organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium hydrogen chloranilate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 1 November 2010; accepted 17 November 2010; online 20 November 2010)

In the crystal structure of the title compound (systematic name: triethyl­ammonium 2,5-dichloro-4-hy­droxy-3,6-dioxo­cyclo­hexa-1,4-dien-1-olate), C6H16N+·C6HCl2O4, two hydrogen chloranilate anions are connected by a pair of bifurcated O—H⋯O hydrogen bonds into a dimeric unit. The triethyl­ammonium cations are linked on both sides of the dimer via bifurcated N—H⋯O hydrogen bonds into a centrosymmetric 2:2 aggregate. The 2:2 aggregates are further linked by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see, for example: Gotoh et al. (2008[Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550-o553.], 2009[Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273-o277.]); Gotoh & Ishida (2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467.]); Yang (2007[Yang, D.-J. (2007). Acta Cryst. E63, o2600.]). For details of the double π system of chloranilic acid, see: Andersen (1967[Andersen, E. K. (1967). Acta Cryst. 22, 196-201.]); Benchekroun & Savariault (1995[Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186-188.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C6HCl2O4

  • Mr = 310.18

  • Triclinic, [P \overline 1]

  • a = 7.6404 (5) Å

  • b = 9.5352 (3) Å

  • c = 11.2976 (5) Å

  • α = 99.9621 (15)°

  • β = 108.732 (3)°

  • γ = 106.536 (3)°

  • V = 714.84 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 180 K

  • 0.42 × 0.35 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.829, Tmax = 0.891

  • 14757 measured reflections

  • 4176 independent reflections

  • 3631 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.07

  • 4176 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.847 (18) 2.411 (15) 2.9805 (12) 125.1 (13)
N1—H1⋯O4 0.847 (18) 2.069 (18) 2.8833 (12) 161.1 (14)
O2—H2⋯O3 0.765 (19) 2.147 (19) 2.6331 (11) 121.9 (17)
O2—H2⋯O3i 0.765 (19) 2.082 (19) 2.7089 (12) 139.4 (19)
C7—H7B⋯O2ii 0.99 2.47 3.2859 (15) 140
C8—H8A⋯O4iii 0.98 2.47 3.3977 (14) 158
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2008,2009; Gotoh & Ishida, 2009). The crystal structure of bis(hexamethylenetetraminium) chloranilate tetrahydrate has been reported for the tertiary amine–chloranilic acid 2:1 system (Yang, 2007).

In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and two hydrogen chloranilate anions and two triethylammnoium cations are linked by bifurcated O—H···O and N—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:2 aggregate (Fig. 1). The anion shows a characteristic structure of the double π system (Andersen, 1967; Benchekroun & Savariault, 1995) with two long C1—C6 [1.5442 (13) Å] and C3—C4 [1.5063 (13) Å] bonds. The O3—C4 and O4—C6 bonds [1.2529 (11) and 1.2510 (11) Å, respectively] in one π system are almost same and comparable to the O—C bonds in the dianion of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007). On the other hand, the O1—C1 and O2—C3 bonds [1.2199 (12) and 1.3324 (11) Å, respectively] in the other π system correspond to double and single bonds, respectively. The 2:2 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a three-dimensional network (Fig. 2).

Related literature top

For related structures, see, for example: Gotoh et al. (2008, 2009); Gotoh & Ishida (2009); Yang (2007). For details of the double π system of chloranilic acid, see: Andersen (1967); Benchekroun & Savariault (1995).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (25 ml) of chloranilic acid (97 mg) and triethylamine (42 mg) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, allowing for free rotation of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The O– and N-bound H atoms were found in a difference Fourier map and refined isotropically. The refined O—H and N—H distances are 0.765 (19) and 0.847 (18) Å, respectively.

Structure description top

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2008,2009; Gotoh & Ishida, 2009). The crystal structure of bis(hexamethylenetetraminium) chloranilate tetrahydrate has been reported for the tertiary amine–chloranilic acid 2:1 system (Yang, 2007).

In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and two hydrogen chloranilate anions and two triethylammnoium cations are linked by bifurcated O—H···O and N—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:2 aggregate (Fig. 1). The anion shows a characteristic structure of the double π system (Andersen, 1967; Benchekroun & Savariault, 1995) with two long C1—C6 [1.5442 (13) Å] and C3—C4 [1.5063 (13) Å] bonds. The O3—C4 and O4—C6 bonds [1.2529 (11) and 1.2510 (11) Å, respectively] in one π system are almost same and comparable to the O—C bonds in the dianion of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007). On the other hand, the O1—C1 and O2—C3 bonds [1.2199 (12) and 1.3324 (11) Å, respectively] in the other π system correspond to double and single bonds, respectively. The 2:2 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a three-dimensional network (Fig. 2).

For related structures, see, for example: Gotoh et al. (2008, 2009); Gotoh & Ishida (2009); Yang (2007). For details of the double π system of chloranilic acid, see: Andersen (1967); Benchekroun & Savariault (1995).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 35% probability level. The dashed lines indicate O—H···O and N—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 2, -z].
[Figure 2] Fig. 2. A partial packing diagram of the title compound. The dashed lines indicate O—H···O, N—H···O and C—H···O hydrogen bonds. H atoms of the ethyl groups not involved in the C—H···O hydrogen bonds have been omitted.
Triethylammonium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate top
Crystal data top
C6H16N+·C6HCl2O4Z = 2
Mr = 310.18F(000) = 324.00
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.6404 (5) ÅCell parameters from 12766 reflections
b = 9.5352 (3) Åθ = 3.0–30.1°
c = 11.2976 (5) ŵ = 0.46 mm1
α = 99.9621 (15)°T = 180 K
β = 108.732 (3)°Block, brown
γ = 106.536 (3)°0.42 × 0.35 × 0.25 mm
V = 714.84 (6) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3631 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.034
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.829, Tmax = 0.891k = 1313
14757 measured reflectionsl = 1515
4176 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1133P]
where P = (Fo2 + 2Fc2)/3
4176 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H16N+·C6HCl2O4γ = 106.536 (3)°
Mr = 310.18V = 714.84 (6) Å3
Triclinic, P1Z = 2
a = 7.6404 (5) ÅMo Kα radiation
b = 9.5352 (3) ŵ = 0.46 mm1
c = 11.2976 (5) ÅT = 180 K
α = 99.9621 (15)°0.42 × 0.35 × 0.25 mm
β = 108.732 (3)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
4176 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3631 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.891Rint = 0.034
14757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.59 e Å3
4176 reflectionsΔρmin = 0.36 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05941 (4)0.44199 (3)0.17017 (2)0.03282 (8)
Cl20.79265 (4)0.85112 (3)0.35611 (2)0.03113 (8)
O10.23295 (13)0.35023 (9)0.06660 (8)0.03546 (18)
O20.29888 (11)0.77018 (9)0.10218 (8)0.02849 (16)
O30.60830 (11)0.93820 (8)0.11497 (7)0.02933 (16)
O40.53520 (12)0.51893 (9)0.29193 (8)0.03090 (17)
N10.31226 (12)0.21786 (9)0.28996 (8)0.02410 (16)
C10.31746 (14)0.48352 (11)0.07566 (9)0.02382 (18)
C20.25857 (14)0.55307 (11)0.02828 (9)0.02340 (18)
C30.35511 (14)0.70234 (11)0.01071 (9)0.02249 (18)
C40.53096 (14)0.80246 (10)0.11283 (9)0.02232 (17)
C50.59095 (14)0.73644 (11)0.21385 (9)0.02326 (18)
C60.49384 (14)0.58366 (11)0.20508 (9)0.02325 (18)
C70.12245 (15)0.22545 (12)0.29816 (11)0.0307 (2)
H7A0.06320.13990.32890.037*
H7B0.02750.21250.20980.037*
C80.15318 (17)0.37395 (13)0.38885 (11)0.0323 (2)
H8A0.22090.37650.47950.048*
H8B0.02420.38270.37680.048*
H8C0.23440.45940.36930.048*
C90.27183 (18)0.08580 (12)0.17789 (11)0.0320 (2)
H9A0.39790.09370.16760.038*
H9B0.18020.09380.09670.038*
C100.1828 (2)0.06935 (13)0.19402 (15)0.0435 (3)
H10A0.27870.08310.26860.065*
H10B0.15020.14930.11450.065*
H10C0.06190.07620.20940.065*
C110.45590 (16)0.22080 (13)0.41806 (11)0.0313 (2)
H11A0.39950.12710.44060.038*
H11B0.47470.30980.48720.038*
C120.65531 (19)0.23066 (17)0.41462 (15)0.0461 (3)
H12A0.64130.13480.35740.069*
H12B0.75010.24800.50310.069*
H12C0.70370.31560.38110.069*
H10.365 (2)0.2974 (19)0.2713 (14)0.037 (4)*
H20.364 (3)0.855 (2)0.0717 (17)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03108 (13)0.02407 (13)0.03098 (14)0.00336 (10)0.00192 (10)0.00952 (9)
Cl20.03405 (14)0.02543 (13)0.02406 (13)0.00126 (10)0.00727 (10)0.00770 (9)
O10.0406 (4)0.0198 (4)0.0355 (4)0.0021 (3)0.0070 (3)0.0134 (3)
O20.0304 (4)0.0204 (4)0.0303 (4)0.0052 (3)0.0067 (3)0.0140 (3)
O30.0342 (4)0.0184 (3)0.0333 (4)0.0056 (3)0.0114 (3)0.0128 (3)
O40.0353 (4)0.0252 (4)0.0283 (4)0.0050 (3)0.0091 (3)0.0153 (3)
N10.0257 (4)0.0190 (4)0.0277 (4)0.0046 (3)0.0123 (3)0.0098 (3)
C10.0266 (4)0.0192 (4)0.0267 (4)0.0069 (3)0.0112 (3)0.0101 (3)
C20.0235 (4)0.0195 (4)0.0255 (4)0.0059 (3)0.0079 (3)0.0088 (3)
C30.0244 (4)0.0203 (4)0.0257 (4)0.0082 (3)0.0113 (3)0.0109 (3)
C40.0252 (4)0.0183 (4)0.0262 (4)0.0076 (3)0.0124 (3)0.0092 (3)
C50.0260 (4)0.0193 (4)0.0230 (4)0.0051 (3)0.0094 (3)0.0083 (3)
C60.0261 (4)0.0206 (4)0.0249 (4)0.0069 (3)0.0117 (3)0.0103 (3)
C70.0232 (4)0.0292 (5)0.0376 (5)0.0063 (4)0.0120 (4)0.0104 (4)
C80.0319 (5)0.0344 (6)0.0357 (5)0.0164 (4)0.0144 (4)0.0131 (4)
C90.0415 (6)0.0214 (5)0.0327 (5)0.0066 (4)0.0187 (4)0.0070 (4)
C100.0536 (7)0.0218 (5)0.0571 (8)0.0075 (5)0.0306 (6)0.0101 (5)
C110.0301 (5)0.0330 (5)0.0312 (5)0.0120 (4)0.0103 (4)0.0127 (4)
C120.0337 (6)0.0490 (8)0.0561 (8)0.0214 (5)0.0146 (5)0.0117 (6)
Geometric parameters (Å, º) top
Cl1—C21.7133 (10)C7—H7A0.9900
Cl2—C51.7307 (10)C7—H7B0.9900
O1—C11.2199 (12)C8—H8A0.9800
O2—C31.3324 (11)C8—H8B0.9800
O2—H20.766 (18)C8—H8C0.9800
O3—C41.2529 (11)C9—C101.5115 (16)
O4—C61.2510 (11)C9—H9A0.9900
N1—C111.4993 (13)C9—H9B0.9900
N1—C91.5033 (13)C10—H10A0.9800
N1—C71.5036 (13)C10—H10B0.9800
N1—H10.847 (16)C10—H10C0.9800
C1—C21.4564 (13)C11—C121.5130 (16)
C1—C61.5442 (13)C11—H11A0.9900
C2—C31.3490 (13)C11—H11B0.9900
C3—C41.5063 (13)C12—H12A0.9800
C4—C51.4092 (13)C12—H12B0.9800
C5—C61.4036 (13)C12—H12C0.9800
C7—C81.5047 (16)
C3—O2—H2106.0 (13)C7—C8—H8A109.5
C11—N1—C9113.52 (8)C7—C8—H8B109.5
C11—N1—C7111.98 (8)H8A—C8—H8B109.5
C9—N1—C7111.23 (8)C7—C8—H8C109.5
C11—N1—H1107.6 (10)H8A—C8—H8C109.5
C9—N1—H1105.4 (10)H8B—C8—H8C109.5
C7—N1—H1106.5 (10)N1—C9—C10114.04 (9)
O1—C1—C2123.39 (9)N1—C9—H9A108.7
O1—C1—C6118.01 (8)C10—C9—H9A108.7
C2—C1—C6118.60 (8)N1—C9—H9B108.7
C3—C2—C1120.43 (9)C10—C9—H9B108.7
C3—C2—Cl1121.32 (7)H9A—C9—H9B107.6
C1—C2—Cl1118.21 (7)C9—C10—H10A109.5
O2—C3—C2121.58 (9)C9—C10—H10B109.5
O2—C3—C4115.99 (8)H10A—C10—H10B109.5
C2—C3—C4122.42 (8)C9—C10—H10C109.5
O3—C4—C5126.59 (9)H10A—C10—H10C109.5
O3—C4—C3115.62 (8)H10B—C10—H10C109.5
C5—C4—C3117.79 (8)N1—C11—C12112.26 (10)
C6—C5—C4123.24 (9)N1—C11—H11A109.2
C6—C5—Cl2118.80 (7)C12—C11—H11A109.2
C4—C5—Cl2117.95 (7)N1—C11—H11B109.2
O4—C6—C5126.67 (9)C12—C11—H11B109.2
O4—C6—C1115.87 (8)H11A—C11—H11B107.9
C5—C6—C1117.46 (8)C11—C12—H12A109.5
N1—C7—C8112.65 (8)C11—C12—H12B109.5
N1—C7—H7A109.1H12A—C12—H12B109.5
C8—C7—H7A109.1C11—C12—H12C109.5
N1—C7—H7B109.1H12A—C12—H12C109.5
C8—C7—H7B109.1H12B—C12—H12C109.5
H7A—C7—H7B107.8
O1—C1—C2—C3178.24 (10)C3—C4—C5—Cl2179.88 (7)
C6—C1—C2—C30.79 (14)C4—C5—C6—O4177.80 (10)
O1—C1—C2—Cl10.38 (14)Cl2—C5—C6—O41.38 (15)
C6—C1—C2—Cl1178.65 (7)C4—C5—C6—C12.18 (14)
C1—C2—C3—O2177.16 (9)Cl2—C5—C6—C1178.64 (6)
Cl1—C2—C3—O20.63 (14)O1—C1—C6—O40.58 (14)
C1—C2—C3—C42.41 (15)C2—C1—C6—O4178.50 (9)
Cl1—C2—C3—C4179.80 (7)O1—C1—C6—C5179.44 (9)
O2—C3—C4—O31.57 (12)C2—C1—C6—C51.48 (13)
C2—C3—C4—O3178.84 (9)C11—N1—C7—C864.50 (11)
O2—C3—C4—C5177.84 (8)C9—N1—C7—C8167.30 (9)
C2—C3—C4—C51.75 (14)C11—N1—C9—C1060.54 (13)
O3—C4—C5—C6178.64 (9)C7—N1—C9—C1066.83 (13)
C3—C4—C5—C60.70 (14)C9—N1—C11—C1259.27 (12)
O3—C4—C5—Cl20.55 (14)C7—N1—C11—C12173.75 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.847 (18)2.411 (15)2.9805 (12)125.1 (13)
N1—H1···O40.847 (18)2.069 (18)2.8833 (12)161.1 (14)
O2—H2···O30.765 (19)2.147 (19)2.6331 (11)121.9 (17)
O2—H2···O3i0.765 (19)2.082 (19)2.7089 (12)139.4 (19)
C7—H7B···O2ii0.992.473.2859 (15)140
C8—H8A···O4iii0.982.473.3977 (14)158
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C6HCl2O4
Mr310.18
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.6404 (5), 9.5352 (3), 11.2976 (5)
α, β, γ (°)99.9621 (15), 108.732 (3), 106.536 (3)
V3)714.84 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.42 × 0.35 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID II
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.829, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
14757, 4176, 3631
Rint0.034
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.07
No. of reflections4176
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.36

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.847 (18)2.411 (15)2.9805 (12)125.1 (13)
N1—H1···O40.847 (18)2.069 (18)2.8833 (12)161.1 (14)
O2—H2···O30.765 (19)2.147 (19)2.6331 (11)121.9 (17)
O2—H2···O3i0.765 (19)2.082 (19)2.7089 (12)139.4 (19)
C7—H7B···O2ii0.992.473.2859 (15)140
C8—H8A···O4iii0.982.473.3977 (14)158
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationAndersen, E. K. (1967). Acta Cryst. 22, 196–201.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBenchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186–188.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-J. (2007). Acta Cryst. E63, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds