 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.47523 (6)0.25000.02629 (14)
Cl10.62428 (6)0.67534 (12)0.20142 (4)0.0488 (2)
N10.45231 (15)0.2933 (3)0.15401 (11)0.0288 (5)
N20.37084 (14)0.0812 (3)0.06614 (11)0.0275 (5)
C10.38454 (18)0.1419 (4)0.14535 (14)0.0296 (6)
H1A0.35060.08420.18780.036*
C20.4850 (2)0.3299 (4)0.07706 (15)0.0363 (6)
H2A0.53410.42740.06480.044*
C30.4350 (2)0.2028 (4)0.02255 (15)0.0362 (6)
H3A0.44220.19780.03330.043*
C40.30781 (18)0.0863 (4)0.03321 (14)0.0269 (5)
C50.2728 (2)0.0807 (4)0.04871 (15)0.0350 (6)
H5A0.28820.03300.08110.042*
C60.28494 (19)0.2555 (4)0.08161 (15)0.0334 (6)
H6A0.30840.25880.13620.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0337 (2)0.0263 (2)0.0182 (2)0.0000.00328 (15)0.000
Cl10.0571 (5)0.0594 (5)0.0295 (4)0.0279 (4)0.0008 (3)0.0005 (3)
N10.0349 (12)0.0296 (11)0.0214 (11)0.0060 (9)0.0017 (8)0.0011 (8)
N20.0336 (11)0.0267 (11)0.0216 (10)0.0062 (9)0.0020 (8)0.0024 (8)
C10.0340 (13)0.0334 (14)0.0214 (13)0.0070 (11)0.0014 (10)0.0014 (10)
C20.0478 (16)0.0338 (15)0.0276 (14)0.0150 (12)0.0031 (11)0.0001 (11)
C30.0529 (17)0.0344 (14)0.0213 (13)0.0146 (13)0.0032 (11)0.0013 (10)
C40.0299 (13)0.0270 (12)0.0235 (12)0.0032 (10)0.0016 (10)0.0034 (10)
C50.0477 (16)0.0306 (14)0.0258 (13)0.0086 (12)0.0033 (11)0.0055 (10)
C60.0431 (15)0.0351 (14)0.0205 (12)0.0067 (12)0.0080 (10)0.0004 (10)
Geometric parameters (Å, º) top
Zn1—N12.0248 (19)C2—C31.348 (3)
Zn1—N1i2.0248 (19)C2—H2A0.9300
Zn1—Cl1i2.2643 (8)C3—H3A0.9300
Zn1—Cl12.2643 (8)C4—C61.385 (3)
N1—C11.317 (3)C4—C51.395 (3)
N1—C21.382 (3)C5—C6ii1.382 (3)
N2—C11.359 (3)C5—H5A0.9300
N2—C31.382 (3)C6—C5ii1.382 (3)
N2—C41.438 (3)C6—H6A0.9300
C1—H1A0.9300
N1—Zn1—N1i110.08 (11)C3—C2—N1109.7 (2)
N1—Zn1—Cl1i113.71 (6)C3—C2—H2A125.1
N1i—Zn1—Cl1i104.11 (6)N1—C2—H2A125.1
N1—Zn1—Cl1104.11 (6)C2—C3—N2106.4 (2)
N1i—Zn1—Cl1113.71 (6)C2—C3—H3A126.8
Cl1i—Zn1—Cl1111.38 (5)N2—C3—H3A126.8
C1—N1—C2105.98 (19)C6—C4—C5120.2 (2)
C1—N1—Zn1132.71 (16)C6—C4—N2120.3 (2)
C2—N1—Zn1121.06 (16)C5—C4—N2119.4 (2)
C1—N2—C3106.79 (19)C6ii—C5—C4119.8 (2)
C1—N2—C4127.6 (2)C6ii—C5—H5A120.1
C3—N2—C4125.50 (19)C4—C5—H5A120.1
N1—C1—N2111.1 (2)C5ii—C6—C4120.0 (2)
N1—C1—H1A124.5C5ii—C6—H6A120.0
N2—C1—H1A124.5C4—C6—H6A120.0
N1i—Zn1—N1—C155.1 (2)N1—C2—C3—N21.0 (3)
Cl1i—Zn1—N1—C161.2 (2)C1—N2—C3—C20.5 (3)
Cl1—Zn1—N1—C1177.4 (2)C4—N2—C3—C2175.6 (2)
N1i—Zn1—N1—C2131.4 (2)C1—N2—C4—C625.8 (4)
Cl1i—Zn1—N1—C2112.23 (19)C3—N2—C4—C6149.4 (3)
Cl1—Zn1—N1—C29.2 (2)C1—N2—C4—C5156.4 (2)
C2—N1—C1—N20.9 (3)C3—N2—C4—C528.4 (4)
Zn1—N1—C1—N2173.23 (16)C6—C4—C5—C6ii0.0 (4)
C3—N2—C1—N10.3 (3)N2—C4—C5—C6ii177.8 (2)
C4—N2—C1—N1176.3 (2)C5—C4—C6—C5ii0.0 (4)
C1—N1—C2—C31.2 (3)N2—C4—C6—C5ii177.8 (2)
Zn1—N1—C2—C3173.77 (17)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H10N4)]
Mr346.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.196 (3), 6.3780 (13), 16.431 (3)
β (°) 93.75 (3)
V3)1379.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.589, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
5725, 1209, 1136
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 1.18
No. of reflections1209
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.0248 (19)Zn1—Cl12.2643 (8)
 

Acknowledgements

This project was supported by a scientific research grant of special talents from Ningxia Medical University (XT200806).

References

First citationJin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z. X., Hu, T. L., Ma, H., Zeng, Y. F., Li, C. J., Tong, M. L. & Bu, X. H. (2010). Cryst. Growth Des. 10, 1138–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J. D., Cheng, J. W. & Du, S. W. (2008). Cryst. Growth Des. 8, 3345–3353.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds