organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(4-Carbamoylphen­yl)carbamo­thio­yl]-2,3,4,5-tetra­fluoro­benzamide

aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, bState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and cWest China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 14 December 2010; accepted 17 February 2011; online 23 February 2011)

In the title compound, C15H9F4N3O2S, the N,N′-disubstituted thio­urea fragment adopts a cis,trans geometry, stabilized by an intra­molecular N—H⋯O hydrogen bond to the carbonyl O atom of the tetra­fluoro­benzoyl group. The central thio­urea group makes dihedral angles of 47.79 (7) and 35.54 (8)° with the two aromatic rings. In the crystal, mol­ecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into two-dimensional polymeric structures parallel to (100). In turn, ππ stacking inter­actions between tetra­fluoro­benzene and benzene units [centroid–centroid distance = 3.996 (10) Å; dihedral angle = 13.60 (8)°] organize these two-dimensional assemblies into a three-dimensional framework.

Related literature

For the biological activity of thio­urea derivatives, see: Zeng et al. (2003[Zeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]). For the synthesis of thio­urea derivatives, see: Nosova et al. (2007[Nosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Russ. J. Org. Chem. 43, 68-76.]). For related structures, see: Saeed et al. (2008[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.], 2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9F4N3O2S

  • Mr = 371.31

  • Monoclinic, P 21 /c

  • a = 7.4246 (3) Å

  • b = 20.3368 (7) Å

  • c = 9.8954 (4) Å

  • β = 95.554 (3)°

  • V = 1487.12 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.38 × 0.30 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.860, Tmax = 1.0

  • 6598 measured reflections

  • 3031 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.13

  • 3031 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.86 2.69 3.4861 (16) 155
N1—H1A⋯O1ii 0.86 2.23 2.8654 (17) 130
N2—H2⋯O2 0.86 1.97 2.6708 (18) 138
N3—H3⋯O1iii 0.86 2.09 2.9062 (18) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N-(4-Carbamoylphenylcarbamothioyl)-2,3,4,5-tetrafluorobenzamide derivatives are of great importance owing to their interesting biological properties (Zeng et al., 2003; Saeed et al., 2010). The title compound is one of the key intermediates in our synthetic route to antiviral drugs. We report here its crystal structure.

In the title compound, C15H9F4N3O2S, (Fig.1), the cis,trans geometry of the thiourea moiety is stabilized by intramolecular N2—H2···O2 and N3—H3···F1 hydrogen bonds. The central thiourea group makes dihedral angles of 47.79 (7) and 35.54 (8)° with the benzamide unit and the fluorobenzene ring, respectively. A combination of intermolecular ππ stacking interactions, N—H···O, N—H···F and N—H···S hydrogen bonds helps to stabilize the crystal structure (Table 1 and Fig.2).

Related literature top

For the biological activity of thiourea derivatives, see: Zeng et al. (2003); Saeed et al. (2010). For the synthesis of thiourea derivatives, see: Nosova et al. (2007). For related structures, see: Saeed et al. (2008, 2009).

Experimental top

A solution of 0.23 g (3 mmol) of ammonium thiocyanate in 7 ml of acetonitrile was added to a solution of 0.64 g (3 mmol) of 2,3,4,5-tetrafluorobenzoyl chloride in 2.5 ml of toluene. The mixture was heated for 5 min at 40°C and filtered from ammonium chloride, the filtrate was added to a solution of 0.32 g (3 mmol) of 4-aminobenzamide in 5 ml of acetonitrile, the mixture was stirred for 2 h at room temperature and evaporated, and the residue was washed with ethanol and recrystallized from ethanol. Yield 0.91 g (82%). Crystals suitable for X-ray analysis were obtained by slow evaporation from ethyl acetate solution.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing classical hydrogen bonds of N1—H1A···O1, N2—H2···O2 and N3—H3···O1 as green dashed lines.
N-[(4-Carbamoylphenyl)carbamothioyl]-2,3,4,5-tetrafluorobenzamide top
Crystal data top
C15H9F4N3O2SF(000) = 752
Mr = 371.31Dx = 1.658 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 3669 reflections
a = 7.4246 (3) Åθ = 3.3–29.2°
b = 20.3368 (7) ŵ = 0.28 mm1
c = 9.8954 (4) ÅT = 294 K
β = 95.554 (3)°Block, colourless
V = 1487.12 (9) Å30.38 × 0.30 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E CCD
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 2521
Tmin = 0.860, Tmax = 1.0l = 1112
6598 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H9F4N3O2SV = 1487.12 (9) Å3
Mr = 371.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4246 (3) ŵ = 0.28 mm1
b = 20.3368 (7) ÅT = 294 K
c = 9.8954 (4) Å0.38 × 0.30 × 0.26 mm
β = 95.554 (3)°
Data collection top
Oxford Diffraction Xcalibur E CCD
diffractometer
3031 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2263 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.0Rint = 0.014
6598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.13Δρmax = 0.31 e Å3
3031 reflectionsΔρmin = 0.34 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41600 (7)0.40876 (2)0.28889 (6)0.05125 (18)
F0.98701 (18)0.10215 (6)0.07009 (12)0.0623 (4)
F10.66951 (14)0.21050 (5)0.34645 (9)0.0445 (3)
F20.72451 (16)0.08149 (5)0.33952 (12)0.0543 (3)
F30.87569 (17)0.02540 (5)0.12899 (13)0.0635 (4)
O10.66762 (17)0.73716 (6)0.33958 (11)0.0386 (3)
O20.91223 (18)0.33325 (6)0.09914 (14)0.0471 (3)
N10.7405 (2)0.75363 (7)0.12865 (14)0.0434 (4)
H1B0.73400.79560.13820.052*
H1A0.76830.73730.05320.052*
N20.7175 (2)0.43553 (7)0.17165 (14)0.0390 (4)
H20.80460.42000.13000.047*
N30.64026 (19)0.32604 (7)0.18763 (14)0.0356 (3)
H30.55800.29810.20360.043*
C10.7076 (2)0.71401 (8)0.23066 (16)0.0304 (4)
C20.7164 (2)0.64135 (8)0.21097 (16)0.0286 (4)
C30.7548 (3)0.61151 (9)0.09123 (18)0.0392 (4)
H3A0.78230.63720.01820.047*
C40.7524 (3)0.54374 (9)0.07970 (18)0.0425 (5)
H40.77710.52410.00130.051*
C50.7133 (2)0.50499 (8)0.18833 (17)0.0343 (4)
C60.6795 (2)0.53412 (8)0.30877 (17)0.0367 (4)
H60.65660.50830.38280.044*
C70.6796 (2)0.60191 (8)0.31958 (16)0.0329 (4)
H70.65460.62140.40070.039*
C80.6006 (2)0.39170 (8)0.21371 (17)0.0345 (4)
C90.7920 (2)0.30012 (9)0.14025 (17)0.0338 (4)
C100.8043 (2)0.22623 (8)0.14010 (16)0.0315 (4)
C110.8887 (2)0.19686 (9)0.03581 (18)0.0369 (4)
H110.93150.22280.03160.044*
C120.9089 (2)0.13022 (9)0.03208 (19)0.0410 (4)
C130.8521 (3)0.09051 (8)0.1325 (2)0.0414 (5)
C140.7735 (2)0.11852 (8)0.23825 (18)0.0369 (4)
C150.7476 (2)0.18583 (8)0.24020 (16)0.0326 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0543 (3)0.0289 (3)0.0750 (4)0.0028 (2)0.0295 (3)0.0031 (2)
F0.0717 (9)0.0532 (7)0.0638 (8)0.0202 (6)0.0162 (6)0.0171 (6)
F10.0550 (7)0.0402 (6)0.0394 (6)0.0026 (5)0.0093 (5)0.0001 (5)
F20.0617 (8)0.0366 (6)0.0643 (7)0.0022 (5)0.0052 (6)0.0184 (5)
F30.0688 (8)0.0237 (6)0.0975 (10)0.0083 (5)0.0051 (7)0.0067 (6)
O10.0568 (8)0.0293 (7)0.0305 (6)0.0036 (6)0.0085 (6)0.0027 (5)
O20.0453 (8)0.0312 (7)0.0677 (9)0.0037 (6)0.0199 (7)0.0007 (6)
N10.0702 (11)0.0250 (8)0.0374 (8)0.0013 (7)0.0174 (8)0.0019 (7)
N20.0480 (9)0.0228 (7)0.0488 (9)0.0001 (7)0.0181 (7)0.0001 (7)
N30.0392 (8)0.0215 (7)0.0481 (9)0.0008 (6)0.0145 (7)0.0009 (6)
C10.0333 (9)0.0274 (9)0.0303 (9)0.0002 (7)0.0031 (7)0.0003 (7)
C20.0310 (9)0.0245 (9)0.0303 (8)0.0002 (7)0.0028 (7)0.0005 (7)
C30.0559 (12)0.0280 (9)0.0359 (10)0.0041 (8)0.0166 (9)0.0013 (8)
C40.0614 (12)0.0293 (10)0.0398 (10)0.0009 (9)0.0206 (9)0.0057 (8)
C50.0409 (10)0.0213 (9)0.0416 (10)0.0004 (7)0.0075 (8)0.0002 (7)
C60.0509 (11)0.0273 (9)0.0319 (9)0.0022 (8)0.0037 (8)0.0056 (7)
C70.0432 (10)0.0288 (9)0.0269 (8)0.0004 (7)0.0042 (7)0.0007 (7)
C80.0434 (10)0.0233 (9)0.0371 (9)0.0023 (7)0.0060 (8)0.0010 (7)
C90.0368 (10)0.0271 (9)0.0377 (9)0.0016 (7)0.0045 (7)0.0004 (7)
C100.0310 (9)0.0252 (9)0.0380 (9)0.0018 (7)0.0015 (7)0.0003 (7)
C110.0342 (9)0.0341 (10)0.0426 (10)0.0040 (8)0.0043 (8)0.0013 (8)
C120.0387 (10)0.0364 (10)0.0475 (11)0.0104 (8)0.0022 (8)0.0113 (9)
C130.0389 (10)0.0221 (9)0.0612 (12)0.0040 (8)0.0061 (9)0.0046 (9)
C140.0350 (10)0.0275 (9)0.0469 (10)0.0027 (7)0.0032 (8)0.0060 (8)
C150.0296 (9)0.0313 (9)0.0366 (9)0.0018 (7)0.0022 (7)0.0011 (8)
Geometric parameters (Å, º) top
S1—C81.6583 (18)C2—C71.389 (2)
F—C121.341 (2)C3—H3A0.9300
F1—C151.3458 (18)C3—C41.383 (2)
F2—C141.332 (2)C4—H40.9300
F3—C131.3365 (18)C4—C51.386 (2)
O1—C11.2383 (18)C5—C61.376 (2)
O2—C91.219 (2)C6—H60.9300
N1—H1B0.8600C6—C71.383 (2)
N1—H1A0.8600C7—H70.9300
N1—C11.333 (2)C9—C101.505 (2)
N2—H20.8600C10—C111.393 (2)
N2—C51.423 (2)C10—C151.384 (2)
N2—C81.338 (2)C11—H110.9300
N3—H30.8600C11—C121.364 (2)
N3—C81.397 (2)C12—C131.378 (3)
N3—C91.367 (2)C13—C141.370 (3)
C1—C21.493 (2)C14—C151.383 (2)
C2—C31.385 (2)
F—C12—C11119.99 (18)C4—C3—H3A119.8
F—C12—C13118.62 (16)C4—C5—N2117.77 (15)
F1—C15—C10121.45 (14)C5—N2—H2116.5
F1—C15—C14116.81 (15)C5—C4—H4119.8
F2—C14—C13120.47 (15)C5—C6—H6120.1
F2—C14—C15120.04 (16)C5—C6—C7119.84 (15)
F3—C13—C12120.80 (18)C6—C5—N2122.40 (15)
F3—C13—C14119.87 (18)C6—C5—C4119.77 (15)
O1—C1—N1120.43 (15)C6—C7—C2120.96 (15)
O1—C1—C2120.47 (14)C6—C7—H7119.5
O2—C9—N3123.76 (16)C7—C2—C1117.15 (14)
O2—C9—C10120.32 (15)C7—C6—H6120.1
N1—C1—C2119.09 (14)C8—N2—H2116.5
H1B—N1—H1A120.0C8—N2—C5127.09 (15)
N2—C8—S1126.10 (13)C8—N3—H3115.6
N2—C8—N3115.14 (15)C9—N3—H3115.6
N3—C8—S1118.75 (12)C9—N3—C8128.85 (14)
N3—C9—C10115.92 (14)C10—C11—H11119.9
C1—N1—H1B120.0C11—C10—C9117.41 (15)
C1—N1—H1A120.0C11—C12—C13121.38 (17)
C2—C3—H3A119.8C12—C11—C10120.29 (17)
C2—C7—H7119.5C12—C11—H11119.9
C3—C2—C1124.10 (15)C13—C14—C15119.49 (16)
C3—C2—C7118.74 (15)C14—C13—C12119.32 (15)
C3—C4—H4119.8C14—C15—C10121.71 (15)
C3—C4—C5120.31 (16)C15—C10—C9124.72 (15)
C4—C3—C2120.34 (16)C15—C10—C11117.75 (15)
F—C12—C13—F30.6 (3)C5—N2—C8—N3178.02 (15)
F—C12—C13—C14179.40 (16)C5—C6—C7—C21.1 (3)
F2—C14—C15—F11.0 (2)C7—C2—C3—C41.4 (3)
F2—C14—C15—C10177.00 (15)C8—N2—C5—C4138.63 (19)
F3—C13—C14—F21.7 (3)C8—N2—C5—C644.1 (3)
F3—C13—C14—C15179.20 (15)C8—N3—C9—O28.1 (3)
O1—C1—C2—C3178.02 (16)C8—N3—C9—C10172.27 (16)
O1—C1—C2—C70.5 (2)C9—N3—C8—S1172.62 (14)
O2—C9—C10—C1133.5 (2)C9—N3—C8—N28.7 (3)
O2—C9—C10—C15142.48 (18)C9—C10—C11—C12178.10 (15)
N1—C1—C2—C30.9 (3)C9—C10—C15—F12.2 (2)
N1—C1—C2—C7179.44 (15)C9—C10—C15—C14175.74 (15)
N2—C5—C6—C7179.11 (16)C10—C11—C12—F178.65 (16)
N3—C9—C10—C11146.16 (16)C10—C11—C12—C132.0 (3)
N3—C9—C10—C1537.9 (2)C11—C10—C15—F1178.11 (14)
C1—C2—C3—C4177.14 (16)C11—C10—C15—C140.2 (2)
C1—C2—C7—C6178.11 (16)C11—C12—C13—F3178.74 (16)
C2—C3—C4—C50.6 (3)C11—C12—C13—C140.1 (3)
C3—C2—C7—C60.5 (3)C12—C13—C14—F2177.14 (15)
C3—C4—C5—N2178.38 (17)C12—C13—C14—C152.0 (3)
C3—C4—C5—C61.0 (3)C13—C14—C15—F1179.87 (15)
C4—C5—C6—C71.9 (3)C13—C14—C15—C102.1 (3)
C5—N2—C8—S13.4 (3)C15—C10—C11—C121.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.693.4861 (16)155
N1—H1A···O1ii0.862.232.8654 (17)130
N2—H2···O20.861.972.6708 (18)138
N3—H3···F10.862.372.8234 (17)113
N3—H3···O1iii0.862.092.9062 (18)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9F4N3O2S
Mr371.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.4246 (3), 20.3368 (7), 9.8954 (4)
β (°) 95.554 (3)
V3)1487.12 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.38 × 0.30 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur E CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.860, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 3031, 2263
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.13
No. of reflections3031
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.693.4861 (16)155
N1—H1A···O1ii0.862.232.8654 (17)130
N2—H2···O20.861.972.6708 (18)138
N3—H3···F10.862.372.8234 (17)113
N3—H3···O1iii0.862.092.9062 (18)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNosova, E. V., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Russ. J. Org. Chem. 43, 68–76.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds