organic compounds
Triethylammonium hydrogen chloranilate
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
In the 6H16N+·C6HCl2O4−, two hydrogen chloranilate anions are connected by a pair of bifurcated O—H⋯O hydrogen bonds into a dimeric unit. The triethylammonium cations are linked on both sides of the dimer via bifurcated N—H⋯O hydrogen bonds into a centrosymmetric 2:2 aggregate. The 2:2 aggregates are further linked by intermolecular C—H⋯O hydrogen bonds.
of the title compound (systematic name: triethylammonium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate), CRelated literature
For related structures, see, for example: Gotoh et al. (2008, 2009); Gotoh & Ishida (2009); Yang (2007). For details of the double π system of chloranilic acid, see: Andersen (1967); Benchekroun & Savariault (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810047744/hg2739sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047744/hg2739Isup2.hkl
Single crystals were obtained by slow evaporation from an acetonitrile solution (25 ml) of chloranilic acid (97 mg) and triethylamine (42 mg) at room temperature.
C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, allowing for
of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The O– and N-bound H atoms were found in a difference Fourier map and refined isotropically. The refined O—H and N—H distances are 0.765 (19) and 0.847 (18) Å, respectively.The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2008,2009; Gotoh & Ishida, 2009). The
of bis(hexamethylenetetraminium) chloranilate tetrahydrate has been reported for the tertiary amine–chloranilic acid 2:1 system (Yang, 2007).In the π system (Andersen, 1967; Benchekroun & Savariault, 1995) with two long C1—C6 [1.5442 (13) Å] and C3—C4 [1.5063 (13) Å] bonds. The O3—C4 and O4—C6 bonds [1.2529 (11) and 1.2510 (11) Å, respectively] in one π system are almost same and comparable to the O—C bonds in the dianion of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007). On the other hand, the O1—C1 and O2—C3 bonds [1.2199 (12) and 1.3324 (11) Å, respectively] in the other π system correspond to double and single bonds, respectively. The 2:2 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a three-dimensional network (Fig. 2).
of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and two hydrogen chloranilate anions and two triethylammnoium cations are linked by bifurcated O—H···O and N—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:2 aggregate (Fig. 1). The anion shows a characteristic structure of the doubleFor related structures, see, for example: Gotoh et al. (2008, 2009); Gotoh & Ishida (2009); Yang (2007). For details of the double π system of chloranilic acid, see: Andersen (1967); Benchekroun & Savariault (1995).
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell
PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 35% probability level. The dashed lines indicate O—H···O and N—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 2, -z]. | |
Fig. 2. A partial packing diagram of the title compound. The dashed lines indicate O—H···O, N—H···O and C—H···O hydrogen bonds. H atoms of the ethyl groups not involved in the C—H···O hydrogen bonds have been omitted. |
C6H16N+·C6HCl2O4− | Z = 2 |
Mr = 310.18 | F(000) = 324.00 |
Triclinic, P1 | Dx = 1.441 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.6404 (5) Å | Cell parameters from 12766 reflections |
b = 9.5352 (3) Å | θ = 3.0–30.1° |
c = 11.2976 (5) Å | µ = 0.46 mm−1 |
α = 99.9621 (15)° | T = 180 K |
β = 108.732 (3)° | Block, brown |
γ = 106.536 (3)° | 0.42 × 0.35 × 0.25 mm |
V = 714.84 (6) Å3 |
Rigaku R-AXIS RAPID II diffractometer | 3631 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.034 |
ω scans | θmax = 30.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −10→10 |
Tmin = 0.829, Tmax = 0.891 | k = −13→13 |
14757 measured reflections | l = −15→15 |
4176 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1133P] where P = (Fo2 + 2Fc2)/3 |
4176 reflections | (Δ/σ)max = 0.001 |
180 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C6H16N+·C6HCl2O4− | γ = 106.536 (3)° |
Mr = 310.18 | V = 714.84 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6404 (5) Å | Mo Kα radiation |
b = 9.5352 (3) Å | µ = 0.46 mm−1 |
c = 11.2976 (5) Å | T = 180 K |
α = 99.9621 (15)° | 0.42 × 0.35 × 0.25 mm |
β = 108.732 (3)° |
Rigaku R-AXIS RAPID II diffractometer | 4176 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3631 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 0.891 | Rint = 0.034 |
14757 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.59 e Å−3 |
4176 reflections | Δρmin = −0.36 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.05941 (4) | 0.44199 (3) | −0.17017 (2) | 0.03282 (8) | |
Cl2 | 0.79265 (4) | 0.85112 (3) | 0.35611 (2) | 0.03113 (8) | |
O1 | 0.23295 (13) | 0.35023 (9) | 0.06660 (8) | 0.03546 (18) | |
O2 | 0.29888 (11) | 0.77018 (9) | −0.10218 (8) | 0.02849 (16) | |
O3 | 0.60830 (11) | 0.93820 (8) | 0.11497 (7) | 0.02933 (16) | |
O4 | 0.53520 (12) | 0.51893 (9) | 0.29193 (8) | 0.03090 (17) | |
N1 | 0.31226 (12) | 0.21786 (9) | 0.28996 (8) | 0.02410 (16) | |
C1 | 0.31746 (14) | 0.48352 (11) | 0.07566 (9) | 0.02382 (18) | |
C2 | 0.25857 (14) | 0.55307 (11) | −0.02828 (9) | 0.02340 (18) | |
C3 | 0.35511 (14) | 0.70234 (11) | −0.01071 (9) | 0.02249 (18) | |
C4 | 0.53096 (14) | 0.80246 (10) | 0.11283 (9) | 0.02232 (17) | |
C5 | 0.59095 (14) | 0.73644 (11) | 0.21385 (9) | 0.02326 (18) | |
C6 | 0.49384 (14) | 0.58366 (11) | 0.20508 (9) | 0.02325 (18) | |
C7 | 0.12245 (15) | 0.22545 (12) | 0.29816 (11) | 0.0307 (2) | |
H7A | 0.0632 | 0.1399 | 0.3289 | 0.037* | |
H7B | 0.0275 | 0.2125 | 0.2098 | 0.037* | |
C8 | 0.15318 (17) | 0.37395 (13) | 0.38885 (11) | 0.0323 (2) | |
H8A | 0.2209 | 0.3765 | 0.4795 | 0.048* | |
H8B | 0.0242 | 0.3827 | 0.3768 | 0.048* | |
H8C | 0.2344 | 0.4594 | 0.3693 | 0.048* | |
C9 | 0.27183 (18) | 0.08580 (12) | 0.17789 (11) | 0.0320 (2) | |
H9A | 0.3979 | 0.0937 | 0.1676 | 0.038* | |
H9B | 0.1802 | 0.0938 | 0.0967 | 0.038* | |
C10 | 0.1828 (2) | −0.06935 (13) | 0.19402 (15) | 0.0435 (3) | |
H10A | 0.2787 | −0.0831 | 0.2686 | 0.065* | |
H10B | 0.1502 | −0.1493 | 0.1145 | 0.065* | |
H10C | 0.0619 | −0.0762 | 0.2094 | 0.065* | |
C11 | 0.45590 (16) | 0.22080 (13) | 0.41806 (11) | 0.0313 (2) | |
H11A | 0.3995 | 0.1271 | 0.4406 | 0.038* | |
H11B | 0.4747 | 0.3098 | 0.4872 | 0.038* | |
C12 | 0.65531 (19) | 0.23066 (17) | 0.41462 (15) | 0.0461 (3) | |
H12A | 0.6413 | 0.1348 | 0.3574 | 0.069* | |
H12B | 0.7501 | 0.2480 | 0.5031 | 0.069* | |
H12C | 0.7037 | 0.3156 | 0.3811 | 0.069* | |
H1 | 0.365 (2) | 0.2974 (19) | 0.2713 (14) | 0.037 (4)* | |
H2 | 0.364 (3) | 0.855 (2) | −0.0717 (17) | 0.055 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.03108 (13) | 0.02407 (13) | 0.03098 (14) | 0.00336 (10) | 0.00192 (10) | 0.00952 (9) |
Cl2 | 0.03405 (14) | 0.02543 (13) | 0.02406 (13) | 0.00126 (10) | 0.00727 (10) | 0.00770 (9) |
O1 | 0.0406 (4) | 0.0198 (4) | 0.0355 (4) | 0.0021 (3) | 0.0070 (3) | 0.0134 (3) |
O2 | 0.0304 (4) | 0.0204 (4) | 0.0303 (4) | 0.0052 (3) | 0.0067 (3) | 0.0140 (3) |
O3 | 0.0342 (4) | 0.0184 (3) | 0.0333 (4) | 0.0056 (3) | 0.0114 (3) | 0.0128 (3) |
O4 | 0.0353 (4) | 0.0252 (4) | 0.0283 (4) | 0.0050 (3) | 0.0091 (3) | 0.0153 (3) |
N1 | 0.0257 (4) | 0.0190 (4) | 0.0277 (4) | 0.0046 (3) | 0.0123 (3) | 0.0098 (3) |
C1 | 0.0266 (4) | 0.0192 (4) | 0.0267 (4) | 0.0069 (3) | 0.0112 (3) | 0.0101 (3) |
C2 | 0.0235 (4) | 0.0195 (4) | 0.0255 (4) | 0.0059 (3) | 0.0079 (3) | 0.0088 (3) |
C3 | 0.0244 (4) | 0.0203 (4) | 0.0257 (4) | 0.0082 (3) | 0.0113 (3) | 0.0109 (3) |
C4 | 0.0252 (4) | 0.0183 (4) | 0.0262 (4) | 0.0076 (3) | 0.0124 (3) | 0.0092 (3) |
C5 | 0.0260 (4) | 0.0193 (4) | 0.0230 (4) | 0.0051 (3) | 0.0094 (3) | 0.0083 (3) |
C6 | 0.0261 (4) | 0.0206 (4) | 0.0249 (4) | 0.0069 (3) | 0.0117 (3) | 0.0103 (3) |
C7 | 0.0232 (4) | 0.0292 (5) | 0.0376 (5) | 0.0063 (4) | 0.0120 (4) | 0.0104 (4) |
C8 | 0.0319 (5) | 0.0344 (6) | 0.0357 (5) | 0.0164 (4) | 0.0144 (4) | 0.0131 (4) |
C9 | 0.0415 (6) | 0.0214 (5) | 0.0327 (5) | 0.0066 (4) | 0.0187 (4) | 0.0070 (4) |
C10 | 0.0536 (7) | 0.0218 (5) | 0.0571 (8) | 0.0075 (5) | 0.0306 (6) | 0.0101 (5) |
C11 | 0.0301 (5) | 0.0330 (5) | 0.0312 (5) | 0.0120 (4) | 0.0103 (4) | 0.0127 (4) |
C12 | 0.0337 (6) | 0.0490 (8) | 0.0561 (8) | 0.0214 (5) | 0.0146 (5) | 0.0117 (6) |
Cl1—C2 | 1.7133 (10) | C7—H7A | 0.9900 |
Cl2—C5 | 1.7307 (10) | C7—H7B | 0.9900 |
O1—C1 | 1.2199 (12) | C8—H8A | 0.9800 |
O2—C3 | 1.3324 (11) | C8—H8B | 0.9800 |
O2—H2 | 0.766 (18) | C8—H8C | 0.9800 |
O3—C4 | 1.2529 (11) | C9—C10 | 1.5115 (16) |
O4—C6 | 1.2510 (11) | C9—H9A | 0.9900 |
N1—C11 | 1.4993 (13) | C9—H9B | 0.9900 |
N1—C9 | 1.5033 (13) | C10—H10A | 0.9800 |
N1—C7 | 1.5036 (13) | C10—H10B | 0.9800 |
N1—H1 | 0.847 (16) | C10—H10C | 0.9800 |
C1—C2 | 1.4564 (13) | C11—C12 | 1.5130 (16) |
C1—C6 | 1.5442 (13) | C11—H11A | 0.9900 |
C2—C3 | 1.3490 (13) | C11—H11B | 0.9900 |
C3—C4 | 1.5063 (13) | C12—H12A | 0.9800 |
C4—C5 | 1.4092 (13) | C12—H12B | 0.9800 |
C5—C6 | 1.4036 (13) | C12—H12C | 0.9800 |
C7—C8 | 1.5047 (16) | ||
C3—O2—H2 | 106.0 (13) | C7—C8—H8A | 109.5 |
C11—N1—C9 | 113.52 (8) | C7—C8—H8B | 109.5 |
C11—N1—C7 | 111.98 (8) | H8A—C8—H8B | 109.5 |
C9—N1—C7 | 111.23 (8) | C7—C8—H8C | 109.5 |
C11—N1—H1 | 107.6 (10) | H8A—C8—H8C | 109.5 |
C9—N1—H1 | 105.4 (10) | H8B—C8—H8C | 109.5 |
C7—N1—H1 | 106.5 (10) | N1—C9—C10 | 114.04 (9) |
O1—C1—C2 | 123.39 (9) | N1—C9—H9A | 108.7 |
O1—C1—C6 | 118.01 (8) | C10—C9—H9A | 108.7 |
C2—C1—C6 | 118.60 (8) | N1—C9—H9B | 108.7 |
C3—C2—C1 | 120.43 (9) | C10—C9—H9B | 108.7 |
C3—C2—Cl1 | 121.32 (7) | H9A—C9—H9B | 107.6 |
C1—C2—Cl1 | 118.21 (7) | C9—C10—H10A | 109.5 |
O2—C3—C2 | 121.58 (9) | C9—C10—H10B | 109.5 |
O2—C3—C4 | 115.99 (8) | H10A—C10—H10B | 109.5 |
C2—C3—C4 | 122.42 (8) | C9—C10—H10C | 109.5 |
O3—C4—C5 | 126.59 (9) | H10A—C10—H10C | 109.5 |
O3—C4—C3 | 115.62 (8) | H10B—C10—H10C | 109.5 |
C5—C4—C3 | 117.79 (8) | N1—C11—C12 | 112.26 (10) |
C6—C5—C4 | 123.24 (9) | N1—C11—H11A | 109.2 |
C6—C5—Cl2 | 118.80 (7) | C12—C11—H11A | 109.2 |
C4—C5—Cl2 | 117.95 (7) | N1—C11—H11B | 109.2 |
O4—C6—C5 | 126.67 (9) | C12—C11—H11B | 109.2 |
O4—C6—C1 | 115.87 (8) | H11A—C11—H11B | 107.9 |
C5—C6—C1 | 117.46 (8) | C11—C12—H12A | 109.5 |
N1—C7—C8 | 112.65 (8) | C11—C12—H12B | 109.5 |
N1—C7—H7A | 109.1 | H12A—C12—H12B | 109.5 |
C8—C7—H7A | 109.1 | C11—C12—H12C | 109.5 |
N1—C7—H7B | 109.1 | H12A—C12—H12C | 109.5 |
C8—C7—H7B | 109.1 | H12B—C12—H12C | 109.5 |
H7A—C7—H7B | 107.8 | ||
O1—C1—C2—C3 | 178.24 (10) | C3—C4—C5—Cl2 | −179.88 (7) |
C6—C1—C2—C3 | −0.79 (14) | C4—C5—C6—O4 | −177.80 (10) |
O1—C1—C2—Cl1 | 0.38 (14) | Cl2—C5—C6—O4 | 1.38 (15) |
C6—C1—C2—Cl1 | −178.65 (7) | C4—C5—C6—C1 | 2.18 (14) |
C1—C2—C3—O2 | −177.16 (9) | Cl2—C5—C6—C1 | −178.64 (6) |
Cl1—C2—C3—O2 | 0.63 (14) | O1—C1—C6—O4 | −0.58 (14) |
C1—C2—C3—C4 | 2.41 (15) | C2—C1—C6—O4 | 178.50 (9) |
Cl1—C2—C3—C4 | −179.80 (7) | O1—C1—C6—C5 | 179.44 (9) |
O2—C3—C4—O3 | −1.57 (12) | C2—C1—C6—C5 | −1.48 (13) |
C2—C3—C4—O3 | 178.84 (9) | C11—N1—C7—C8 | 64.50 (11) |
O2—C3—C4—C5 | 177.84 (8) | C9—N1—C7—C8 | −167.30 (9) |
C2—C3—C4—C5 | −1.75 (14) | C11—N1—C9—C10 | 60.54 (13) |
O3—C4—C5—C6 | 178.64 (9) | C7—N1—C9—C10 | −66.83 (13) |
C3—C4—C5—C6 | −0.70 (14) | C9—N1—C11—C12 | 59.27 (12) |
O3—C4—C5—Cl2 | −0.55 (14) | C7—N1—C11—C12 | −173.75 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.847 (18) | 2.411 (15) | 2.9805 (12) | 125.1 (13) |
N1—H1···O4 | 0.847 (18) | 2.069 (18) | 2.8833 (12) | 161.1 (14) |
O2—H2···O3 | 0.765 (19) | 2.147 (19) | 2.6331 (11) | 121.9 (17) |
O2—H2···O3i | 0.765 (19) | 2.082 (19) | 2.7089 (12) | 139.4 (19) |
C7—H7B···O2ii | 0.99 | 2.47 | 3.2859 (15) | 140 |
C8—H8A···O4iii | 0.98 | 2.47 | 3.3977 (14) | 158 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H16N+·C6HCl2O4− |
Mr | 310.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 7.6404 (5), 9.5352 (3), 11.2976 (5) |
α, β, γ (°) | 99.9621 (15), 108.732 (3), 106.536 (3) |
V (Å3) | 714.84 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.42 × 0.35 × 0.25 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID II |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.829, 0.891 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14757, 4176, 3631 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.092, 1.07 |
No. of reflections | 4176 |
No. of parameters | 180 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.59, −0.36 |
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.847 (18) | 2.411 (15) | 2.9805 (12) | 125.1 (13) |
N1—H1···O4 | 0.847 (18) | 2.069 (18) | 2.8833 (12) | 161.1 (14) |
O2—H2···O3 | 0.765 (19) | 2.147 (19) | 2.6331 (11) | 121.9 (17) |
O2—H2···O3i | 0.765 (19) | 2.082 (19) | 2.7089 (12) | 139.4 (19) |
C7—H7B···O2ii | 0.99 | 2.47 | 3.2859 (15) | 140 |
C8—H8A···O4iii | 0.98 | 2.47 | 3.3977 (14) | 158 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.
References
Andersen, E. K. (1967). Acta Cryst. 22, 196–201. CSD CrossRef IUCr Journals Web of Science Google Scholar
Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186–188. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, D.-J. (2007). Acta Cryst. E63, o2600. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2008,2009; Gotoh & Ishida, 2009). The crystal structure of bis(hexamethylenetetraminium) chloranilate tetrahydrate has been reported for the tertiary amine–chloranilic acid 2:1 system (Yang, 2007).
In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and two hydrogen chloranilate anions and two triethylammnoium cations are linked by bifurcated O—H···O and N—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:2 aggregate (Fig. 1). The anion shows a characteristic structure of the double π system (Andersen, 1967; Benchekroun & Savariault, 1995) with two long C1—C6 [1.5442 (13) Å] and C3—C4 [1.5063 (13) Å] bonds. The O3—C4 and O4—C6 bonds [1.2529 (11) and 1.2510 (11) Å, respectively] in one π system are almost same and comparable to the O—C bonds in the dianion of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007). On the other hand, the O1—C1 and O2—C3 bonds [1.2199 (12) and 1.3324 (11) Å, respectively] in the other π system correspond to double and single bonds, respectively. The 2:2 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a three-dimensional network (Fig. 2).