organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­fluoro-4-phenyl-1,3,2-dioxaborolo[4,5-c]chromen-5-ium-2-ide

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 19 November 2010; accepted 23 November 2010; online 30 November 2010)

In the crystal, the inversely oriented mol­ecules of the title compound, C15H9BF2O3, form stacks along the a axis via ππ inter­actions between parallel phenyl­chromenium fragments. Linked by a network of C—H⋯F inter­actions, the stacks form layers in the ac plane that are dispersively stabilized in the crystal structure. Two F atoms bonded to the B atom are located in the plane perpendicular to the planar skeleton of the mol­ecule made rigid by two intra­molecular C—H⋯O inter­actions.

Related literature

For general background to 3-hy­droxy-2-phenyl-4H-chromene-4-one (flavonol) and its derivatives, see: Kukharenko & Avramenko (2001[Kukharenko, A. V. & Avramenko, G. V. (2001). Russ. J. Gen. Chem. 71, 1562-1564.]); Petković et al. (2010[Petković, M., Petrović, B., Savić, J., Bugarčić, Ž. D., Dimitrić-Marković, J., Momić, T. & Vasić, V. (2010). Int. J. Mass Spectrom. 290, 39—46.]); Roshal et al. (1998[Roshal, A. D., Grigorovich, A. V., Doroshenko, A. O., Pivovarenko, V. G. & Demchenko, A. P. (1998). J. Phys. Chem. A, 102, 5907-5914.], 2003[Roshal, A. D., Sakhno, T. V., Verezubova, A. A., Ptiagina, L. M., Musatov, V. I., Wróblewska, A. & Błażejowski, J. (2003). Funct. Mater. 10, 419-426.]); Sytnik et al. (1994[Sytnik, A., Gormin, D. & Kasha, M. (1994). Proc. Natl Acad. Sci. USA, 91, 11968-11972.]). For related structures, see: Belogh-Hergovich et al. (1999[Belogh-Hergovich, E., Kaizer, J., Speier, G., Argay, G. & Párkányi, L. (1999). J. Chem. Soc. Dalton Trans. pp. 3847-3854.]); Farina et al. (1995[Farina, Y., Yamin, B. M., Fun, H.-K., Yip, B.-C. & Teoh, S.-G. (1995). Acta Cryst. C51, 1537-1540.]); Kaizer et al. (2007[Kaizer, J., Barath, G., Pap, J., Speier, G., Giorgi, M. & Reglier, M. (2007). Chem. Commun. pp. 5235-5237.]); Okabe et al. (2003[Okabe, N., Yamamoto, E. & Yasunori, M. (2003). Acta Cryst. E59, m715-m716.]). For inter­molecular inter­actions, see: Choudhury & Guru Row (2004[Choudhury, A. R. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 47-52.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Thalladi et al. (1998[Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]). For the synthesis, see: Roshal et al. (2002[Roshal, A. D., Munoz, A., Sakhno, T. V. & Boisdon, M.-T. (2002). Chem. Heterocycl. Compd, 11, 1597-1604.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9BF2O3

  • Mr = 286.03

  • Triclinic, [P \overline 1]

  • a = 7.1969 (10) Å

  • b = 9.7054 (11) Å

  • c = 9.9986 (15) Å

  • α = 74.310 (11)°

  • β = 75.931 (13)°

  • γ = 71.296 (11)°

  • V = 627.43 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.6 × 0.02 × 0.02 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.945, Tmax = 0.979

  • 4848 measured reflections

  • 2218 independent reflections

  • 996 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.234

  • S = 1.10

  • 2218 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3 0.93 2.37 2.700 (6) 100
C6—H6⋯O1 0.93 2.29 2.967 (6) 129
C11—H11⋯F1i 0.93 2.44 3.373 (6) 177
Symmetry code: (i) -x+1, -y, -z.

Table 2
ππ inter­actions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the O3/C7–C10/C15, C10–C15 and C1–C6 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicuar distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 1ii 3.512 (3) 0 3.344 (2) 1.076 (2)
1 3iii 3.572 (3) 2.3 (3) 3.450 (2) 0.956 (2)
2 3ii 3.970 (3) 4.3 (3) 3.342 (2) 2.143 (2)
2 3iii 3.925 (3) 4.3 (3) 3.472 (2) 1.831 (2)
3 1iii 3.571 (3) 2.3 (3) 3.428 (2) 1.000 (2)
3 2ii 3.970 (3) 4.3 (3) 3.492 (2) 1.889 (2)
3 2iii 3.925 (3) 4.3 (3) 3.404 (2) 1.954 (2)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Hydroxy-2-phenyl-4H-chromene-4-one (flavonol) and its derivatives have been investigated for a long time owing to their unique spectral properties emerging from the excited state intramolecular proton transfer occurring in them (Sytnik et al., 1994). These compounds turned out to be convenient analytical probes because of their considerable ability to complex various chemical entities (molecules, ions) (Roshal et al., 1998; Roshal et al., 2003; Petković et al., 2010). The latter property was the reason for turning our attention to the possibility of applying of flavonol as an analytical spectral probe for boron compounds (Roshal et al., 2002). As part of these investigations we wanted to see how flavonol behaved in the presence of BF3. Thus we mixed both reagents in dichloromethane, expecting to obtain a molecular complex of flavonol and BF3. The structure of the crystalline product that was actually separated is presented here. It appears that not complexation but condensation of the two reagents, accompanied by the release of HF, takes place (Kukharenko & Avramenko, 2001) and a molecule of a formally zwitterionic canonical structure was produced. Crystal structures of various flavonol complexes have so far been reported (Farina & Yamin, 1995; Belogh-Hergovich et al., 1999; Okabe et al., 2003; Kaizer et al., 2007), but none of them have contained boron.

The canonical structure of the title compound suggests that the phenylchromenium core of the molecule is aromatic. This is confirmed by analysis of the bond lengths and angles, as well as comparison of the structure determinated here with the structures of selected compounds containing flavonol units (Farina et al., 1995; Belogh-Hergovich et al., 1999; Okabe et al., 2003; Kaizer et al., 2007). Furthermore, the average deviation from planarity of the phenylchromenium core is 0.0215 (2) and that of the molecule's skeleton is 0.0373 (2). This implies that both the above-mentioned molecular fragments are planar and that two F atoms at the B atom are located in a plane perpendicular to the molecular one (the dihedral angle between the plane of the molecule's skeleton and the plane of B1–F1–F2 is 89.5 (1)°). Furthermore, two intramolecular C–H···O interactions (Table 1, Fig. 1) stiffen the phenylchromenium core, undoubtedly contributing to its planarity.

In the crystal structure, inversely oriented molecules form stacks along the a axis via π-π interactions between parallel phenylchromenium fragments (Table 2, Figs. 2 and 3). These stacks are linked by a network of C–H···F interactions arranged in layers in the ac plane (Table 1, Figs. 2 and 3). The above-mentioned layers are dispersively stabilized in the crystal lattice. The C–H···O (Novoa et al., 2006) and C–H···F (Thalladi et al.(1998); Choudhury & Guru Row (2004)) interactions are of the hydrogen bond type. Like the π-π contacts, they are of an attractive nature (Hunter et al., 2001).

Related literature top

For general background to 3-hydroxy-2-phenyl-4iH/i-chromene-4-one (flavonol) and its derivatives, see: Kukharenko & Avramenko (2001); Petković et al. (2010); Roshal et al. (1998); Roshal et al. (2003); Sytnik et al. (1994). For related structures, see: Belogh-Hergovich et al. (1999); Farina et al. (1995); Kaizer et al. (2007); Okabe et al. (2003). For intermolecular interactions, see: Choudhury & Guru Row (2004); Hunter et al. (2001); Novoa et al. (2006); Thalladi et al. (1998). For the synthesis, see: Roshal et al. (2002).

Experimental top

The title compound was obtained during the reaction of 3-hydroxy-2-phenyl-4H-chromene-4-one (flavonol) with BF3 (Roshal et al., 2002). Thus, boron trifluoride dissolved in anhydrous diethyl ether was added dropwise, with continuous stirring, to an equimolar amount of a saturated solution of flavonol in anhydrous dichloromethane. After evaporation of the solvents, the residue was recrystallized twice from N,N-dimethylformamide yielding yellow fluorescing crystals suitable for X-Ray investigations (m.p. 485 - 487 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

3-Hydroxy-2-phenyl-4H-chromene-4-one (flavonol) and its derivatives have been investigated for a long time owing to their unique spectral properties emerging from the excited state intramolecular proton transfer occurring in them (Sytnik et al., 1994). These compounds turned out to be convenient analytical probes because of their considerable ability to complex various chemical entities (molecules, ions) (Roshal et al., 1998; Roshal et al., 2003; Petković et al., 2010). The latter property was the reason for turning our attention to the possibility of applying of flavonol as an analytical spectral probe for boron compounds (Roshal et al., 2002). As part of these investigations we wanted to see how flavonol behaved in the presence of BF3. Thus we mixed both reagents in dichloromethane, expecting to obtain a molecular complex of flavonol and BF3. The structure of the crystalline product that was actually separated is presented here. It appears that not complexation but condensation of the two reagents, accompanied by the release of HF, takes place (Kukharenko & Avramenko, 2001) and a molecule of a formally zwitterionic canonical structure was produced. Crystal structures of various flavonol complexes have so far been reported (Farina & Yamin, 1995; Belogh-Hergovich et al., 1999; Okabe et al., 2003; Kaizer et al., 2007), but none of them have contained boron.

The canonical structure of the title compound suggests that the phenylchromenium core of the molecule is aromatic. This is confirmed by analysis of the bond lengths and angles, as well as comparison of the structure determinated here with the structures of selected compounds containing flavonol units (Farina et al., 1995; Belogh-Hergovich et al., 1999; Okabe et al., 2003; Kaizer et al., 2007). Furthermore, the average deviation from planarity of the phenylchromenium core is 0.0215 (2) and that of the molecule's skeleton is 0.0373 (2). This implies that both the above-mentioned molecular fragments are planar and that two F atoms at the B atom are located in a plane perpendicular to the molecular one (the dihedral angle between the plane of the molecule's skeleton and the plane of B1–F1–F2 is 89.5 (1)°). Furthermore, two intramolecular C–H···O interactions (Table 1, Fig. 1) stiffen the phenylchromenium core, undoubtedly contributing to its planarity.

In the crystal structure, inversely oriented molecules form stacks along the a axis via π-π interactions between parallel phenylchromenium fragments (Table 2, Figs. 2 and 3). These stacks are linked by a network of C–H···F interactions arranged in layers in the ac plane (Table 1, Figs. 2 and 3). The above-mentioned layers are dispersively stabilized in the crystal lattice. The C–H···O (Novoa et al., 2006) and C–H···F (Thalladi et al.(1998); Choudhury & Guru Row (2004)) interactions are of the hydrogen bond type. Like the π-π contacts, they are of an attractive nature (Hunter et al., 2001).

For general background to 3-hydroxy-2-phenyl-4iH/i-chromene-4-one (flavonol) and its derivatives, see: Kukharenko & Avramenko (2001); Petković et al. (2010); Roshal et al. (1998); Roshal et al. (2003); Sytnik et al. (1994). For related structures, see: Belogh-Hergovich et al. (1999); Farina et al. (1995); Kaizer et al. (2007); Okabe et al. (2003). For intermolecular interactions, see: Choudhury & Guru Row (2004); Hunter et al. (2001); Novoa et al. (2006); Thalladi et al. (1998). For the synthesis, see: Roshal et al. (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg3 denote the ring centroids. The C–H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C–H···O and C–H···F interactions are represented by dashed lines, the ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y, –z; (ii) –x + 1, –y, –z + 1; (iii) –x, –y, –z + 1.]
[Figure 3] Fig. 3. Molecular stacks in the crystal structure, viewed along the a axis. The C–H···F interactions are represented by dashed lines. H atoms not involved in interactions have been omitted.
2,2-Difluoro-4-phenyl-1,3,2-dioxaborolo[4,5-c]chromen-5-ium-2-ide top
Crystal data top
C15H9BF2O3Z = 2
Mr = 286.03F(000) = 292
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1969 (10) ÅCell parameters from 2218 reflections
b = 9.7054 (11) Åθ = 3.0–25.1°
c = 9.9986 (15) ŵ = 0.12 mm1
α = 74.310 (11)°T = 295 K
β = 75.931 (13)°Needle, yellow
γ = 71.296 (11)°0.6 × 0.02 × 0.02 mm
V = 627.43 (15) Å3
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2218 independent reflections
Radiation source: Enhance (Mo) X-ray Source996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1011
Tmin = 0.945, Tmax = 0.979l = 911
4848 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.4107P]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H9BF2O3γ = 71.296 (11)°
Mr = 286.03V = 627.43 (15) Å3
Triclinic, P1Z = 2
a = 7.1969 (10) ÅMo Kα radiation
b = 9.7054 (11) ŵ = 0.12 mm1
c = 9.9986 (15) ÅT = 295 K
α = 74.310 (11)°0.6 × 0.02 × 0.02 mm
β = 75.931 (13)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2218 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
996 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.979Rint = 0.034
4848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
2218 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.4867 (13)0.1835 (7)0.2184 (8)0.075 (2)
O10.3873 (5)0.2005 (3)0.3680 (3)0.0605 (10)
C10.1714 (6)0.1185 (5)0.6585 (5)0.0395 (11)
F10.3869 (6)0.2186 (4)0.1401 (3)0.1025 (14)
O20.4773 (5)0.0183 (3)0.1743 (3)0.0594 (10)
C20.0722 (8)0.0564 (6)0.7748 (5)0.0600 (15)
H20.04990.04470.76940.072*
F20.6830 (6)0.2651 (4)0.2068 (4)0.1059 (14)
O30.2079 (5)0.1167 (3)0.5341 (3)0.0480 (9)
C30.0071 (9)0.1459 (6)0.8983 (6)0.0680 (16)
H30.05950.10450.97640.082*
C40.0389 (8)0.2934 (6)0.9077 (6)0.0628 (15)
H40.00610.35210.99190.075*
C50.1364 (8)0.3559 (6)0.7946 (6)0.0601 (15)
H50.15950.45740.80220.072*
C60.2010 (7)0.2690 (5)0.6686 (6)0.0535 (13)
H60.26430.31140.59070.064*
C70.2432 (6)0.0265 (5)0.5263 (5)0.0408 (11)
C80.3379 (7)0.0667 (5)0.3996 (5)0.0436 (12)
C90.3902 (7)0.0404 (5)0.2829 (5)0.0453 (12)
C100.3501 (7)0.1903 (5)0.2890 (5)0.0414 (11)
C110.3933 (7)0.3038 (5)0.1770 (5)0.0549 (14)
H110.45250.28350.08820.066*
C120.3484 (8)0.4446 (6)0.1983 (6)0.0587 (14)
H120.37390.52120.12370.070*
C130.2639 (8)0.4731 (5)0.3325 (6)0.0601 (15)
H130.23710.56890.34660.072*
C140.2191 (7)0.3639 (5)0.4443 (6)0.0566 (14)
H140.16360.38440.53340.068*
C150.2586 (7)0.2227 (5)0.4210 (5)0.0454 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.113 (6)0.055 (4)0.059 (5)0.037 (4)0.023 (4)0.031 (4)
O10.090 (3)0.0377 (19)0.050 (2)0.0213 (18)0.0070 (19)0.0153 (16)
C10.037 (3)0.042 (3)0.039 (3)0.013 (2)0.005 (2)0.007 (2)
F10.189 (4)0.081 (2)0.059 (2)0.073 (3)0.000 (2)0.0260 (19)
O20.086 (3)0.047 (2)0.041 (2)0.0228 (18)0.0087 (19)0.0157 (17)
C20.076 (4)0.058 (3)0.048 (3)0.026 (3)0.003 (3)0.016 (3)
F20.122 (3)0.062 (2)0.092 (3)0.004 (2)0.040 (2)0.025 (2)
O30.059 (2)0.0383 (18)0.043 (2)0.0122 (15)0.0004 (16)0.0117 (16)
C30.093 (4)0.076 (4)0.037 (3)0.036 (3)0.005 (3)0.014 (3)
C40.066 (4)0.073 (4)0.043 (3)0.032 (3)0.001 (3)0.007 (3)
C50.058 (3)0.054 (3)0.055 (4)0.013 (3)0.004 (3)0.003 (3)
C60.056 (3)0.049 (3)0.054 (3)0.016 (3)0.002 (3)0.012 (3)
C70.041 (3)0.040 (3)0.041 (3)0.009 (2)0.006 (2)0.010 (2)
C80.044 (3)0.043 (3)0.039 (3)0.009 (2)0.004 (2)0.008 (2)
C90.047 (3)0.047 (3)0.041 (3)0.014 (2)0.000 (2)0.014 (2)
C100.045 (3)0.038 (3)0.043 (3)0.012 (2)0.005 (2)0.011 (2)
C110.065 (4)0.050 (3)0.049 (3)0.022 (3)0.001 (3)0.011 (3)
C120.066 (4)0.047 (3)0.056 (4)0.021 (3)0.001 (3)0.001 (3)
C130.071 (4)0.038 (3)0.066 (4)0.010 (3)0.001 (3)0.018 (3)
C140.062 (3)0.042 (3)0.061 (4)0.011 (3)0.001 (3)0.018 (3)
C150.046 (3)0.039 (3)0.046 (3)0.012 (2)0.002 (2)0.006 (2)
Geometric parameters (Å, º) top
B1—F11.349 (8)C5—C61.381 (7)
B1—F21.375 (9)C5—H50.9300
B1—O11.483 (7)C6—H60.9300
B1—O21.527 (7)C7—C81.377 (6)
O1—C81.336 (5)C8—C91.402 (6)
C1—C61.386 (6)C9—C101.405 (6)
C1—C21.387 (6)C10—C111.396 (6)
C1—C71.462 (6)C10—C151.395 (6)
O2—C91.293 (5)C11—C121.363 (7)
C2—C31.378 (7)C11—H110.9300
C2—H20.9300C12—C131.394 (7)
O3—C71.351 (5)C12—H120.9300
O3—C151.371 (5)C13—C141.371 (7)
C3—C41.356 (7)C13—H130.9300
C3—H30.9300C14—C151.380 (6)
C4—C51.360 (7)C14—H140.9300
C4—H40.9300
F1—B1—F2112.0 (5)O3—C7—C8117.9 (4)
F1—B1—O1110.8 (5)O3—C7—C1113.2 (4)
F2—B1—O1110.9 (6)C8—C7—C1128.9 (4)
F1—B1—O2110.6 (6)O1—C8—C7128.2 (4)
F2—B1—O2108.8 (5)O1—C8—C9111.7 (4)
O1—B1—O2103.3 (4)C7—C8—C9120.1 (4)
C8—O1—B1106.4 (4)O2—C9—C8111.0 (4)
C6—C1—C2119.3 (4)O2—C9—C10126.5 (4)
C6—C1—C7120.2 (4)C8—C9—C10122.5 (4)
C2—C1—C7120.6 (4)C11—C10—C15119.6 (4)
C9—O2—B1107.5 (4)C11—C10—C9125.9 (5)
C3—C2—C1119.3 (5)C15—C10—C9114.6 (4)
C3—C2—H2120.3C12—C11—C10119.7 (5)
C1—C2—H2120.3C12—C11—H11120.2
C7—O3—C15122.7 (4)C10—C11—H11120.2
C4—C3—C2120.9 (5)C11—C12—C13119.7 (5)
C4—C3—H3119.5C11—C12—H12120.1
C2—C3—H3119.5C13—C12—H12120.1
C3—C4—C5120.3 (5)C14—C13—C12121.9 (5)
C3—C4—H4119.8C14—C13—H13119.1
C5—C4—H4119.8C12—C13—H13119.1
C4—C5—C6120.2 (5)C13—C14—C15118.2 (5)
C4—C5—H5119.9C13—C14—H14120.9
C6—C5—H5119.9C15—C14—H14120.9
C1—C6—C5119.9 (5)O3—C15—C14116.8 (4)
C1—C6—H6120.1O3—C15—C10122.2 (4)
C5—C6—H6120.1C14—C15—C10120.9 (4)
F1—B1—O1—C8119.9 (5)C1—C7—C8—C9178.1 (4)
F2—B1—O1—C8114.9 (4)B1—O2—C9—C80.3 (6)
O2—B1—O1—C81.5 (7)B1—O2—C9—C10179.8 (5)
F1—B1—O2—C9119.3 (5)O1—C8—C9—O21.4 (6)
F2—B1—O2—C9117.2 (5)C7—C8—C9—O2180.0 (4)
O1—B1—O2—C90.7 (7)O1—C8—C9—C10178.7 (4)
C6—C1—C2—C30.7 (7)C7—C8—C9—C100.2 (7)
C7—C1—C2—C3179.7 (5)O2—C9—C10—C111.6 (8)
C1—C2—C3—C40.1 (8)C8—C9—C10—C11178.5 (5)
C2—C3—C4—C50.1 (8)O2—C9—C10—C15178.4 (5)
C3—C4—C5—C61.0 (8)C8—C9—C10—C151.4 (6)
C2—C1—C6—C51.6 (7)C15—C10—C11—C120.9 (7)
C7—C1—C6—C5178.7 (4)C9—C10—C11—C12179.1 (5)
C4—C5—C6—C11.8 (7)C10—C11—C12—C131.5 (8)
C15—O3—C7—C81.5 (6)C11—C12—C13—C141.8 (8)
C15—O3—C7—C1178.3 (4)C12—C13—C14—C150.5 (8)
C6—C1—C7—O3178.3 (4)C7—O3—C15—C14178.3 (4)
C2—C1—C7—O32.1 (6)C7—O3—C15—C100.2 (7)
C6—C1—C7—C81.9 (7)C13—C14—C15—O3178.5 (4)
C2—C1—C7—C8177.7 (5)C13—C14—C15—C102.9 (7)
B1—O1—C8—C7179.8 (6)C11—C10—C15—O3178.3 (4)
B1—O1—C8—C91.8 (6)C9—C10—C15—O31.6 (7)
O3—C7—C8—O1179.9 (4)C11—C10—C15—C143.2 (7)
C1—C7—C8—O10.2 (8)C9—C10—C15—C14176.8 (4)
O3—C7—C8—C91.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.372.700 (6)100
C6—H6···O10.932.292.967 (6)129
C11—H11···F1i0.932.443.373 (6)177
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H9BF2O3
Mr286.03
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.1969 (10), 9.7054 (11), 9.9986 (15)
α, β, γ (°)74.310 (11), 75.931 (13), 71.296 (11)
V3)627.43 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.6 × 0.02 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.945, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4848, 2218, 996
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.234, 1.10
No. of reflections2218
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.372.700 (6)100
C6—H6···O10.932.292.967 (6)129
C11—H11···F1i0.932.443.373 (6)177
Symmetry code: (i) x+1, y, z.
ππ interactions (Å,°). top
Cg1, Cg2 and Cg3 are the centroids of the O3/C7–C10/C15, C10–C15 and C1–C6 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicuar distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
11ii3.512 (3)03.344 (2)1.076 (2)
13iii3.572 (3)2.3 (3)3.450 (2)0.956 (2)
23ii3.970 (3)4.3 (3)3.342 (2)2.143 (2)
23iii3.925 (3)4.3 (3)3.472 (2)1.831 (2)
31iii3.571 (3)2.3 (3)3.428 (2)1.000 (2)
32ii3.970 (3)4.3 (3)3.492 (2)1.889 (2)
32iii3.925 (3)4.3 (3)3.404 (2)1.954 (2)
Symmetry codes: (ii) -x + 1, -y, -z + 1; (iii) -x, -y, -z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–0).

References

First citationBelogh-Hergovich, E., Kaizer, J., Speier, G., Argay, G. & Párkányi, L. (1999). J. Chem. Soc. Dalton Trans. pp. 3847–3854.  Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarina, Y., Yamin, B. M., Fun, H.-K., Yip, B.-C. & Teoh, S.-G. (1995). Acta Cryst. C51, 1537–1540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKaizer, J., Barath, G., Pap, J., Speier, G., Giorgi, M. & Reglier, M. (2007). Chem. Commun. pp. 5235–5237.  Web of Science CSD CrossRef Google Scholar
First citationKukharenko, A. V. & Avramenko, G. V. (2001). Russ. J. Gen. Chem. 71, 1562–1564.  Web of Science CrossRef CAS Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOkabe, N., Yamamoto, E. & Yasunori, M. (2003). Acta Cryst. E59, m715–m716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetković, M., Petrović, B., Savić, J., Bugarčić, Ž. D., Dimitrić-Marković, J., Momić, T. & Vasić, V. (2010). Int. J. Mass Spectrom. 290, 39—46.  Google Scholar
First citationRoshal, A. D., Grigorovich, A. V., Doroshenko, A. O., Pivovarenko, V. G. & Demchenko, A. P. (1998). J. Phys. Chem. A, 102, 5907–5914.  Web of Science CrossRef CAS Google Scholar
First citationRoshal, A. D., Munoz, A., Sakhno, T. V. & Boisdon, M.-T. (2002). Chem. Heterocycl. Compd, 11, 1597–1604.  Google Scholar
First citationRoshal, A. D., Sakhno, T. V., Verezubova, A. A., Ptiagina, L. M., Musatov, V. I., Wróblewska, A. & Błażejowski, J. (2003). Funct. Mater. 10, 419–426.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSytnik, A., Gormin, D. & Kasha, M. (1994). Proc. Natl Acad. Sci. USA, 91, 11968–11972.  CrossRef CAS PubMed Web of Science Google Scholar
First citationThalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds