organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-1-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-yl)ethanone

aSchool of Pharmacy, Henan University, Henan, 475004, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 8 November 2010; accepted 12 November 2010; online 17 November 2010)

In the title compound, C9H10ClNOS, the dihedral angle between the planar thio­phene ring and 2-chloro­ethane moiety (r.m.s deviations of 0.003 and 0.015 Å, respectively) is 45.79 (6)°. The tetra­hydro­pyridine ring adopts a half-chair conformation. The crystal packing reveals inter­molecular C—H⋯O inter­actions.

Related literature

The title compound is an inter­mediate in the synthesis of thienopyridine compounds, which are characterized by anti­platelet activity. For background to thienopyridine derivatives, see: Kam & Nethery (2003[Kam, P. C. A. & Nethery, C. M. (2003). Anaesthesia. 58, 28-35.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the preparation of 4,5,6,7-tetra­hydro-thieno[3,2-c]pyridine hydro­chloride, see: Lodewijk & Khatri (1989[Lodewijk, E. & Khatri, H. N. (1989). European Patent EP 0 342 118.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10ClNOS

  • Mr = 215.69

  • Orthorhombic, P c a 21

  • a = 10.5753 (4) Å

  • b = 10.8291 (4) Å

  • c = 8.0679 (3) Å

  • V = 923.94 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.861, Tmax = 0.901

  • 8326 measured reflections

  • 1927 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.057

  • S = 1.09

  • 1927 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 755 Friedel pairs

  • Flack parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.99 2.55 3.356 (2) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The thienopyridines ticlopidine and clopidogrel are inhibitors of platelet function in vivo. They are effective in preventing atherothrombotic events in cardiovascular, cerebrovascular, and peripheral vascular disease (Kam & Nethery, 2003). The crystal structure of the title compound, 2-chloro-1-(6,7-dihydrothieno [3,2-c]pyridin-5(4H)-yl)ethanone (I), an intermediate in the synthesis of some of the thienopyridines, is reported here.

In the title compound (Fig. 1) all bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The thiophene ring is planar (r.m.s. deviation 0.003 Å for C8/C9/N1/O1/Cl1). The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of φ2=217.5 (2) ° and QT=0.5052 (15) Å (Cremer & Pople, 1975). The packing is realised by intermolecular C—H···O (Table 1) interactions.

Related literature top

The title compound is an intermediate in the synthesis of thienopyridine compounds, which are characterized by antiplatelet activity. For background to thienopyridine derivatives, see: Kam & Nethery (2003). For bond-length data, see: Allen et al. (1987). For ring conformational analysis, see: Cremer & Pople (1975). For the preparation of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine hydrochloride, see: Lodewijk & Khatri (1989).

Experimental top

The synthesis of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine hydrochloride was reported by Lodewijk & Khatri (1989). In our experiment, 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine was released from 4,5,6,7-tetrahydrothieno[3,2,c]pyridine hydrochloride (5.0 g, 29 mmol) by reaction with NaHCO3 (7.3 g, 87 mmol) in the presence of CH2Cl2 (50 mL) and water (15 mL), stirred for 4 h at 273 K. The organic phase was washed with water and evaporated off under reduced pressure to get yellow oil (3.9 g, 28 mmol). The oil was dissolved in CH2Cl2 (50 mL) and 2-chloroacetyl chloride (3.5 g, 31 mmol) was added dropwise into the mixture. The mixture was stirred at 268 K for 5 h, the organic phase was washed with water and evaporated off under reduced pressure to get yellow oil (5.7 g) as a crude product. The product was dissolved in a mixture of petroleum ether (40 mL) and acetone (10 mL) at 273 K, and white crystals were grown slowly.

Refinement top

All the H atoms was located on their parent atoms with C—H=0.95Å (aromatic CH) and 0.99Å (CH2), Uiso = 1.2Ueq(C).

Structure description top

The thienopyridines ticlopidine and clopidogrel are inhibitors of platelet function in vivo. They are effective in preventing atherothrombotic events in cardiovascular, cerebrovascular, and peripheral vascular disease (Kam & Nethery, 2003). The crystal structure of the title compound, 2-chloro-1-(6,7-dihydrothieno [3,2-c]pyridin-5(4H)-yl)ethanone (I), an intermediate in the synthesis of some of the thienopyridines, is reported here.

In the title compound (Fig. 1) all bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The thiophene ring is planar (r.m.s. deviation 0.003 Å for C8/C9/N1/O1/Cl1). The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of φ2=217.5 (2) ° and QT=0.5052 (15) Å (Cremer & Pople, 1975). The packing is realised by intermolecular C—H···O (Table 1) interactions.

The title compound is an intermediate in the synthesis of thienopyridine compounds, which are characterized by antiplatelet activity. For background to thienopyridine derivatives, see: Kam & Nethery (2003). For bond-length data, see: Allen et al. (1987). For ring conformational analysis, see: Cremer & Pople (1975). For the preparation of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine hydrochloride, see: Lodewijk & Khatri (1989).

Computing details top

Data collection: CrystalClear(Rigaku/MSC, 2005); cell refinement: CrystalClear(Rigaku/MSC, 2005); data reduction: CrystalClear(Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), Displacement ellipsoids are drawn at the 50% probability level.
2-Chloro-1-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone top
Crystal data top
C9H10ClNOSF(000) = 448
Mr = 215.69Dx = 1.551 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2c -2acCell parameters from 3069 reflections
a = 10.5753 (4) Åθ = 1.9–27.9°
b = 10.8291 (4) ŵ = 0.59 mm1
c = 8.0679 (3) ÅT = 113 K
V = 923.94 (6) Å3Block, colourless
Z = 40.26 × 0.24 × 0.18 mm
Data collection top
Rigaku Saturn CCD area detector
diffractometer
1927 independent reflections
Radiation source: rotating anode1850 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and φ scansh = 1313
Absorption correction: multi-scan
CrystalClear
k = 1414
Tmin = 0.861, Tmax = 0.901l = 108
8326 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.23 e Å3
1927 reflectionsΔρmin = 0.20 e Å3
119 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.035 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 743 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (5)
Crystal data top
C9H10ClNOSV = 923.94 (6) Å3
Mr = 215.69Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.5753 (4) ŵ = 0.59 mm1
b = 10.8291 (4) ÅT = 113 K
c = 8.0679 (3) Å0.26 × 0.24 × 0.18 mm
Data collection top
Rigaku Saturn CCD area detector
diffractometer
1927 independent reflections
Absorption correction: multi-scan
CrystalClear
1850 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.901Rint = 0.026
8326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.23 e Å3
S = 1.09Δρmin = 0.20 e Å3
1927 reflectionsAbsolute structure: Flack (1983), 743 Friedel pairs
119 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26658 (4)0.10564 (3)0.20010 (5)0.02247 (11)
S10.01605 (3)0.55872 (3)0.34620 (6)0.01748 (10)
O10.35771 (11)0.10076 (10)0.39637 (14)0.0196 (3)
N10.17029 (11)0.18603 (10)0.47077 (16)0.0144 (3)
C10.14078 (15)0.62110 (13)0.4538 (2)0.0186 (3)
H10.15630.70720.46330.022*
C20.21493 (14)0.53226 (13)0.52392 (19)0.0171 (3)
H20.28770.54910.58910.021*
C30.17003 (14)0.41084 (12)0.48778 (19)0.0141 (3)
C40.06333 (14)0.40982 (12)0.39463 (19)0.0136 (3)
C50.01059 (13)0.29663 (11)0.3500 (3)0.0162 (3)
H5A0.00580.27340.23330.019*
H5B0.10230.31230.36310.019*
C60.03142 (13)0.19294 (12)0.4661 (2)0.0160 (3)
H6A0.00150.20860.57900.019*
H6B0.00350.11330.42690.019*
C70.22995 (14)0.29303 (12)0.5499 (2)0.0161 (3)
H7A0.32150.29360.52460.019*
H7B0.21980.28730.67170.019*
C80.24161 (16)0.10101 (12)0.3917 (2)0.0156 (3)
C90.16586 (13)0.00648 (13)0.29136 (19)0.0171 (3)
H9A0.11800.04960.20320.021*
H9B0.10430.03520.36490.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0279 (2)0.01909 (17)0.02041 (19)0.00927 (14)0.00056 (18)0.00199 (16)
S10.01631 (18)0.01532 (16)0.02081 (19)0.00237 (13)0.00046 (18)0.00111 (16)
O10.0134 (6)0.0224 (5)0.0229 (6)0.0025 (4)0.0001 (4)0.0021 (4)
N10.0134 (6)0.0131 (5)0.0167 (6)0.0018 (4)0.0003 (5)0.0000 (5)
C10.0198 (8)0.0159 (6)0.0201 (8)0.0039 (5)0.0037 (6)0.0013 (6)
C20.0161 (8)0.0189 (7)0.0163 (8)0.0033 (5)0.0011 (6)0.0025 (6)
C30.0130 (7)0.0162 (6)0.0131 (7)0.0011 (5)0.0024 (6)0.0005 (5)
C40.0114 (7)0.0138 (6)0.0157 (8)0.0014 (5)0.0033 (5)0.0002 (5)
C50.0116 (6)0.0170 (6)0.0198 (7)0.0001 (5)0.0018 (6)0.0029 (7)
C60.0127 (7)0.0140 (6)0.0214 (8)0.0023 (5)0.0043 (6)0.0021 (6)
C70.0155 (7)0.0150 (6)0.0179 (8)0.0019 (5)0.0036 (6)0.0002 (6)
C80.0193 (8)0.0146 (6)0.0128 (7)0.0020 (5)0.0005 (6)0.0049 (5)
C90.0173 (7)0.0165 (6)0.0175 (7)0.0043 (5)0.0001 (6)0.0016 (5)
Geometric parameters (Å, º) top
Cl1—C91.7751 (14)C3—C71.5103 (18)
S1—C11.7173 (17)C4—C51.4977 (18)
S1—C41.7329 (14)C5—C61.528 (2)
O1—C81.2283 (19)C5—H5A0.9900
N1—C81.3503 (19)C5—H5B0.9900
N1—C71.4658 (17)C6—H6A0.9900
N1—C61.4710 (18)C6—H6B0.9900
C1—C21.364 (2)C7—H7A0.9900
C1—H10.9500C7—H7B0.9900
C2—C31.4280 (19)C8—C91.532 (2)
C2—H20.9500C9—H9A0.9900
C3—C41.356 (2)C9—H9B0.9900
C1—S1—C491.75 (7)N1—C6—C5110.08 (11)
C8—N1—C7120.29 (12)N1—C6—H6A109.6
C8—N1—C6125.47 (13)C5—C6—H6A109.6
C7—N1—C6113.62 (11)N1—C6—H6B109.6
C2—C1—S1111.95 (11)C5—C6—H6B109.6
C2—C1—H1124.0H6A—C6—H6B108.2
S1—C1—H1124.0N1—C7—C3110.02 (12)
C1—C2—C3111.93 (13)N1—C7—H7A109.7
C1—C2—H2124.0C3—C7—H7A109.7
C3—C2—H2124.0N1—C7—H7B109.7
C4—C3—C2113.42 (13)C3—C7—H7B109.7
C4—C3—C7121.76 (12)H7A—C7—H7B108.2
C2—C3—C7124.78 (13)O1—C8—N1123.06 (14)
C3—C4—C5125.05 (13)O1—C8—C9122.51 (13)
C3—C4—S1110.95 (10)N1—C8—C9114.41 (13)
C5—C4—S1123.83 (11)C8—C9—Cl1111.26 (10)
C4—C5—C6107.60 (13)C8—C9—H9A109.4
C4—C5—H5A110.2Cl1—C9—H9A109.4
C6—C5—H5A110.2C8—C9—H9B109.4
C4—C5—H5B110.2Cl1—C9—H9B109.4
C6—C5—H5B110.2H9A—C9—H9B108.0
H5A—C5—H5B108.5
C4—S1—C1—C20.19 (13)C7—N1—C6—C567.73 (16)
S1—C1—C2—C30.67 (18)C4—C5—C6—N148.83 (16)
C1—C2—C3—C41.0 (2)C8—N1—C7—C3126.36 (14)
C1—C2—C3—C7178.84 (14)C6—N1—C7—C345.10 (16)
C2—C3—C4—C5174.63 (15)C4—C3—C7—N110.1 (2)
C7—C3—C4—C53.3 (2)C2—C3—C7—N1172.22 (13)
C2—C3—C4—S10.80 (17)C7—N1—C8—O17.9 (2)
C7—C3—C4—S1178.75 (12)C6—N1—C8—O1178.27 (14)
C1—S1—C4—C30.36 (13)C7—N1—C8—C9170.49 (12)
C1—S1—C4—C5175.15 (15)C6—N1—C8—C90.1 (2)
C3—C4—C5—C616.2 (2)O1—C8—C9—Cl14.40 (19)
S1—C4—C5—C6158.65 (11)N1—C8—C9—Cl1177.22 (11)
C8—N1—C6—C5103.21 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.356 (2)138
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC9H10ClNOS
Mr215.69
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)113
a, b, c (Å)10.5753 (4), 10.8291 (4), 8.0679 (3)
V3)923.94 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.26 × 0.24 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area detector
Absorption correctionMulti-scan
CrystalClear
Tmin, Tmax0.861, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
8326, 1927, 1850
Rint0.026
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.09
No. of reflections1927
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20
Absolute structureFlack (1983), 743 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: CrystalClear(Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.356 (2)138
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank Mr Hai-Bin Song, Nankai University, for helpful discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKam, P. C. A. & Nethery, C. M. (2003). Anaesthesia. 58, 28–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLodewijk, E. & Khatri, H. N. (1989). European Patent EP 0 342 118.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds