metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(2,2′-bi­pyridine-κ2N,N′)magnesium(II) bis­­(4-fluoro­benzoate)

aCollege of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and bMunicipal Key Laboratory of Inorganic Materials Chemistry, Institute for Solid State Chemistry, Ninbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 4 November 2010; accepted 17 November 2010; online 24 November 2010)

The title compound, [Mg(C10H8N2)(H2O)4](C7H4FO2)2, consists of a bivalent [Mg(C10H8N2)(H2O)4]2+ cation and two 4-fluorbenzoate anions. In the complex cation, the MgII atom is coordinated by two N atoms from a 2,2′-bipyridine ligand and four water O atoms in a distorted MgN2O4 octa­hedral geometry. The MgII atom is located on a twofold rotation axis and thus a cation exhibits C2 mol­ecular symmetry. The 2,2′-bipyridine ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional supra­molecular network.

Related literature

For related magnesium(II) complexes with 1,10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981[Halut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.]); Hao et al. (2008[Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.]); Zhang (2004[Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1415.]); Zhang et al. (2010[Zhang, B.-S., Wu, C.-S. & Xu, W. (2010). Acta Cryst. E66, m1426.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C10H8N2)(H2O)4](C7H4FO2)2

  • Mr = 530.76

  • Orthorhombic, P b c n

  • a = 27.911 (6) Å

  • b = 12.423 (3) Å

  • c = 7.5895 (15) Å

  • V = 2631.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 290 K

  • 0.18 × 0.13 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995)[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.979, Tmax = 0.987

  • 2316 measured reflections

  • 2310 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.207

  • S = 1.14

  • 2310 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.82 1.90 2.715 (4) 172
O1—H1B⋯O4ii 0.82 1.90 2.682 (4) 159
O2—H2A⋯O3iii 0.82 1.84 2.661 (3) 173
O2—H2B⋯O4ii 0.82 1.99 2.796 (5) 167
C3—H3⋯O3iv 0.93 2.55 3.257 (6) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998)[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]; cell refinement: RAPID-AUTO[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Magnesium(II) ions with 1.10-phenanthroline(phen) and pyridine(bipy) ligands can form tetraaqua(L)nMagnesium(II)(L = phen, n = 1; L = bipy, n = 2 ) complex cation ( Halut-Desportes, 1981, Hao, et al., 2008, Zhang, 2004, Zhang, et al.,2010.) In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of [Mg(H2O)4(2,2'-bpy)] 2+ complex cations and 4-fluorbenzoate anion (Fig. 1). the cation placed in special position on twofold axis which passes through MgII atom and middle C5—C5i bond of 2,2'-bipy molecule; Symmetry code:(i)-x,y,-z+1/2. In the cation, the MgII atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN2O4 octahedral geometry. The Mg—N bond length is 2.183 (3) Å and Mg—O bond lengths are 2.040 (2) and 2.061 (2)Å. The chelating bipy ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). The mean interplanar distances of 3.8352 (3) Å between adjacent bipy ligands indicate ππ stacking interactions (very weak). The complex cations and 4-fluorbenzoate anins are connected via O—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) into a three-dimensional supramolecular network.

Related literature top

For related magnesium(II) complexes with 1,10-phenanthrolineand pyridine ligands, see: Halut-Desportes (1981); Hao, et al. (2008); Zhang (2004); Zhang et al. (2010).

Experimental top

[Mg(OH)2.4MgCO3.4H2O} (0.4900 g, 1.00 mmol), 4-fluorbenzoate acid (0.0602 g, 0.43 mmol),2,2'-bipyridine (bipy) (0.0503 g, 0.32 mmol ), CH3OH/H2O (v/v = 1:2, 15 mL) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 mL Teflon-lined stainless steel autoclave at 453 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure for 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 2 months afforded colourless block single crystals.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding- model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1) Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Magnesium(II) ions with 1.10-phenanthroline(phen) and pyridine(bipy) ligands can form tetraaqua(L)nMagnesium(II)(L = phen, n = 1; L = bipy, n = 2 ) complex cation ( Halut-Desportes, 1981, Hao, et al., 2008, Zhang, 2004, Zhang, et al.,2010.) In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of [Mg(H2O)4(2,2'-bpy)] 2+ complex cations and 4-fluorbenzoate anion (Fig. 1). the cation placed in special position on twofold axis which passes through MgII atom and middle C5—C5i bond of 2,2'-bipy molecule; Symmetry code:(i)-x,y,-z+1/2. In the cation, the MgII atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN2O4 octahedral geometry. The Mg—N bond length is 2.183 (3) Å and Mg—O bond lengths are 2.040 (2) and 2.061 (2)Å. The chelating bipy ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). The mean interplanar distances of 3.8352 (3) Å between adjacent bipy ligands indicate ππ stacking interactions (very weak). The complex cations and 4-fluorbenzoate anins are connected via O—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) into a three-dimensional supramolecular network.

For related magnesium(II) complexes with 1,10-phenanthrolineand pyridine ligands, see: Halut-Desportes (1981); Hao, et al. (2008); Zhang (2004); Zhang et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound showing the atom-labelling scheme. The octahedral [Mg(C10H8N2)(H2O)4]2+ complex cation is balanced by two fluorbenzoate anions. The two coordinated water molecules of the complex cation are hydrogen bonded to two anions. Displacement ellipsoids are drawn at the 40% probability level (symmetry code:(i)-x,y,-z+1/2).
[Figure 2] Fig. 2. A packing diagram of the title complex, viewed down the c axis, The O—H···O and C—H···O hydrogen bonds(dashed lines) in the title compound.
Tetraaqua(2,2'-bipyridine-κ2N,N')magnesium(II) bis(4-fluorobenzoate) top
Crystal data top
[Mg(C10H8N2)(H2O)4](C7H4FO2)2F(000) = 1104
Mr = 530.76Dx = 1.340 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2n 2abCell parameters from 665 reflections
a = 27.911 (6) Åθ = 3.2–25.0°
b = 12.423 (3) ŵ = 0.13 mm1
c = 7.5895 (15) ÅT = 290 K
V = 2631.6 (10) Å3Block, colourless
Z = 40.18 × 0.13 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2310 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3333
Tmin = 0.979, Tmax = 0.987k = 1414
2316 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0879P)2 + 2.3043P]
where P = (Fo2 + 2Fc2)/3
2310 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mg(C10H8N2)(H2O)4](C7H4FO2)2V = 2631.6 (10) Å3
Mr = 530.76Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 27.911 (6) ŵ = 0.13 mm1
b = 12.423 (3) ÅT = 290 K
c = 7.5895 (15) Å0.18 × 0.13 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2310 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1741 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.096
2316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.14Δρmax = 0.39 e Å3
2310 reflectionsΔρmin = 0.32 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.29487 (11)0.25000.0347 (4)
O10.05496 (9)0.4005 (2)0.2115 (3)0.0536 (7)
H1A0.05760.45810.26320.080*
H1B0.06570.41240.11280.080*
O20.01046 (8)0.2966 (2)0.0187 (3)0.0509 (7)
H2A0.03780.29050.05680.076*
H2B0.01220.32540.06880.076*
O30.40257 (9)0.2093 (2)0.1617 (4)0.0680 (9)
O40.42874 (8)0.0949 (2)0.3633 (3)0.0482 (7)
N10.04711 (9)0.1555 (2)0.2250 (4)0.0418 (7)
F10.20665 (10)0.0891 (3)0.5077 (5)0.1243 (14)
C10.09402 (13)0.1603 (3)0.1902 (5)0.0544 (10)
H10.10900.22710.18960.065*
C20.12112 (15)0.0689 (4)0.1551 (6)0.0682 (12)
H20.15370.07460.13120.082*
C30.09930 (15)0.0285 (4)0.1561 (6)0.0689 (12)
H30.11670.09060.13130.083*
C40.05129 (15)0.0346 (3)0.1944 (6)0.0586 (10)
H40.03600.10110.19690.070*
C50.02579 (12)0.0585 (3)0.2293 (4)0.0415 (8)
C60.39599 (12)0.1476 (3)0.2874 (5)0.0426 (8)
C70.34578 (6)0.1330 (2)0.3515 (3)0.0454 (8)
C80.31097 (9)0.20812 (19)0.3063 (4)0.0666 (12)
H80.31920.26830.24000.080*
C90.26384 (8)0.1933 (2)0.3604 (5)0.0860 (16)
H90.24050.24360.33020.103*
C100.25153 (7)0.1034 (3)0.4595 (4)0.0789 (14)
C110.28634 (10)0.0283 (2)0.5047 (4)0.0844 (17)
H110.27810.03190.57100.101*
C120.33346 (9)0.0431 (2)0.4506 (4)0.0663 (12)
H120.35680.00720.48080.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0374 (8)0.0321 (8)0.0346 (8)0.0000.0008 (6)0.000
O10.0681 (16)0.0475 (14)0.0450 (13)0.0212 (12)0.0090 (12)0.0062 (12)
O20.0452 (14)0.0697 (17)0.0379 (13)0.0083 (12)0.0036 (10)0.0040 (12)
O30.0505 (16)0.076 (2)0.0771 (19)0.0115 (13)0.0175 (14)0.0332 (16)
O40.0473 (14)0.0502 (15)0.0472 (13)0.0034 (11)0.0090 (11)0.0031 (11)
N10.0400 (16)0.0406 (16)0.0448 (15)0.0030 (12)0.0008 (12)0.0011 (13)
F10.0611 (18)0.169 (4)0.143 (3)0.0280 (19)0.0441 (18)0.016 (3)
C10.043 (2)0.049 (2)0.071 (3)0.0030 (16)0.0017 (18)0.0011 (19)
C20.047 (2)0.072 (3)0.085 (3)0.015 (2)0.010 (2)0.003 (2)
C30.066 (3)0.052 (3)0.089 (3)0.024 (2)0.006 (2)0.008 (2)
C40.070 (3)0.036 (2)0.070 (2)0.0086 (18)0.001 (2)0.0039 (18)
C50.0502 (19)0.0371 (18)0.0372 (17)0.0012 (15)0.0021 (15)0.0001 (14)
C60.0430 (19)0.0397 (19)0.0451 (19)0.0027 (15)0.0018 (15)0.0051 (16)
C70.0430 (19)0.050 (2)0.0434 (18)0.0033 (16)0.0019 (15)0.0017 (16)
C80.051 (2)0.057 (2)0.092 (3)0.0051 (19)0.013 (2)0.007 (2)
C90.050 (3)0.086 (4)0.122 (4)0.011 (2)0.016 (3)0.004 (3)
C100.054 (3)0.104 (4)0.079 (3)0.017 (3)0.023 (2)0.010 (3)
C110.073 (3)0.112 (5)0.068 (3)0.035 (3)0.005 (2)0.027 (3)
C120.059 (2)0.081 (3)0.059 (2)0.013 (2)0.0045 (19)0.020 (2)
Geometric parameters (Å, º) top
Mg1—O1i2.040 (2)C2—H20.9300
Mg1—O12.040 (2)C3—C41.373 (6)
Mg1—O22.061 (2)C3—H30.9300
Mg1—O2i2.061 (2)C4—C51.384 (5)
Mg1—N1i2.183 (3)C4—H40.9300
Mg1—N12.183 (3)C5—C5i1.473 (7)
O1—H1A0.8200C6—C71.494 (4)
O1—H1B0.8200C7—C81.3900
O2—H2A0.8201C7—C121.3900
O2—H2B0.8198C8—C91.3900
O3—C61.238 (4)C8—H80.9300
O4—C61.263 (4)C9—C101.3900
N1—C11.337 (4)C9—H90.9300
N1—C51.344 (4)C10—C111.3900
F1—C101.317 (3)C11—C121.3900
C1—C21.390 (6)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.355 (6)
O1i—Mg1—O199.93 (16)C2—C3—C4119.3 (4)
O1i—Mg1—O291.62 (10)C2—C3—H3120.4
O1—Mg1—O287.60 (10)C4—C3—H3120.4
O1i—Mg1—O2i87.60 (10)C3—C4—C5119.8 (4)
O1—Mg1—O2i91.62 (10)C3—C4—H4120.1
O2—Mg1—O2i178.78 (17)C5—C4—H4120.1
O1i—Mg1—N1i92.57 (11)N1—C5—C4121.1 (3)
O1—Mg1—N1i167.41 (12)N1—C5—C5i115.97 (18)
O2—Mg1—N1i90.53 (10)C4—C5—C5i122.9 (2)
O2i—Mg1—N1i90.44 (11)O3—C6—O4124.4 (3)
O1i—Mg1—N1167.41 (12)O3—C6—C7117.7 (3)
O1—Mg1—N192.57 (11)O4—C6—C7117.9 (3)
O2—Mg1—N190.44 (11)C8—C7—C12120.0
O2i—Mg1—N190.53 (10)C8—C7—C6119.6 (2)
N1i—Mg1—N174.99 (15)C12—C7—C6120.4 (2)
Mg1—O1—H1A124.2C7—C8—C9120.0
Mg1—O1—H1B121.4C7—C8—H8120.0
H1A—O1—H1B104.3C9—C8—H8120.0
Mg1—O2—H2A118.7C8—C9—C10120.0
Mg1—O2—H2B110.7C8—C9—H9120.0
H2A—O2—H2B126.6C10—C9—H9120.0
C1—N1—C5118.6 (3)F1—C10—C11120.4 (3)
C1—N1—Mg1124.9 (2)F1—C10—C9119.6 (3)
C5—N1—Mg1116.2 (2)C11—C10—C9120.0
N1—C1—C2122.3 (4)C10—C11—C12120.0
N1—C1—H1118.8C10—C11—H11120.0
C2—C1—H1118.8C12—C11—H11120.0
C3—C2—C1118.9 (4)C11—C12—C7120.0
C3—C2—H2120.5C11—C12—H12120.0
C1—C2—H2120.5C7—C12—H12120.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4ii0.821.902.715 (4)172
O1—H1B···O4iii0.821.902.682 (4)159
O2—H2A···O3iv0.821.842.661 (3)173
O2—H2B···O4iii0.821.992.796 (5)167
C3—H3···O3v0.932.553.257 (6)133
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Mg(C10H8N2)(H2O)4](C7H4FO2)2
Mr530.76
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)290
a, b, c (Å)27.911 (6), 12.423 (3), 7.5895 (15)
V3)2631.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.18 × 0.13 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2316, 2310, 1741
Rint0.096
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.207, 1.14
No. of reflections2310
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.902.715 (4)172
O1—H1B···O4ii0.821.902.682 (4)159
O2—H2A···O3iii0.821.842.661 (3)173
O2—H2B···O4ii0.821.992.796 (5)167
C3—H3···O3iv0.932.553.257 (6)133
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Education Office of Zhejiang Province (grant No. 20051316) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

References

First citationHalut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.  Google Scholar
First citationHao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411–1415.  CAS Google Scholar
First citationZhang, B.-S., Wu, C.-S. & Xu, W. (2010). Acta Cryst. E66, m1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds