organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o666-o667

2-{2-[4-(4-Fluoro­phen­yl)piperazin-1-yl]-2-oxoeth­yl}-6-(morpholin-4-yl)-4-phenyl­pyridazin-3(2H)-one

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 21 January 2011; accepted 10 February 2011; online 19 February 2011)

In the title compound, C26H28FN5O3, the morpholine ring adopts a chair conformation. The piperazine ring is puckered [QT = 0.5437 (15) Å, θ = 8.89 (15) and φ = 357.2 (11)°]. The 1,6-dihydro­pyridazine ring makes dihedral angles of 28.03 (7) and 77.46 (7)° with the phenyl and benzene rings, respectively. In the crystal, mol­ecules are linked along the c axis by C—H⋯O inter­actions and are flattened parallel to the ac plane. C–H⋯π inter­actions also contribute to the stability of the structure.

Related literature

For the pharmacological effects, biological activity and synthesis of 3(2H)-pyridazinones, see: Şüküroğlu et al. 2006[Şüküroğlu, M., Küpeli, E., Banoğlu, E., Ünlü, S., Yeşilada, E. & Şahin, M. F. (2006). Arzneim.-Forsch. Drug Res. 56, 337-345.]; Brogden 1986[Brogden, R. N. (1986). Drugs, 32, 60-70.]. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the quantum mechanical CNDO/2 approximation, see: Pople & Beveridge (1970[Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw Hill.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28FN5O3

  • Mr = 477.53

  • Triclinic, [P \overline 1]

  • a = 8.9168 (5) Å

  • b = 10.7106 (6) Å

  • c = 13.5147 (8) Å

  • α = 73.489 (4)°

  • β = 71.309 (4)°

  • γ = 83.486 (4)°

  • V = 1171.87 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.60 × 0.49 × 0.20 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.945, Tmax = 0.981

  • 13273 measured reflections

  • 4861 independent reflections

  • 3479 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.03

  • 4861 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7–C10, C1–C6 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O3i 0.97 2.41 3.3306 (18) 159
C5—H5⋯Cg5ii 0.93 2.86 3.4941 (18) 127
C13—H13BCg4i 0.97 2.92 3.7395 (19) 143
C18—H18ACg2iii 0.97 2.73 3.5079 (16) 138
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, the 3(2H)-pyridazinone system has aroused a great deal of attention due to its structural relationship to pyrazolone derivatives such as aminopyrine and dipyrone in view of the ring enlargement of pyrazolone to pyridazinone. These drugs possess analgesic and anti-inflammatory activities although they have limitations for their clinical use due to serious side effects such as blood dyscrasias (Şüküroğlu et al., 2006; Brogden, 1986).

A series of 6-morpholino-4-aryl-3(2H)-pyridazinone alkanoic acids, their ester and amide derivatives were prepared and tested for their in vivo analgesic activity by using the p-benzoquinone-induced writhing test. The title compound, C26H28FN5O3, generally showed higher activity but caused gastric ulceration in the animals (Şüküroğlu et al., 2006).

In the title molecule (I), Fig. 1, the morpholine ring (N3/O2/C11–C14) adopts a chair conformation. The piperazine ring (N4/N5/C17–C20) is puckered. The conformation of this ring is described by three puckering parameters: QT = 0.5437 (15) Å, θ = 8.89 (15) ° and, ϕ = 357.2 (11) ° (Cremer & Pople, 1975). The 1,6-dihydropyridazine ring (N1/N2/C7–C10) makes dihedral angles of 28.03 (7) and 77.46 (7) ° with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The phenyl and benzene rings make a dihedral angle of 50.17 (8) ° with each other. In the crystal structure, molecules are linked along the c-axis direction and are flattened parallel to the plane containing the a and c axes. Furthermore, C–H···π interactions contribute to the stability of the structure (Table 1). Fig. 2 shows the packing diagram of (I) down the b axis.

Theoretical calculations were carried out using the semiempirical quantum-mechanical CNDO/2 (Complete Neglect of Differential Overlap) method (Pople and Beveridge, 1970). The spatial view of the single molecule calculated as closed-shell in a vacuum is shown in Fig. 3 with atomic labels. The calculated dipole moment of (I) is about 2.795 Debye. The HOMO and LUMO energy levels are -10.013 and 0.832 eV, respectively.

According to the theoretical CNDO/2 and experimental X-ray structural results, the values of the geometric parameters of (I) are almost comparable within the experimental error interval (Allen et al., 1987).

The 1,6-dihydropyridazine ring (N1/N2/C7–C10) forms dihedral angles of 2.24 and 60.48° with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The dihedral angle between the phenyl and benzene rings is 62.62°. The orientations of the planes of the rings are however, slightly different in the CNDO/2 and X-ray results. That is, intermolecular interactions play an important role in determining the crystal state conformation of (I).

Related literature top

For the pharmacological effects, biological activity and synthesis of 3(2H)-pyridazinones, see: Şüküroğlu et al. 2006; Brogden 1986. For bond-length data, see: Allen et al. (1987). For ring conformation analysis, see: Cremer & Pople (1975). For the quantum mechanical CNDO/2 approximation, see: Pople & Beveridge (1970).

Experimental top

A reaction mixture containing 2-[4-phenyl-6-(morpholin-4-yl)-3(2H)- pyridazinone-2-yl]acetic acid (0.01 mole) and triethylamine (0.011 mole) in 20 ml dichloromethane at 273 K (ice-bath) was treated with ethyl chloroformate (0,01 mole). After stirring the reaction mixture at 273 K for 15 min, 0.011 mole of 4-(4-fluorophenyl)-piperazine derivative was added to this solution. The final mixture was stirred at room temperature for 24 h and evaporated to dryness and then acetone was added. All undissolved salts were filtered off, the filtrate was evaporated to dryness and the residue was recrystallized from acetone-water (1:1) to yield 62%, [m.p.: 457 K].

1H-NMR (CDCl3), δ 7.75 (m, 2H, phenyl-H2, H6), 7.43 (m, 3H, phenyl-H3, H4, H5), 7.23 (s, 1H, pyridazinone-H5), 6.99 (m, 4H, 4-fluorophenyl-H2, H3, H5, H6), 4.98 (s, 2H, N—CH2—CO), 3.82 (m, 6H, morpholine-H2, H6, piperazine- H2(6)), 3.71 (m, 2H, piperazine-H6(2)), 3.31 (t, 8H, morpholine-H3, H5), 3.15 (m, 4H, piperazine-H3, H5) p.p.m.. IR vmax cm-1 (KBr): 2845, 1661, 1643. Anal. C, H, N (C26H28FN5O3) (Şüküroğlu et al., 2006). Elemental analysis: C26H28FN5O3, Calc.(%) / Found (%): C: 65.39/65.54, H: 5.91/5.49, N: 14.67/14.28.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding interactions of (I) down the b axis. H atoms not participating in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The spatial view of the title molecule (I), calculated by the CNDO/2 aproximation.
2-{2-[4-(4-Fluorophenyl)piperazin-1-yl]-2-oxoethyl}-6-(morpholin-4-yl)- 4-phenylpyridazin-3(2H)-one top
Crystal data top
C26H28FN5O3Z = 2
Mr = 477.53F(000) = 504
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9168 (5) ÅCell parameters from 19046 reflections
b = 10.7106 (6) Åθ = 1.7–28.2°
c = 13.5147 (8) ŵ = 0.10 mm1
α = 73.489 (4)°T = 296 K
β = 71.309 (4)°Prism, yellow
γ = 83.486 (4)°0.60 × 0.49 × 0.20 mm
V = 1171.87 (12) Å3
Data collection top
STOE IPDS 2
diffractometer
4861 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3479 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.7°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.945, Tmax = 0.981l = 1616
13273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.0141P]
where P = (Fo2 + 2Fc2)/3
4861 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C26H28FN5O3γ = 83.486 (4)°
Mr = 477.53V = 1171.87 (12) Å3
Triclinic, P1Z = 2
a = 8.9168 (5) ÅMo Kα radiation
b = 10.7106 (6) ŵ = 0.10 mm1
c = 13.5147 (8) ÅT = 296 K
α = 73.489 (4)°0.60 × 0.49 × 0.20 mm
β = 71.309 (4)°
Data collection top
STOE IPDS 2
diffractometer
4861 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3479 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.981Rint = 0.029
13273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
4861 reflectionsΔρmin = 0.14 e Å3
316 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.31808 (14)0.32221 (10)1.12298 (8)0.0875 (4)
O10.65668 (12)0.66791 (10)0.43998 (8)0.0635 (4)
O20.02122 (12)1.05391 (10)0.84902 (8)0.0626 (3)
O30.84333 (12)0.78850 (9)0.56875 (9)0.0627 (3)
N10.44450 (12)0.78805 (9)0.66593 (8)0.0437 (3)
N20.54428 (12)0.72130 (10)0.59688 (8)0.0438 (3)
N30.25440 (13)0.94880 (10)0.69277 (8)0.0471 (3)
N40.93182 (13)0.58003 (10)0.61148 (9)0.0473 (4)
N51.09333 (13)0.46726 (10)0.76728 (8)0.0459 (3)
C10.43486 (15)0.84428 (12)0.33963 (10)0.0425 (4)
C20.38220 (17)0.96206 (13)0.28338 (11)0.0530 (5)
C30.3712 (2)0.97650 (17)0.18124 (13)0.0668 (6)
C40.4089 (2)0.87442 (18)0.13408 (12)0.0671 (6)
C50.46053 (19)0.75785 (16)0.18863 (12)0.0622 (6)
C60.47474 (17)0.74228 (13)0.29017 (11)0.0523 (5)
C70.44320 (14)0.82808 (11)0.45042 (10)0.0402 (4)
C80.55601 (15)0.73397 (12)0.49132 (10)0.0445 (4)
C90.35078 (14)0.87626 (11)0.62510 (10)0.0406 (4)
C100.34782 (15)0.89739 (11)0.51700 (10)0.0429 (4)
C110.10441 (17)1.00413 (13)0.67498 (11)0.0546 (5)
C120.04171 (18)1.10537 (13)0.73676 (12)0.0615 (5)
C130.17058 (19)1.00733 (16)0.86405 (13)0.0641 (6)
C140.24172 (18)0.90257 (14)0.80774 (11)0.0533 (5)
C150.64791 (15)0.62509 (12)0.64412 (11)0.0462 (4)
C160.81643 (16)0.67228 (12)0.60443 (10)0.0444 (4)
C171.09342 (16)0.61613 (15)0.59093 (11)0.0578 (5)
C181.12789 (17)0.59830 (13)0.69637 (12)0.0553 (5)
C190.93822 (16)0.42227 (12)0.78027 (11)0.0460 (4)
C200.90918 (17)0.44392 (12)0.67254 (11)0.0484 (4)
C211.14574 (15)0.43318 (12)0.85944 (10)0.0446 (4)
C221.24267 (18)0.51424 (13)0.87566 (12)0.0532 (5)
C231.2999 (2)0.47658 (15)0.96358 (13)0.0611 (6)
C241.26051 (19)0.35931 (15)1.03610 (12)0.0599 (5)
C251.16453 (19)0.27695 (15)1.02480 (12)0.0596 (5)
C261.10713 (17)0.31386 (13)0.93713 (11)0.0530 (5)
H20.354201.031400.314900.0640*
H30.338001.056200.143800.0800*
H40.399400.884400.065700.0810*
H50.486200.688600.156900.0750*
H60.511300.663000.325900.0630*
H100.278600.960400.491400.0510*
H11A0.028100.935700.699100.0660*
H11B0.120701.043500.598300.0660*
H12A0.114701.176700.708300.0740*
H12B0.059101.139800.726300.0740*
H13A0.157300.973200.940900.0770*
H13B0.242601.079300.836300.0770*
H14A0.346000.877500.815900.0640*
H14B0.176000.826500.840700.0640*
H15A0.646800.544500.625100.0550*
H15B0.608900.607400.722400.0550*
H17A1.108200.706400.549200.0690*
H17B1.166600.562400.549000.0690*
H18A1.238600.615300.681400.0660*
H18B1.064800.661100.733200.0660*
H19A0.856900.468500.824800.0550*
H19B0.931000.330200.817300.0550*
H20A0.981700.389100.631400.0580*
H20B0.802000.419900.684200.0580*
H221.269100.595000.826400.0640*
H231.365000.531300.973100.0730*
H251.138300.197101.075500.0720*
H261.041200.258200.929400.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1156 (9)0.0924 (7)0.0722 (6)0.0160 (6)0.0589 (6)0.0215 (5)
O10.0598 (7)0.0678 (6)0.0611 (6)0.0271 (5)0.0168 (5)0.0268 (5)
O20.0534 (6)0.0630 (6)0.0617 (6)0.0020 (5)0.0024 (5)0.0255 (5)
O30.0606 (6)0.0408 (5)0.0794 (7)0.0021 (4)0.0271 (5)0.0026 (5)
N10.0414 (6)0.0417 (5)0.0441 (6)0.0032 (4)0.0094 (5)0.0111 (5)
N20.0391 (6)0.0427 (5)0.0463 (6)0.0082 (4)0.0124 (5)0.0108 (5)
N30.0453 (6)0.0442 (6)0.0463 (6)0.0071 (5)0.0075 (5)0.0140 (5)
N40.0395 (6)0.0438 (6)0.0548 (7)0.0038 (5)0.0182 (5)0.0045 (5)
N50.0445 (6)0.0450 (6)0.0459 (6)0.0017 (5)0.0163 (5)0.0053 (5)
C10.0356 (7)0.0440 (7)0.0459 (7)0.0017 (5)0.0097 (5)0.0114 (5)
C20.0543 (9)0.0500 (8)0.0552 (8)0.0054 (6)0.0206 (7)0.0127 (6)
C30.0701 (11)0.0693 (10)0.0592 (9)0.0068 (8)0.0283 (8)0.0077 (8)
C40.0657 (11)0.0914 (12)0.0465 (8)0.0052 (9)0.0193 (7)0.0179 (8)
C50.0626 (10)0.0713 (10)0.0561 (9)0.0032 (8)0.0116 (7)0.0288 (8)
C60.0543 (9)0.0508 (8)0.0516 (8)0.0003 (6)0.0137 (6)0.0166 (6)
C70.0357 (7)0.0375 (6)0.0452 (7)0.0016 (5)0.0101 (5)0.0095 (5)
C80.0389 (7)0.0434 (7)0.0497 (7)0.0048 (5)0.0112 (6)0.0145 (6)
C90.0371 (7)0.0360 (6)0.0450 (7)0.0004 (5)0.0082 (5)0.0100 (5)
C100.0388 (7)0.0386 (6)0.0492 (7)0.0048 (5)0.0136 (5)0.0102 (5)
C110.0529 (9)0.0497 (7)0.0521 (8)0.0148 (6)0.0100 (6)0.0122 (6)
C120.0565 (9)0.0448 (7)0.0671 (10)0.0079 (6)0.0004 (7)0.0142 (7)
C130.0578 (10)0.0736 (10)0.0607 (9)0.0014 (8)0.0060 (7)0.0310 (8)
C140.0518 (8)0.0563 (8)0.0478 (8)0.0018 (6)0.0088 (6)0.0158 (6)
C150.0420 (7)0.0415 (6)0.0503 (7)0.0058 (5)0.0156 (6)0.0057 (6)
C160.0471 (8)0.0411 (7)0.0432 (7)0.0035 (5)0.0178 (6)0.0053 (5)
C170.0400 (8)0.0661 (9)0.0545 (8)0.0036 (6)0.0137 (6)0.0039 (7)
C180.0478 (8)0.0533 (8)0.0591 (9)0.0096 (6)0.0200 (7)0.0015 (7)
C190.0476 (8)0.0372 (6)0.0512 (7)0.0004 (5)0.0142 (6)0.0100 (5)
C200.0513 (8)0.0384 (6)0.0588 (8)0.0083 (5)0.0240 (6)0.0131 (6)
C210.0442 (7)0.0434 (7)0.0448 (7)0.0072 (5)0.0134 (6)0.0126 (5)
C220.0596 (9)0.0455 (7)0.0574 (8)0.0032 (6)0.0224 (7)0.0144 (6)
C230.0685 (10)0.0594 (9)0.0690 (10)0.0083 (7)0.0328 (8)0.0282 (8)
C240.0682 (10)0.0666 (9)0.0525 (8)0.0179 (8)0.0302 (7)0.0213 (7)
C250.0634 (10)0.0571 (8)0.0518 (8)0.0062 (7)0.0197 (7)0.0045 (7)
C260.0534 (9)0.0490 (7)0.0551 (8)0.0000 (6)0.0203 (7)0.0077 (6)
Geometric parameters (Å, º) top
F1—C241.369 (2)C21—C261.3999 (19)
O1—C81.2343 (17)C22—C231.380 (2)
O2—C121.4173 (18)C23—C241.357 (2)
O2—C131.424 (2)C24—C251.366 (2)
O3—C161.2215 (17)C25—C261.378 (2)
N1—N21.3698 (15)C2—H20.9300
N1—C91.3098 (17)C3—H30.9300
N2—C81.3646 (16)C4—H40.9300
N2—C151.4531 (18)C5—H50.9300
N3—C91.3883 (16)C6—H60.9300
N3—C111.464 (2)C10—H100.9300
N3—C141.4612 (17)C11—H11A0.9700
N4—C161.3501 (18)C11—H11B0.9700
N4—C171.4532 (19)C12—H12A0.9700
N4—C201.4571 (17)C12—H12B0.9700
N5—C181.4586 (18)C13—H13A0.9700
N5—C191.4572 (19)C13—H13B0.9700
N5—C211.4067 (17)C14—H14A0.9700
C1—C21.393 (2)C14—H14B0.9700
C1—C61.3933 (19)C15—H15A0.9700
C1—C71.4827 (18)C15—H15B0.9700
C2—C31.379 (2)C17—H17A0.9700
C3—C41.375 (3)C17—H17B0.9700
C4—C51.371 (3)C18—H18A0.9700
C5—C61.380 (2)C18—H18B0.9700
C7—C81.4639 (19)C19—H19A0.9700
C7—C101.3528 (18)C19—H19B0.9700
C9—C101.4219 (18)C20—H20A0.9700
C11—C121.504 (2)C20—H20B0.9700
C13—C141.502 (2)C22—H220.9300
C15—C161.518 (2)C23—H230.9300
C17—C181.508 (2)C25—H250.9300
C19—C201.509 (2)C26—H260.9300
C21—C221.396 (2)
F1···H3i2.7700H2···H102.1900
F1···H15Bii2.6900H2···O3iii2.9100
F1···H19Aii2.7100H2···N1iii2.9000
O1···C62.8742 (19)H3···F1xii2.7700
O1···C163.0123 (18)H3···C25xii3.0300
O2···N32.8383 (15)H3···H25xii2.4400
O3···N22.7209 (16)H5···C22iv3.0700
O3···C11iii3.3306 (18)H5···C23iv2.8800
O3···C83.2257 (18)H5···C24iv2.9800
O1···H12Aiii2.6800H6···O12.3200
O1···H15A2.4500H6···C82.7100
O1···H62.3200H6···H15Axi2.5800
O1···H17Biv2.7700H10···C22.6600
O2···H13Av2.7200H10···C112.6100
O2···H26vi2.7500H10···H22.1900
O3···H17A2.3800H10···H11B2.0000
O3···H2iii2.9100H10···O3iii2.7800
O3···H10iii2.7800H11B···C102.5700
O3···H11Biii2.4100H11B···H102.0000
N2···O32.7209 (16)H11B···O3iii2.4100
N3···O22.8383 (15)H12A···H13B2.3100
N4···N52.8407 (16)H12A···H20Avi2.5500
N5···N42.8407 (16)H12A···O1iii2.6800
N1···H22vii2.7300H12B···C3x2.9200
N1···H2iii2.9000H12B···C4x3.0800
N1···H18Avii2.6700H13A···O2v2.7200
N1···H14A2.3600H13B···H12A2.3100
N1···H14B2.8600H13B···C6iii3.0700
N2···H18Avii2.8300H14A···N12.3600
C2···C14iii3.508 (2)H14A···C2iii2.8600
C6···O12.8742 (19)H14B···N12.8600
C7···C9iii3.5673 (18)H14B···H22vii2.5600
C8···O33.2257 (18)H15A···O12.4500
C9···C7iii3.5673 (18)H15A···C202.6500
C9···C18vii3.497 (2)H15A···H20B2.0000
C9···C10iii3.5089 (18)H15A···H6xi2.5800
C10···C9iii3.5089 (18)H15B···C203.0200
C10···C10iii3.5197 (19)H15B···H20B2.5500
C11···O3iii3.3306 (18)H15B···F1ii2.6900
C12···C19vi3.577 (2)H17A···O32.3800
C14···C2iii3.508 (2)H17A···C10viii2.9700
C16···O13.0123 (18)H17B···H20A2.4000
C18···C9viii3.497 (2)H17B···O1iv2.7700
C19···C12ix3.577 (2)H18A···N1viii2.6700
C2···H14Aiii2.8600H18A···N2viii2.8300
C2···H102.6600H18A···C9viii2.8900
C3···H12Bx2.9200H18A···C222.5500
C4···H12Bx3.0800H18A···H222.0100
C5···H20Bxi2.9400H18B···C222.8900
C6···H20Bxi3.0500H18B···H222.4700
C6···H13Biii3.0700H19A···F1ii2.7100
C8···H62.7100H19A···C23ii2.9500
C9···H18Avii2.8900H19A···C24ii2.8800
C10···H17Avii2.9700H19B···C12ix2.8700
C10···H22.6900H19B···C262.5500
C10···H11B2.5700H19B···H261.9900
C11···H102.6100H20A···C12ix3.0300
C12···H20Avi3.0300H20A···H12Aix2.5500
C12···H19Bvi2.8700H20A···H17B2.4000
C13···H26vi3.0500H20B···C152.4800
C15···H20B2.4800H20B···H15A2.0000
C18···H222.4600H20B···H15B2.5500
C19···H262.6100H20B···C5xi2.9400
C20···H15A2.6500H20B···C6xi3.0500
C20···H15B3.0200H22···N1viii2.7300
C22···H18A2.5500H22···C182.4600
C22···H18B2.8900H22···H14Bviii2.5600
C22···H5iv3.0700H22···H18A2.0100
C23···H5iv2.8800H22···H18B2.4700
C23···H19Aii2.9500H25···H3i2.4400
C24···H5iv2.9800H26···O2ix2.7500
C24···H19Aii2.8800H26···C13ix3.0500
C25···H3i3.0300H26···C192.6100
C26···H19B2.5500H26···H19B1.9900
H2···C102.6900
C12—O2—C13108.95 (12)C4—C5—H5120.00
N2—N1—C9116.01 (10)C6—C5—H5120.00
N1—N2—C8127.91 (11)C1—C6—H6120.00
N1—N2—C15114.75 (10)C5—C6—H6120.00
C8—N2—C15117.34 (11)C7—C10—H10119.00
C9—N3—C11119.14 (11)C9—C10—H10119.00
C9—N3—C14117.13 (11)N3—C11—H11A110.00
C11—N3—C14112.25 (11)N3—C11—H11B110.00
C16—N4—C17120.60 (12)C12—C11—H11A110.00
C16—N4—C20126.08 (12)C12—C11—H11B110.00
C17—N4—C20110.06 (12)H11A—C11—H11B108.00
C18—N5—C19114.00 (11)O2—C12—H12A109.00
C18—N5—C21116.78 (11)O2—C12—H12B109.00
C19—N5—C21117.13 (10)C11—C12—H12A109.00
C2—C1—C6118.22 (12)C11—C12—H12B109.00
C2—C1—C7120.29 (12)H12A—C12—H12B108.00
C6—C1—C7121.46 (12)O2—C13—H13A109.00
C1—C2—C3120.40 (14)O2—C13—H13B109.00
C2—C3—C4120.71 (16)C14—C13—H13A109.00
C3—C4—C5119.50 (15)C14—C13—H13B109.00
C4—C5—C6120.59 (15)H13A—C13—H13B108.00
C1—C6—C5120.57 (14)N3—C14—H14A110.00
C1—C7—C8120.11 (11)N3—C14—H14B110.00
C1—C7—C10122.01 (12)C13—C14—H14A110.00
C8—C7—C10117.88 (11)C13—C14—H14B110.00
O1—C8—N2119.12 (12)H14A—C14—H14B108.00
O1—C8—C7126.40 (12)N2—C15—H15A109.00
N2—C8—C7114.49 (11)N2—C15—H15B109.00
N1—C9—N3116.54 (11)C16—C15—H15A109.00
N1—C9—C10121.96 (11)C16—C15—H15B109.00
N3—C9—C10121.49 (11)H15A—C15—H15B108.00
C7—C10—C9121.60 (12)N4—C17—H17A110.00
N3—C11—C12109.61 (12)N4—C17—H17B110.00
O2—C12—C11112.03 (12)C18—C17—H17A110.00
O2—C13—C14112.09 (14)C18—C17—H17B110.00
N3—C14—C13110.40 (12)H17A—C17—H17B108.00
N2—C15—C16111.27 (11)N5—C18—H18A109.00
O3—C16—N4122.80 (14)N5—C18—H18B109.00
O3—C16—C15120.54 (13)C17—C18—H18A109.00
N4—C16—C15116.67 (11)C17—C18—H18B109.00
N4—C17—C18110.23 (12)H18A—C18—H18B108.00
N5—C18—C17112.17 (12)N5—C19—H19A109.00
N5—C19—C20111.62 (11)N5—C19—H19B109.00
N4—C20—C19110.40 (11)C20—C19—H19A109.00
N5—C21—C22121.73 (12)C20—C19—H19B109.00
N5—C21—C26121.14 (12)H19A—C19—H19B108.00
C22—C21—C26117.10 (13)N4—C20—H20A110.00
C21—C22—C23121.10 (14)N4—C20—H20B110.00
C22—C23—C24119.61 (16)C19—C20—H20A110.00
F1—C24—C23119.38 (15)C19—C20—H20B110.00
F1—C24—C25118.95 (14)H20A—C20—H20B108.00
C23—C24—C25121.67 (15)C21—C22—H22119.00
C24—C25—C26119.02 (14)C23—C22—H22119.00
C21—C26—C25121.49 (14)C22—C23—H23120.00
C1—C2—H2120.00C24—C23—H23120.00
C3—C2—H2120.00C24—C25—H25121.00
C2—C3—H3120.00C26—C25—H25120.00
C4—C3—H3120.00C21—C26—H26119.00
C3—C4—H4120.00C25—C26—H26119.00
C5—C4—H4120.00
C13—O2—C12—C1160.78 (16)C6—C1—C7—C10151.12 (14)
C12—O2—C13—C1459.74 (16)C6—C1—C7—C828.3 (2)
C9—N1—N2—C81.23 (19)C6—C1—C2—C30.4 (2)
N2—N1—C9—C102.71 (18)C7—C1—C2—C3178.64 (14)
C9—N1—N2—C15179.39 (11)C2—C1—C7—C8153.52 (13)
N2—N1—C9—N3177.06 (11)C2—C1—C6—C50.7 (2)
C15—N2—C8—O12.74 (19)C7—C1—C6—C5177.56 (14)
N1—N2—C8—C72.13 (19)C2—C1—C7—C1027.1 (2)
C15—N2—C8—C7177.24 (11)C1—C2—C3—C41.3 (3)
N1—N2—C15—C16105.23 (12)C2—C3—C4—C51.1 (3)
C8—N2—C15—C1675.32 (14)C3—C4—C5—C60.1 (3)
N1—N2—C8—O1177.89 (12)C4—C5—C6—C10.9 (3)
C14—N3—C11—C1252.25 (15)C1—C7—C10—C9176.59 (12)
C14—N3—C9—N112.56 (18)C8—C7—C10—C92.82 (19)
C14—N3—C9—C10167.66 (13)C1—C7—C8—O14.6 (2)
C9—N3—C14—C13165.09 (13)C10—C7—C8—N23.99 (18)
C11—N3—C14—C1351.70 (16)C1—C7—C8—N2175.43 (12)
C9—N3—C11—C12165.36 (11)C10—C7—C8—O1176.03 (14)
C11—N3—C9—N1153.17 (12)N1—C9—C10—C70.7 (2)
C11—N3—C9—C1027.06 (18)N3—C9—C10—C7179.07 (12)
C16—N4—C20—C1998.68 (16)N3—C11—C12—O257.26 (16)
C17—N4—C16—O38.9 (2)O2—C13—C14—N355.52 (17)
C17—N4—C16—C15170.73 (11)N2—C15—C16—N4158.32 (11)
C20—N4—C16—C1513.24 (19)N2—C15—C16—O322.07 (17)
C20—N4—C17—C1860.28 (15)N4—C17—C18—N553.86 (16)
C16—N4—C17—C18100.50 (15)N5—C19—C20—N454.43 (15)
C20—N4—C16—O3166.37 (13)N5—C21—C22—C23176.61 (14)
C17—N4—C20—C1960.79 (15)C26—C21—C22—C231.2 (2)
C19—N5—C18—C1748.75 (16)N5—C21—C26—C25176.70 (14)
C21—N5—C19—C20169.67 (11)C22—C21—C26—C251.1 (2)
C19—N5—C21—C2634.26 (18)C21—C22—C23—C240.5 (2)
C18—N5—C19—C2048.87 (15)C22—C23—C24—F1179.76 (15)
C18—N5—C21—C26174.65 (13)C22—C23—C24—C250.3 (3)
C18—N5—C21—C227.63 (19)F1—C24—C25—C26179.68 (14)
C21—N5—C18—C17169.65 (12)C23—C24—C25—C260.4 (3)
C19—N5—C21—C22148.02 (13)C24—C25—C26—C210.4 (2)
Symmetry codes: (i) x+1, y1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x, y+2, z+2; (vi) x1, y+1, z; (vii) x1, y, z; (viii) x+1, y, z; (ix) x+1, y1, z; (x) x, y+2, z+1; (xi) x+1, y+1, z+1; (xii) x1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7–C10, C1–C6 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.322.8742 (19)117
C11—H11B···O3iii0.972.413.3306 (18)159
C17—H17A···O30.972.382.7660 (19)103
C5—H5···Cg5iv0.932.863.4941 (18)127
C13—H13B···Cg4iii0.972.923.7395 (19)143
C18—H18A···Cg2viii0.972.733.5079 (16)138
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H28FN5O3
Mr477.53
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.9168 (5), 10.7106 (6), 13.5147 (8)
α, β, γ (°)73.489 (4), 71.309 (4), 83.486 (4)
V3)1171.87 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.49 × 0.20
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.945, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13273, 4861, 3479
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.03
No. of reflections4861
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7–C10, C1–C6 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O3i0.972.413.3306 (18)159
C5—H5···Cg5ii0.932.863.4941 (18)127
C13—H13B···Cg4i0.972.923.7395 (19)143
C18—H18A···Cg2iii0.972.733.5079 (16)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrogden, R. N. (1986). Drugs, 32, 60–70.  CrossRef PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw Hill.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationŞüküroğlu, M., Küpeli, E., Banoğlu, E., Ünlü, S., Yeşilada, E. & Şahin, M. F. (2006). Arzneim.-Forsch. Drug Res. 56, 337–345.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o666-o667
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds