organic compounds
1,4-Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]butane
aSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and bSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn
The 20H18N4S4, contains one half-molecule situated on a twofold rotation axis, in which the thiadiazole and phenyl rings are twisted by 7.2 (3)°. In the crystal, weak intermolecular C—H⋯π interactions link the molecules into layers parallel to (103).
of the title compound, CRelated literature
For the biological activity of 1,3,4-triazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For the of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane, see: Wang et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811006064/cv5053sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006064/cv5053Isup2.hkl
A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 85% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).
All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of (I) showing the atom-labelling scheme [symmetry code: (A)-x + 1, -y + 1, -z]. Displacement ellipsoids are drawn at the 85% probability level. |
C20H18N4S4 | F(000) = 460 |
Mr = 442.62 | Dx = 1.472 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3630 reflections |
a = 5.7976 (7) Å | θ = 1.5–27.9° |
b = 13.4393 (14) Å | µ = 0.49 mm−1 |
c = 12.9784 (12) Å | T = 113 K |
β = 99.120 (7)° | Prism, colorless |
V = 998.44 (18) Å3 | 0.20 × 0.18 × 0.10 mm |
Z = 2 |
Rigaku Saturn CCD area-detector diffractometer | 2384 independent reflections |
Radiation source: rotating anode | 1870 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.038 |
Detector resolution: 14.63 pixels mm-1 | θmax = 27.9°, θmin = 2.2° |
ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −17→17 |
Tmin = 0.908, Tmax = 0.953 | l = −15→16 |
9992 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0495P)2] where P = (Fo2 + 2Fc2)/3 |
2384 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C20H18N4S4 | V = 998.44 (18) Å3 |
Mr = 442.62 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.7976 (7) Å | µ = 0.49 mm−1 |
b = 13.4393 (14) Å | T = 113 K |
c = 12.9784 (12) Å | 0.20 × 0.18 × 0.10 mm |
β = 99.120 (7)° |
Rigaku Saturn CCD area-detector diffractometer | 2384 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1870 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 0.953 | Rint = 0.038 |
9992 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.49 e Å−3 |
2384 reflections | Δρmin = −0.22 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.18924 (6) | 0.48167 (3) | 0.35236 (3) | 0.01929 (12) | |
S2 | 0.94277 (7) | 0.60479 (3) | 0.17655 (3) | 0.02206 (13) | |
N1 | 0.8027 (2) | 0.39565 (9) | 0.36814 (10) | 0.0221 (3) | |
N2 | 0.7508 (2) | 0.46308 (10) | 0.28684 (10) | 0.0206 (3) | |
C1 | 1.3577 (3) | 0.34573 (11) | 0.54385 (12) | 0.0210 (3) | |
H1 | 1.4506 | 0.3955 | 0.5185 | 0.025* | |
C2 | 1.4532 (3) | 0.28628 (12) | 0.62747 (12) | 0.0213 (3) | |
H2 | 1.6099 | 0.2969 | 0.6601 | 0.026* | |
C3 | 1.3224 (3) | 0.21206 (12) | 0.66341 (12) | 0.0237 (4) | |
H3 | 1.3889 | 0.1710 | 0.7199 | 0.028* | |
C4 | 1.0921 (3) | 0.19787 (12) | 0.61620 (13) | 0.0259 (4) | |
H4 | 1.0013 | 0.1469 | 0.6409 | 0.031* | |
C5 | 0.9936 (3) | 0.25738 (12) | 0.53341 (12) | 0.0216 (3) | |
H5 | 0.8363 | 0.2469 | 0.5015 | 0.026* | |
C6 | 1.1262 (3) | 0.33270 (11) | 0.49711 (11) | 0.0173 (3) | |
C7 | 1.0225 (3) | 0.39663 (11) | 0.40992 (12) | 0.0171 (3) | |
C8 | 0.9342 (3) | 0.51325 (11) | 0.27088 (12) | 0.0175 (3) | |
C9 | 0.6507 (3) | 0.59299 (11) | 0.10328 (12) | 0.0211 (3) | |
H9A | 0.5373 | 0.5895 | 0.1527 | 0.025* | |
H9B | 0.6143 | 0.6531 | 0.0597 | 0.025* | |
C10 | 0.6215 (2) | 0.50122 (11) | 0.03322 (12) | 0.0205 (3) | |
H10A | 0.6445 | 0.4405 | 0.0769 | 0.025* | |
H10B | 0.7419 | 0.5018 | −0.0130 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01581 (19) | 0.0215 (2) | 0.0199 (2) | −0.00349 (15) | 0.00081 (16) | 0.00081 (15) |
S2 | 0.0213 (2) | 0.0229 (2) | 0.0209 (2) | −0.00350 (16) | −0.00005 (17) | 0.00217 (16) |
N1 | 0.0185 (7) | 0.0276 (7) | 0.0199 (7) | −0.0024 (6) | 0.0025 (6) | 0.0024 (6) |
N2 | 0.0171 (6) | 0.0260 (7) | 0.0185 (7) | −0.0008 (6) | 0.0021 (5) | 0.0017 (5) |
C1 | 0.0198 (8) | 0.0196 (8) | 0.0232 (9) | −0.0048 (6) | 0.0025 (7) | −0.0012 (6) |
C2 | 0.0160 (7) | 0.0247 (8) | 0.0224 (9) | −0.0007 (6) | −0.0003 (6) | −0.0022 (7) |
C3 | 0.0249 (8) | 0.0251 (9) | 0.0208 (8) | 0.0021 (7) | 0.0027 (7) | 0.0039 (7) |
C4 | 0.0235 (8) | 0.0267 (9) | 0.0286 (9) | −0.0040 (7) | 0.0072 (7) | 0.0057 (7) |
C5 | 0.0155 (7) | 0.0267 (8) | 0.0223 (9) | −0.0040 (6) | 0.0025 (6) | −0.0008 (7) |
C6 | 0.0189 (7) | 0.0175 (7) | 0.0159 (8) | −0.0003 (6) | 0.0041 (6) | −0.0036 (6) |
C7 | 0.0168 (7) | 0.0184 (7) | 0.0169 (8) | −0.0024 (6) | 0.0052 (6) | −0.0038 (6) |
C8 | 0.0172 (7) | 0.0208 (8) | 0.0140 (8) | 0.0004 (6) | 0.0010 (6) | −0.0040 (6) |
C9 | 0.0194 (8) | 0.0221 (8) | 0.0207 (9) | 0.0017 (6) | −0.0008 (7) | 0.0015 (6) |
C10 | 0.0184 (8) | 0.0224 (8) | 0.0194 (8) | 0.0023 (6) | −0.0007 (6) | 0.0003 (6) |
S1—C8 | 1.7289 (15) | C3—H3 | 0.9500 |
S1—C7 | 1.7400 (15) | C4—C5 | 1.388 (2) |
S2—C8 | 1.7417 (16) | C4—H4 | 0.9500 |
S2—C9 | 1.8126 (15) | C5—C6 | 1.397 (2) |
N1—C7 | 1.303 (2) | C5—H5 | 0.9500 |
N1—N2 | 1.3872 (17) | C6—C7 | 1.471 (2) |
N2—C8 | 1.303 (2) | C9—C10 | 1.526 (2) |
C1—C2 | 1.390 (2) | C9—H9A | 0.9900 |
C1—C6 | 1.393 (2) | C9—H9B | 0.9900 |
C1—H1 | 0.9500 | C10—C10i | 1.531 (3) |
C2—C3 | 1.379 (2) | C10—H10A | 0.9900 |
C2—H2 | 0.9500 | C10—H10B | 0.9900 |
C3—C4 | 1.391 (2) | ||
C8—S1—C7 | 86.82 (7) | C1—C6—C7 | 120.63 (14) |
C8—S2—C9 | 100.29 (7) | C5—C6—C7 | 120.18 (13) |
C7—N1—N2 | 112.95 (13) | N1—C7—C6 | 124.58 (14) |
C8—N2—N1 | 112.01 (12) | N1—C7—S1 | 113.64 (12) |
C2—C1—C6 | 120.32 (15) | C6—C7—S1 | 121.78 (11) |
C2—C1—H1 | 119.8 | N2—C8—S1 | 114.58 (12) |
C6—C1—H1 | 119.8 | N2—C8—S2 | 126.30 (12) |
C3—C2—C1 | 120.49 (14) | S1—C8—S2 | 119.11 (9) |
C3—C2—H2 | 119.8 | C10—C9—S2 | 112.94 (11) |
C1—C2—H2 | 119.8 | C10—C9—H9A | 109.0 |
C2—C3—C4 | 119.44 (15) | S2—C9—H9A | 109.0 |
C2—C3—H3 | 120.3 | C10—C9—H9B | 109.0 |
C4—C3—H3 | 120.3 | S2—C9—H9B | 109.0 |
C5—C4—C3 | 120.70 (15) | H9A—C9—H9B | 107.8 |
C5—C4—H4 | 119.6 | C9—C10—C10i | 111.00 (16) |
C3—C4—H4 | 119.6 | C9—C10—H10A | 109.4 |
C4—C5—C6 | 119.84 (15) | C10i—C10—H10A | 109.4 |
C4—C5—H5 | 120.1 | C9—C10—H10B | 109.4 |
C6—C5—H5 | 120.1 | C10i—C10—H10B | 109.4 |
C1—C6—C5 | 119.19 (14) | H10A—C10—H10B | 108.0 |
C7—N1—N2—C8 | −0.54 (19) | C1—C6—C7—S1 | 6.9 (2) |
C6—C1—C2—C3 | 1.7 (2) | C5—C6—C7—S1 | −172.53 (12) |
C1—C2—C3—C4 | −0.9 (2) | C8—S1—C7—N1 | 0.48 (12) |
C2—C3—C4—C5 | 0.2 (3) | C8—S1—C7—C6 | −179.80 (13) |
C3—C4—C5—C6 | −0.2 (3) | N1—N2—C8—S1 | 0.93 (17) |
C2—C1—C6—C5 | −1.8 (2) | N1—N2—C8—S2 | −179.93 (11) |
C2—C1—C6—C7 | 178.80 (14) | C7—S1—C8—N2 | −0.81 (13) |
C4—C5—C6—C1 | 1.1 (2) | C7—S1—C8—S2 | 179.98 (10) |
C4—C5—C6—C7 | −179.52 (15) | C9—S2—C8—N2 | −7.85 (16) |
N2—N1—C7—C6 | −179.79 (13) | C9—S2—C8—S1 | 171.26 (9) |
N2—N1—C7—S1 | −0.08 (17) | C8—S2—C9—C10 | −75.00 (13) |
C1—C6—C7—N1 | −173.44 (15) | S2—C9—C10—C10i | −175.61 (14) |
C5—C6—C7—N1 | 7.2 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···Cgii | 0.99 | 2.70 | 3.540 (2) | 144 |
Symmetry code: (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H18N4S4 |
Mr | 442.62 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 5.7976 (7), 13.4393 (14), 12.9784 (12) |
β (°) | 99.120 (7) |
V (Å3) | 998.44 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.49 |
Crystal size (mm) | 0.20 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.908, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9992, 2384, 1870 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.088, 1.06 |
No. of reflections | 2384 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.22 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···Cgi | 0.99 | 2.70 | 3.540 (2) | 144 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We gratefully acknowledge the support of the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (grant No. 20071103).
References
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives exhibit a wide spectrum of biological activities (Nakagawa et al., 1996; Wang et al., 1999). Recently, we have published the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane (Wang et al., 2010). Herewith we report the crystal structure of the title compound, (I).
In (I) (Fig. 1), the molecule is situated on a twofold rotational axis so asymmetric unit contains a half of the molecule. The dihedral angle between the thiadiazole and the attached benzene rings is 7.2 (3)° indicating that two rings are almost parallel. As a result of π-π conjugation, the Csp2-S bond [S2—C8 = 1.742 (2) Å] is significantly shorter than the Csp3-S bond [S2—C9 = 1.813 (2) Å].
In the crystal structure, weak intermolecular C—H···π interactions (Table 1) link molecules into layers parallel to (103) plane.