organic compounds
4-Methyl-1-(3-pyridylmethylidene)thiosemicarbazide
aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: rongchunli01@126.com
All the non-H atoms of the title compound, C8H10N4S, lie on a crystallographic mirror plane and an intramolecular N—H⋯N hydrogen bond helps to stabilize the molecular conformation. In the crystal, molecules are linked through intermolecular N—H⋯N hydrogen bonds, forming zigzag C(7) chains along the a axis.
Related literature
For background to et al. (2001); Beraldo et al. (2001); Jouad et al. (2002); Swearingen et al. (2002). For bond-length data, see: Allen et al. (1987). For similar structures, see: Selvanayagam et al. (2002); Karakurt et al. (2003); Bernhardt et al. (2003); Sampath et al. (2003).
derived from thiosemicarbazone and its derivatives, see: CasasExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810048853/hb5755sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048853/hb5755Isup2.hkl
The title compound was prepared by the Schiff base condensation of equimolar quantities of 3-formylpyridine (0.107 g, 1 mmol) with 4-methylthiosemicarbazone (0.105 g, 1 mmol) in methanol. The excess methanol was removed by distillation. Colourless blocks were obtained by slow evaporation of an ethanol solution of the product in air.
The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).
Thiosemicarbazone and its derivatives are important materials for the preparation of
(Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). In this paper, the title new Schiff base compound derived from the condensation of 3-formylpyridine with 4-methylthiosemicarbazone is reported.The molecule of the title compound, Fig. 1, possess a crystallographic mirror plane symmetry. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).
In the crystal, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).
For background to
derived from thiosemicarbazone and its derivatives, see: Casas et al. (2001); Beraldo et al. (2001); Jouad et al. (2002); Swearingen et al. (2002). For bond-length data, see: Allen et al. (1987). For similar structures, see: Selvanayagam et al. (2002); Karakurt et al. (2003); Bernhardt et al. (2003); Sampath et al. (2003).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of the title compound, viewed along the b axis. |
C8H10N4S | F(000) = 204 |
Mr = 194.26 | Dx = 1.310 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 669 reflections |
a = 7.276 (3) Å | θ = 2.7–24.5° |
b = 6.581 (2) Å | µ = 0.29 mm−1 |
c = 10.297 (3) Å | T = 298 K |
β = 92.997 (2)° | Block, colourless |
V = 492.4 (3) Å3 | 0.17 × 0.15 × 0.15 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1106 independent reflections |
Radiation source: fine-focus sealed tube | 640 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 26.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.953, Tmax = 0.958 | k = −8→8 |
3208 measured reflections | l = −12→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
1106 reflections | (Δ/σ)max < 0.001 |
84 parameters | Δρmax = 0.14 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
C8H10N4S | V = 492.4 (3) Å3 |
Mr = 194.26 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.276 (3) Å | µ = 0.29 mm−1 |
b = 6.581 (2) Å | T = 298 K |
c = 10.297 (3) Å | 0.17 × 0.15 × 0.15 mm |
β = 92.997 (2)° |
Bruker APEXII CCD diffractometer | 1106 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 640 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.958 | Rint = 0.041 |
3208 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 2 restraints |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.14 e Å−3 |
1106 reflections | Δρmin = −0.20 e Å−3 |
84 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.68926 (12) | 0.2500 | 0.29184 (9) | 0.0835 (4) | |
N1 | −0.2929 (3) | 0.2500 | −0.1051 (2) | 0.0558 (7) | |
N2 | 0.2508 (3) | 0.2500 | 0.0542 (2) | 0.0507 (6) | |
N3 | 0.4324 (3) | 0.2500 | 0.1009 (2) | 0.0566 (7) | |
N4 | 0.3217 (4) | 0.2500 | 0.3028 (3) | 0.0699 (8) | |
C1 | 0.0350 (3) | 0.2500 | −0.1287 (3) | 0.0496 (7) | |
C2 | −0.1201 (3) | 0.2500 | −0.0547 (3) | 0.0510 (8) | |
H2 | −0.1020 | 0.2500 | 0.0354 | 0.061* | |
C3 | −0.3159 (4) | 0.2500 | −0.2351 (3) | 0.0616 (9) | |
H3A | −0.4353 | 0.2500 | −0.2720 | 0.074* | |
C4 | −0.1733 (4) | 0.2500 | −0.3164 (3) | 0.0697 (10) | |
H4A | −0.1954 | 0.2500 | −0.4061 | 0.084* | |
C5 | 0.0049 (4) | 0.2500 | −0.2620 (3) | 0.0673 (10) | |
H5 | 0.1041 | 0.2500 | −0.3154 | 0.081* | |
C6 | 0.2213 (4) | 0.2500 | −0.0687 (3) | 0.0581 (8) | |
H6 | 0.3209 | 0.2500 | −0.1217 | 0.070* | |
C7 | 0.4698 (4) | 0.2500 | 0.2318 (3) | 0.0554 (8) | |
C8 | 0.3272 (5) | 0.2500 | 0.4451 (3) | 0.0994 (13) | |
H8A | 0.3310 | 0.1125 | 0.4762 | 0.149* | 0.50 |
H8B | 0.2193 | 0.3162 | 0.4743 | 0.149* | 0.50 |
H8C | 0.4349 | 0.3213 | 0.4781 | 0.149* | 0.50 |
H3 | 0.519 (3) | 0.2500 | 0.042 (2) | 0.080* | |
H4 | 0.212 (2) | 0.2500 | 0.259 (3) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0681 (6) | 0.1189 (9) | 0.0617 (6) | 0.000 | −0.0150 (4) | 0.000 |
N1 | 0.0392 (13) | 0.0640 (17) | 0.0642 (17) | 0.000 | 0.0028 (12) | 0.000 |
N2 | 0.0365 (12) | 0.0615 (16) | 0.0542 (15) | 0.000 | 0.0019 (11) | 0.000 |
N3 | 0.0416 (13) | 0.0775 (18) | 0.0508 (16) | 0.000 | 0.0024 (11) | 0.000 |
N4 | 0.0738 (18) | 0.085 (2) | 0.0518 (16) | 0.000 | 0.0136 (14) | 0.000 |
C1 | 0.0369 (14) | 0.0618 (19) | 0.0503 (17) | 0.000 | 0.0058 (12) | 0.000 |
C2 | 0.0425 (15) | 0.0593 (19) | 0.0512 (18) | 0.000 | 0.0011 (13) | 0.000 |
C3 | 0.0450 (16) | 0.074 (2) | 0.064 (2) | 0.000 | −0.0062 (15) | 0.000 |
C4 | 0.0587 (19) | 0.102 (3) | 0.0478 (19) | 0.000 | −0.0054 (16) | 0.000 |
C5 | 0.0505 (18) | 0.097 (3) | 0.055 (2) | 0.000 | 0.0091 (15) | 0.000 |
C6 | 0.0389 (15) | 0.078 (2) | 0.0579 (19) | 0.000 | 0.0108 (13) | 0.000 |
C7 | 0.0624 (19) | 0.0541 (19) | 0.0499 (18) | 0.000 | 0.0033 (15) | 0.000 |
C8 | 0.126 (3) | 0.121 (4) | 0.053 (2) | 0.000 | 0.023 (2) | 0.000 |
S1—C7 | 1.682 (3) | C1—C6 | 1.460 (4) |
N1—C2 | 1.335 (3) | C2—H2 | 0.9300 |
N1—C3 | 1.340 (3) | C3—C4 | 1.367 (4) |
N2—C6 | 1.273 (4) | C3—H3A | 0.9300 |
N2—N3 | 1.382 (3) | C4—C5 | 1.385 (4) |
N3—C7 | 1.361 (4) | C4—H4A | 0.9300 |
N3—H3 | 0.899 (10) | C5—H5 | 0.9300 |
N4—C7 | 1.334 (4) | C6—H6 | 0.9300 |
N4—C8 | 1.463 (4) | C8—H8A | 0.9600 |
N4—H4 | 0.898 (10) | C8—H8B | 0.9600 |
C1—C5 | 1.379 (4) | C8—H8C | 0.9600 |
C1—C2 | 1.394 (4) | ||
C2—N1—C3 | 117.0 (2) | C3—C4—H4A | 120.8 |
C6—N2—N3 | 117.1 (2) | C5—C4—H4A | 120.8 |
C7—N3—N2 | 118.9 (2) | C1—C5—C4 | 119.9 (3) |
C7—N3—H3 | 124 (2) | C1—C5—H5 | 120.0 |
N2—N3—H3 | 117 (2) | C4—C5—H5 | 120.0 |
C7—N4—C8 | 124.7 (3) | N2—C6—C1 | 121.7 (3) |
C7—N4—H4 | 117 (2) | N2—C6—H6 | 119.2 |
C8—N4—H4 | 119 (2) | C1—C6—H6 | 119.2 |
C5—C1—C2 | 117.0 (2) | N4—C7—N3 | 114.7 (3) |
C5—C1—C6 | 121.1 (3) | N4—C7—S1 | 125.2 (2) |
C2—C1—C6 | 121.9 (3) | N3—C7—S1 | 120.1 (2) |
N1—C2—C1 | 124.1 (2) | N4—C8—H8A | 109.5 |
N1—C2—H2 | 118.0 | N4—C8—H8B | 109.5 |
C1—C2—H2 | 118.0 | H8A—C8—H8B | 109.5 |
N1—C3—C4 | 123.6 (3) | N4—C8—H8C | 109.5 |
N1—C3—H3A | 118.2 | H8A—C8—H8C | 109.5 |
C4—C3—H3A | 118.2 | H8B—C8—H8C | 109.5 |
C3—C4—C5 | 118.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2 | 0.90 (2) | 2.14 (3) | 2.585 (4) | 109 (2) |
N3—H3···N1i | 0.90 (1) | 2.09 (1) | 2.989 (3) | 176 (3) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H10N4S |
Mr | 194.26 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 298 |
a, b, c (Å) | 7.276 (3), 6.581 (2), 10.297 (3) |
β (°) | 92.997 (2) |
V (Å3) | 492.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.17 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.953, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3208, 1106, 640 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.118, 1.02 |
No. of reflections | 1106 |
No. of parameters | 84 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.20 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2 | 0.90 (2) | 2.14 (3) | 2.585 (4) | 109 (2) |
N3—H3···N1i | 0.899 (10) | 2.091 (11) | 2.989 (3) | 176 (3) |
Symmetry code: (i) x+1, y, z. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct. 559, 99–106. Web of Science CSD CrossRef CAS Google Scholar
Bernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629–o633. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr. 31, 329–332. Web of Science CSD CrossRef CAS Google Scholar
Jouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct. 604, 205–209. Web of Science CSD CrossRef CAS Google Scholar
Karakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997–o1999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336–o1338. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724–731. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). In this paper, the title new Schiff base compound derived from the condensation of 3-formylpyridine with 4-methylthiosemicarbazone is reported.
The molecule of the title compound, Fig. 1, possess a crystallographic mirror plane symmetry. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).
In the crystal, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).