metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m314-m315

(Di­methyl sulfoxide-κO){4,4′,6,6′-tetra-tert-butyl-2,2′-[1,2-di­cyano­ethene-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}zinc(II) aceto­nitrile monosolvate

aDepartment of Chemistry, Girls Campus, King Abdulaziz University, PO Box 6171, Jeddah 21442, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 January 2011; accepted 27 January 2011; online 9 February 2011)

The Zn atom in the title acetonitrile solvate, [Zn(C34H42N4O2)(C2H6OS)]·CH3CN, exists in a distorted square-pyramidal geometry with the basal plane defined by the N2O2 atoms of the tetra­dentate Schiff base and with the dimethyl sulfoxide O atom in the apical position. The tetra­dentate mode of coordination of the Schiff base ligand leads to a five-membered ZnN2C2 chelate ring which adopts an envelope conformation with the Zn atom at the flap, and two six-membered ZnOC4N chelate rings, one of which is approximately planar (r.m.s. deviation = 0.054 Å) but the other has significant puckering (r.m.s. deviation = 0.203 Å).

Related literature

For background to metal salicylaldiminato complexes as optoelectronic materials, see: Liuzzo et al. (2010[Liuzzo, V., Oberhauser, W. & Pucci, A. (2010). Inorg. Chem. Commun. 13, 686-688.]); Shirai et al., (2000[Shirai, K., Matsuoka, M. & Fukunishi, K. (2000). Dyes Pigments, 47, 107-115.]). For background to zinc complexes as organic light-emitting diodes, see: Chen et al. (2009[Chen, L., Qiao, J., Xie, J., Duan, L., Zhang, D., Wang, L. & Qiu, Y. (2009). Inorg. Chim. Acta, 362, 2327-2333.]). For related structures, see: MacLachlan et al. (1996[MacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492-5499.]). For geometrical analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C34H42N4O2)(C2H6OS)]·C2H3N

  • Mr = 723.27

  • Monoclinic, P 21 /n

  • a = 12.3288 (7) Å

  • b = 17.7043 (9) Å

  • c = 17.3932 (9) Å

  • β = 92.4391 (8)°

  • V = 3793.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.45 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.603, Tmax = 0.746

  • 35700 measured reflections

  • 8699 independent reflections

  • 7157 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.02

  • 8699 reflections

  • 448 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 1.9470 (11)
Zn—O2 1.9390 (11)
Zn—O3 2.0467 (12)
Zn—N1 2.0939 (14)
Zn—N2 2.1001 (13)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal complexes with salicylaldiminato ligands are promising materials for optoelectronic applications due to their outstanding photo- and electro-luminescent properties (Liuzzo et al., 2010; Shirai et al., 2000). One of the main appeals of this class of coordination complexes is that molecular engineering permits systematically the optimizing of spectroscopic and chemical properties. This chemical flexibility allows for the design of systems that respond to specific environmental variables. Recently, zinc complexes have been introduced to OLED's (organic light-emitting diodes) and recognized as useful electron transport materials (Chen et al., 2009). The above motivated the synthesis and structural characterization of the title complex, (I).

The Zn atom in (I), Fig. 1, is tetracoordinated by the N2O2 donor atoms of the tetradentate Schiff-base ligand and the O atom derived from the dimethyl sulfoxide ligand, Table 1; the asymmetric unit is completed by a non-coordinating acetonitrile molecule. The resulting N2O3 donor set is based on a square pyramidal arrangement with the dimethyl sulfoxide-O3 atom occupying an axial site. The value of τ = 0.16 compares with τ = 0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The r.m.s. deviation of the O1, O2, N1 and N2 atoms from their least-squares plane is 0.0836 Å and the Zn atom lies 0.3976 (7) Å out of the plane towards the O3 atom. The tetradentate mode of coordination of the Schiff-base leads to the formation of a five- and two six-membered rings. The former has a conformation based on an envelope on Zn (Spek, 2009). While the chelate ring involving the O1 atom is approximately planar (r.m.s. = 0.054 Å), there is significantly more distortion in the O2-containing chelate ring (r.m.s. = 0.203 Å). Schiff-base ligands derived from diaminomaleonitrile have been documented and shown to adopt comparable coordination modes towards transition metals (MacLachlan et al., 1996).

Related literature top

For background to metal salicylaldiminato complexes as optoelectronic materials, see: Liuzzo et al. (2010); Shirai et al., (2000). For background to zinc complexes as organic light-emitting diodes, see: Chen et al. (2009). For related structures, see: MacLachlan et al. (1996). For geometrical analysis, see: Addison et al. (1984).

Experimental top

A mixture of diaminemaleonitrile (0.1 g, 0.93 mmol), 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.1 g, 1.86 mmol), zinc(II) acetate dihydrate (0.2 g, 0.93 mmol) and ethanol (5 ml) were placed in a glass Petri dish and capped with a glass cover. The dish was placed in a microwave oven (700 W) and irradiated for 1 min. The reaction mixture was cooled and washed with 15 ml of ethanol. The purple solid was filtered off and washed with ethanol. Re-crystallization was by slow evaporation of an acetonitrile/dimethyl sulfoxide (90/10 v/v) solution which yielded purple blocks of (I). Yield: 70%. M.pt. > 623 K (dec.). 1H NMR (DMSO-d6, 500 MHz): δ = 1.25 (s, 18H, C(CH3)3), 1.47 (s, 18H, C(CH3)3), 2.06 (MeCN), 2.50 (DMSO), 7.24 (s, 2H, Ar—H), 7.43 (s, 2H, Ar—H), 8.58 (s, 2H, NCH) p.p.m.. 13C NMR (DMSO-d6, 500 MHz): δ = 28.19, 29.80 (C(CH3)3), 32.61, 34.13 (C(CH3)3), 110.48, 116.85, 120.31, 128.10, 130.17, 134.20, 141.11, 161.68 and 172.33 p.p.m. IR: 2952, 2212 (CN), 1616 (CN), 1569, 1519, 1433, 1372, 1170, 1154, 1119, 1032, 795, 656 cm-1. λmax (DMSO, 10 -5 mol L-1): 574, 501, 380, 375, 318, 245 nm.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). In the final refinement three low angle reflections evidently effected by the beam stop were omitted, i.e. (011), (101) and (110).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
(Dimethyl sulfoxide-κO){4,4',6,6'-tetra-tert-butyl-2,2'-[1,2- dicyanoethene-1,2-diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}zinc(II) acetonitrile monosolvate top
Crystal data top
[Zn(C34H42N4O2)(C2H6OS)]·C2H3NF(000) = 1536
Mr = 723.27Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9906 reflections
a = 12.3288 (7) Åθ = 2.3–28.3°
b = 17.7043 (9) ŵ = 0.74 mm1
c = 17.3932 (9) ÅT = 100 K
β = 92.4391 (8)°Block, purple
V = 3793.0 (3) Å30.45 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
8699 independent reflections
Radiation source: fine-focus sealed tube7157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.603, Tmax = 0.746k = 2323
35700 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 1.6768P]
where P = (Fo2 + 2Fc2)/3
8699 reflections(Δ/σ)max = 0.002
448 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C34H42N4O2)(C2H6OS)]·C2H3NV = 3793.0 (3) Å3
Mr = 723.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3288 (7) ŵ = 0.74 mm1
b = 17.7043 (9) ÅT = 100 K
c = 17.3932 (9) Å0.45 × 0.30 × 0.10 mm
β = 92.4391 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8699 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7157 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.746Rint = 0.041
35700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.02Δρmax = 0.56 e Å3
8699 reflectionsΔρmin = 0.29 e Å3
448 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.516854 (14)0.654898 (11)0.558637 (10)0.01242 (6)
S10.41362 (3)0.82176 (2)0.50384 (2)0.01635 (9)
O10.63893 (9)0.70123 (7)0.61554 (7)0.0184 (3)
O20.44436 (9)0.61428 (7)0.64636 (6)0.0167 (2)
O30.41323 (9)0.73722 (7)0.51757 (7)0.0198 (3)
N10.61797 (11)0.64054 (7)0.46602 (8)0.0129 (3)
N20.42744 (10)0.57668 (7)0.49091 (7)0.0121 (3)
N30.64563 (12)0.60956 (9)0.27021 (9)0.0224 (3)
N40.34261 (12)0.51244 (9)0.30973 (9)0.0221 (3)
N50.63439 (16)1.00678 (11)0.54854 (14)0.0500 (6)
C10.73798 (13)0.71491 (9)0.59846 (9)0.0133 (3)
C20.81352 (12)0.74304 (9)0.65753 (9)0.0127 (3)
C30.91590 (13)0.76392 (9)0.63645 (9)0.0136 (3)
H30.96350.78510.67510.016*
C40.95562 (12)0.75609 (9)0.56135 (9)0.0128 (3)
C50.88612 (12)0.72505 (9)0.50676 (9)0.0129 (3)
H50.91070.71770.45630.015*
C60.77787 (12)0.70320 (9)0.52280 (9)0.0130 (3)
C70.78027 (12)0.74618 (9)0.74153 (9)0.0138 (3)
C80.87537 (14)0.77112 (11)0.79528 (10)0.0212 (4)
H8A0.93550.73530.79140.032*
H8B0.85200.77240.84840.032*
H8C0.89940.82160.78040.032*
C90.68745 (14)0.80283 (10)0.75108 (10)0.0206 (4)
H9A0.66830.80440.80520.031*
H9B0.62400.78710.71910.031*
H9C0.71080.85310.73500.031*
C100.74430 (15)0.66745 (10)0.76792 (10)0.0211 (4)
H10A0.80330.63120.76130.032*
H10B0.68010.65150.73700.032*
H10C0.72660.66950.82230.032*
C111.07286 (13)0.77942 (9)0.54726 (9)0.0148 (3)
C121.08302 (14)0.86593 (10)0.55278 (11)0.0221 (4)
H12A1.03400.88940.51400.033*
H12B1.15800.88090.54370.033*
H12C1.06360.88260.60420.033*
C131.10819 (14)0.75406 (11)0.46817 (10)0.0226 (4)
H13A1.06090.77730.42810.034*
H13B1.10290.69890.46430.034*
H13C1.18340.76970.46140.034*
C141.15020 (13)0.74290 (10)0.60857 (10)0.0186 (4)
H14A1.13750.68830.60980.028*
H14B1.13670.76450.65910.028*
H14C1.22560.75270.59580.028*
C150.71711 (12)0.66741 (9)0.46187 (9)0.0131 (3)
H150.75090.66240.41410.016*
C160.56431 (13)0.60475 (9)0.40459 (9)0.0122 (3)
C170.60834 (13)0.60514 (9)0.32927 (9)0.0140 (3)
C180.46527 (12)0.57224 (9)0.41737 (9)0.0119 (3)
C190.40078 (13)0.53784 (9)0.35600 (9)0.0141 (3)
C200.33269 (12)0.55019 (9)0.50908 (9)0.0130 (3)
H200.28990.52580.46970.016*
C210.28904 (12)0.55523 (9)0.58319 (9)0.0122 (3)
C220.18261 (13)0.52592 (9)0.59065 (9)0.0144 (3)
H220.14630.50380.54690.017*
C230.13077 (13)0.52844 (9)0.65864 (9)0.0139 (3)
C240.18870 (13)0.56085 (9)0.72222 (10)0.0153 (3)
H240.15380.56250.76990.018*
C250.29211 (13)0.59022 (9)0.72021 (9)0.0143 (3)
C260.34663 (13)0.58787 (9)0.64890 (9)0.0137 (3)
C270.01364 (13)0.50025 (10)0.66406 (10)0.0170 (3)
C280.00085 (18)0.42155 (12)0.63012 (14)0.0377 (5)
H28A0.04700.38610.65990.056*
H28B0.02250.42200.57660.056*
H28C0.07520.40570.63200.056*
C290.02449 (15)0.49953 (13)0.74654 (11)0.0312 (5)
H29A0.02300.46660.77830.047*
H29B0.09920.48060.74680.047*
H29C0.02170.55090.76750.047*
C300.06285 (15)0.55409 (12)0.61742 (12)0.0287 (4)
H30A0.13810.53720.62140.043*
H30B0.04370.55380.56330.043*
H30C0.05520.60540.63800.043*
C310.34962 (14)0.62514 (10)0.79195 (10)0.0175 (3)
C320.27723 (16)0.62444 (13)0.86125 (11)0.0293 (4)
H32A0.21040.65270.84870.044*
H32B0.31590.64800.90540.044*
H32C0.25900.57220.87400.044*
C330.45222 (14)0.57956 (10)0.81404 (10)0.0213 (4)
H33A0.48810.60170.86010.032*
H33B0.50180.58080.77150.032*
H33C0.43220.52710.82460.032*
C340.37892 (15)0.70810 (10)0.77625 (11)0.0227 (4)
H34A0.31260.73660.76290.034*
H34B0.42800.71050.73350.034*
H34C0.41470.73000.82240.034*
C350.44163 (17)0.86449 (11)0.59519 (11)0.0272 (4)
H35A0.37950.85730.62770.041*
H35B0.45460.91860.58830.041*
H35C0.50620.84110.61980.041*
C360.53942 (15)0.84257 (11)0.46161 (12)0.0260 (4)
H36A0.54110.81860.41090.039*
H36B0.59940.82320.49470.039*
H36C0.54690.89740.45600.039*
C370.71611 (16)0.99001 (11)0.57521 (12)0.0284 (4)
C380.82087 (17)0.96856 (14)0.60957 (14)0.0398 (5)
H38A0.82540.98440.66360.060*
H38B0.87860.99320.58180.060*
H38C0.82940.91360.60660.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01068 (9)0.01551 (10)0.01115 (10)0.00142 (7)0.00141 (7)0.00244 (7)
S10.01486 (19)0.0156 (2)0.0185 (2)0.00009 (15)0.00009 (15)0.00080 (16)
O10.0123 (6)0.0290 (7)0.0141 (6)0.0051 (5)0.0029 (4)0.0070 (5)
O20.0122 (5)0.0260 (7)0.0120 (6)0.0043 (5)0.0008 (4)0.0004 (5)
O30.0160 (6)0.0143 (6)0.0291 (7)0.0003 (5)0.0007 (5)0.0002 (5)
N10.0125 (6)0.0148 (7)0.0112 (7)0.0002 (5)0.0010 (5)0.0006 (5)
N20.0133 (6)0.0126 (7)0.0105 (7)0.0012 (5)0.0014 (5)0.0003 (5)
N30.0248 (8)0.0260 (8)0.0167 (8)0.0025 (6)0.0036 (6)0.0005 (6)
N40.0203 (8)0.0251 (8)0.0207 (8)0.0033 (6)0.0005 (6)0.0046 (6)
N50.0405 (11)0.0296 (11)0.0778 (16)0.0031 (9)0.0226 (11)0.0054 (10)
C10.0124 (7)0.0145 (8)0.0130 (8)0.0003 (6)0.0007 (6)0.0011 (6)
C20.0135 (7)0.0121 (8)0.0125 (8)0.0012 (6)0.0002 (6)0.0018 (6)
C30.0139 (7)0.0134 (8)0.0132 (8)0.0004 (6)0.0015 (6)0.0020 (6)
C40.0120 (7)0.0132 (8)0.0131 (8)0.0007 (6)0.0014 (6)0.0019 (6)
C50.0129 (7)0.0150 (8)0.0109 (8)0.0023 (6)0.0018 (6)0.0013 (6)
C60.0126 (7)0.0141 (8)0.0122 (8)0.0004 (6)0.0002 (6)0.0006 (6)
C70.0135 (8)0.0169 (8)0.0113 (8)0.0004 (6)0.0013 (6)0.0024 (6)
C80.0187 (9)0.0323 (10)0.0125 (8)0.0032 (7)0.0005 (7)0.0052 (7)
C90.0215 (9)0.0236 (10)0.0169 (9)0.0038 (7)0.0037 (7)0.0046 (7)
C100.0271 (9)0.0213 (9)0.0154 (9)0.0026 (7)0.0060 (7)0.0006 (7)
C110.0118 (7)0.0191 (8)0.0135 (8)0.0022 (6)0.0020 (6)0.0004 (7)
C120.0181 (8)0.0208 (9)0.0274 (10)0.0044 (7)0.0011 (7)0.0040 (8)
C130.0136 (8)0.0375 (11)0.0171 (9)0.0064 (7)0.0040 (7)0.0040 (8)
C140.0124 (8)0.0231 (9)0.0203 (9)0.0004 (7)0.0017 (7)0.0024 (7)
C150.0135 (7)0.0147 (8)0.0112 (8)0.0020 (6)0.0017 (6)0.0010 (6)
C160.0144 (7)0.0121 (8)0.0100 (8)0.0020 (6)0.0001 (6)0.0003 (6)
C170.0127 (7)0.0145 (8)0.0146 (8)0.0008 (6)0.0014 (6)0.0007 (6)
C180.0138 (7)0.0110 (8)0.0108 (7)0.0013 (6)0.0000 (6)0.0005 (6)
C190.0139 (7)0.0149 (8)0.0138 (8)0.0007 (6)0.0033 (6)0.0002 (6)
C200.0144 (7)0.0108 (8)0.0138 (8)0.0004 (6)0.0010 (6)0.0010 (6)
C210.0125 (7)0.0118 (8)0.0125 (8)0.0010 (6)0.0009 (6)0.0011 (6)
C220.0150 (8)0.0135 (8)0.0145 (8)0.0008 (6)0.0003 (6)0.0001 (6)
C230.0131 (7)0.0126 (8)0.0162 (8)0.0002 (6)0.0018 (6)0.0029 (6)
C240.0167 (8)0.0166 (8)0.0129 (8)0.0007 (6)0.0038 (6)0.0003 (6)
C250.0160 (8)0.0149 (8)0.0118 (8)0.0017 (6)0.0005 (6)0.0001 (6)
C260.0136 (7)0.0134 (8)0.0140 (8)0.0013 (6)0.0006 (6)0.0022 (6)
C270.0166 (8)0.0175 (9)0.0172 (8)0.0054 (6)0.0055 (6)0.0020 (7)
C280.0358 (12)0.0261 (11)0.0527 (14)0.0109 (9)0.0218 (10)0.0110 (10)
C290.0212 (9)0.0500 (13)0.0228 (10)0.0085 (9)0.0055 (8)0.0026 (9)
C300.0181 (9)0.0363 (12)0.0316 (11)0.0033 (8)0.0012 (8)0.0057 (9)
C310.0181 (8)0.0221 (9)0.0125 (8)0.0027 (7)0.0018 (6)0.0027 (7)
C320.0260 (10)0.0454 (12)0.0168 (9)0.0096 (9)0.0045 (8)0.0105 (9)
C330.0236 (9)0.0263 (10)0.0136 (8)0.0007 (7)0.0037 (7)0.0002 (7)
C340.0257 (9)0.0225 (9)0.0196 (9)0.0002 (7)0.0022 (7)0.0049 (7)
C350.0344 (11)0.0256 (10)0.0215 (10)0.0044 (8)0.0019 (8)0.0061 (8)
C360.0213 (9)0.0274 (10)0.0300 (10)0.0052 (8)0.0092 (8)0.0012 (8)
C370.0312 (11)0.0192 (10)0.0345 (11)0.0027 (8)0.0034 (9)0.0023 (8)
C380.0298 (11)0.0479 (14)0.0412 (13)0.0011 (10)0.0056 (10)0.0119 (11)
Geometric parameters (Å, º) top
Zn—O11.9470 (11)C14—H14C0.9800
Zn—O21.9390 (11)C15—H150.9500
Zn—O32.0467 (12)C16—C181.377 (2)
Zn—N12.0939 (14)C16—C171.439 (2)
Zn—N22.1001 (13)C18—C191.439 (2)
S1—O31.5155 (12)C20—C211.421 (2)
S1—C351.7803 (19)C20—H200.9500
S1—C361.7826 (18)C21—C221.422 (2)
O1—C11.2919 (19)C21—C261.440 (2)
O2—C261.2950 (19)C22—C231.369 (2)
N1—C151.317 (2)C22—H220.9500
N1—C161.386 (2)C23—C241.412 (2)
N2—C201.310 (2)C23—C271.535 (2)
N2—C181.382 (2)C24—C251.379 (2)
N3—C171.146 (2)C24—H240.9500
N4—C191.147 (2)C25—C261.436 (2)
N5—C371.131 (3)C25—C311.538 (2)
C1—C61.439 (2)C27—C281.519 (3)
C1—C21.446 (2)C27—C291.529 (2)
C2—C31.380 (2)C27—C301.546 (3)
C2—C71.535 (2)C28—H28A0.9800
C3—C41.421 (2)C28—H28B0.9800
C3—H30.9500C28—H28C0.9800
C4—C51.367 (2)C29—H29A0.9800
C4—C111.533 (2)C29—H29B0.9800
C5—C61.428 (2)C29—H29C0.9800
C5—H50.9500C30—H30A0.9800
C6—C151.421 (2)C30—H30B0.9800
C7—C81.533 (2)C30—H30C0.9800
C7—C91.536 (2)C31—C321.530 (2)
C7—C101.539 (2)C31—C331.535 (2)
C8—H8A0.9800C31—C341.540 (3)
C8—H8B0.9800C32—H32A0.9800
C8—H8C0.9800C32—H32B0.9800
C9—H9A0.9800C32—H32C0.9800
C9—H9B0.9800C33—H33A0.9800
C9—H9C0.9800C33—H33B0.9800
C10—H10A0.9800C33—H33C0.9800
C10—H10B0.9800C34—H34A0.9800
C10—H10C0.9800C34—H34B0.9800
C11—C131.528 (2)C34—H34C0.9800
C11—C121.540 (2)C35—H35A0.9800
C11—C141.542 (2)C35—H35B0.9800
C12—H12A0.9800C35—H35C0.9800
C12—H12B0.9800C36—H36A0.9800
C12—H12C0.9800C36—H36B0.9800
C13—H13A0.9800C36—H36C0.9800
C13—H13B0.9800C37—C381.450 (3)
C13—H13C0.9800C38—H38A0.9800
C14—H14A0.9800C38—H38B0.9800
C14—H14B0.9800C38—H38C0.9800
O2—Zn—O197.38 (5)N3—C17—C16176.04 (18)
O2—Zn—O3103.71 (5)C16—C18—N2117.53 (14)
O1—Zn—O3109.57 (5)C16—C18—C19121.55 (14)
O2—Zn—N1150.43 (5)N2—C18—C19120.86 (14)
O1—Zn—N188.26 (5)N4—C19—C18174.84 (17)
O3—Zn—N1101.60 (5)N2—C20—C21124.94 (14)
O2—Zn—N287.04 (5)N2—C20—H20117.5
O1—Zn—N2159.88 (5)C21—C20—H20117.5
O3—Zn—N288.21 (5)C20—C21—C22116.52 (14)
N1—Zn—N278.69 (5)C20—C21—C26123.51 (14)
O3—S1—C35106.31 (8)C22—C21—C26119.97 (14)
O3—S1—C36106.12 (8)C23—C22—C21122.24 (15)
C35—S1—C3698.09 (9)C23—C22—H22118.9
C1—O1—Zn132.84 (10)C21—C22—H22118.9
C26—O2—Zn128.42 (10)C22—C23—C24116.77 (15)
S1—O3—Zn138.77 (7)C22—C23—C27121.18 (15)
C15—N1—C16122.47 (14)C24—C23—C27122.00 (14)
C15—N1—Zn125.65 (11)C25—C24—C23124.81 (15)
C16—N1—Zn111.62 (10)C25—C24—H24117.6
C20—N2—C18122.86 (14)C23—C24—H24117.6
C20—N2—Zn123.57 (11)C24—C25—C26118.56 (15)
C18—N2—Zn111.52 (10)C24—C25—C31121.73 (14)
O1—C1—C6123.11 (14)C26—C25—C31119.71 (14)
O1—C1—C2119.20 (14)O2—C26—C25119.29 (14)
C6—C1—C2117.68 (14)O2—C26—C21123.08 (14)
C3—C2—C1118.19 (14)C25—C26—C21117.63 (14)
C3—C2—C7121.84 (14)C28—C27—C29109.03 (16)
C1—C2—C7119.93 (14)C28—C27—C23110.91 (15)
C2—C3—C4124.96 (15)C29—C27—C23112.83 (14)
C2—C3—H3117.5C28—C27—C30108.11 (16)
C4—C3—H3117.5C29—C27—C30107.01 (15)
C5—C4—C3116.58 (14)C23—C27—C30108.77 (14)
C5—C4—C11124.38 (14)C27—C28—H28A109.5
C3—C4—C11119.00 (14)C27—C28—H28B109.5
C4—C5—C6122.44 (15)H28A—C28—H28B109.5
C4—C5—H5118.8C27—C28—H28C109.5
C6—C5—H5118.8H28A—C28—H28C109.5
C15—C6—C5116.26 (14)H28B—C28—H28C109.5
C15—C6—C1123.81 (14)C27—C29—H29A109.5
C5—C6—C1119.87 (14)C27—C29—H29B109.5
C8—C7—C2111.26 (13)H29A—C29—H29B109.5
C8—C7—C9107.46 (14)C27—C29—H29C109.5
C2—C7—C9110.91 (13)H29A—C29—H29C109.5
C8—C7—C10107.55 (14)H29B—C29—H29C109.5
C2—C7—C10110.07 (13)C27—C30—H30A109.5
C9—C7—C10109.50 (14)C27—C30—H30B109.5
C7—C8—H8A109.5H30A—C30—H30B109.5
C7—C8—H8B109.5C27—C30—H30C109.5
H8A—C8—H8B109.5H30A—C30—H30C109.5
C7—C8—H8C109.5H30B—C30—H30C109.5
H8A—C8—H8C109.5C32—C31—C33107.50 (15)
H8B—C8—H8C109.5C32—C31—C25111.81 (14)
C7—C9—H9A109.5C33—C31—C25109.75 (14)
C7—C9—H9B109.5C32—C31—C34107.25 (15)
H9A—C9—H9B109.5C33—C31—C34110.41 (14)
C7—C9—H9C109.5C25—C31—C34110.06 (14)
H9A—C9—H9C109.5C31—C32—H32A109.5
H9B—C9—H9C109.5C31—C32—H32B109.5
C7—C10—H10A109.5H32A—C32—H32B109.5
C7—C10—H10B109.5C31—C32—H32C109.5
H10A—C10—H10B109.5H32A—C32—H32C109.5
C7—C10—H10C109.5H32B—C32—H32C109.5
H10A—C10—H10C109.5C31—C33—H33A109.5
H10B—C10—H10C109.5C31—C33—H33B109.5
C13—C11—C4111.82 (13)H33A—C33—H33B109.5
C13—C11—C12108.83 (14)C31—C33—H33C109.5
C4—C11—C12109.44 (13)H33A—C33—H33C109.5
C13—C11—C14107.92 (14)H33B—C33—H33C109.5
C4—C11—C14109.64 (13)C31—C34—H34A109.5
C12—C11—C14109.13 (14)C31—C34—H34B109.5
C11—C12—H12A109.5H34A—C34—H34B109.5
C11—C12—H12B109.5C31—C34—H34C109.5
H12A—C12—H12B109.5H34A—C34—H34C109.5
C11—C12—H12C109.5H34B—C34—H34C109.5
H12A—C12—H12C109.5S1—C35—H35A109.5
H12B—C12—H12C109.5S1—C35—H35B109.5
C11—C13—H13A109.5H35A—C35—H35B109.5
C11—C13—H13B109.5S1—C35—H35C109.5
H13A—C13—H13B109.5H35A—C35—H35C109.5
C11—C13—H13C109.5H35B—C35—H35C109.5
H13A—C13—H13C109.5S1—C36—H36A109.5
H13B—C13—H13C109.5S1—C36—H36B109.5
C11—C14—H14A109.5H36A—C36—H36B109.5
C11—C14—H14B109.5S1—C36—H36C109.5
H14A—C14—H14B109.5H36A—C36—H36C109.5
C11—C14—H14C109.5H36B—C36—H36C109.5
H14A—C14—H14C109.5N5—C37—C38179.9 (3)
H14B—C14—H14C109.5C37—C38—H38A109.5
N1—C15—C6125.57 (15)C37—C38—H38B109.5
N1—C15—H15117.2H38A—C38—H38B109.5
C6—C15—H15117.2C37—C38—H38C109.5
C18—C16—N1117.67 (14)H38A—C38—H38C109.5
C18—C16—C17121.36 (14)H38B—C38—H38C109.5
N1—C16—C17120.90 (14)
O2—Zn—O1—C1150.82 (15)C3—C4—C11—C1269.76 (19)
O3—Zn—O1—C1101.74 (15)C5—C4—C11—C14127.48 (17)
N1—Zn—O1—C10.04 (15)C3—C4—C11—C1449.91 (19)
N2—Zn—O1—C149.2 (2)C16—N1—C15—C6178.57 (15)
O1—Zn—O2—C26166.41 (14)Zn—N1—C15—C67.9 (2)
O3—Zn—O2—C2654.13 (14)C5—C6—C15—N1177.20 (15)
N1—Zn—O2—C2694.02 (16)C1—C6—C15—N10.0 (3)
N2—Zn—O2—C2633.31 (14)C15—N1—C16—C18173.74 (15)
C35—S1—O3—Zn60.18 (14)Zn—N1—C16—C1811.89 (17)
C36—S1—O3—Zn43.54 (14)C15—N1—C16—C179.4 (2)
O2—Zn—O3—S1119.64 (12)Zn—N1—C16—C17164.96 (12)
O1—Zn—O3—S116.51 (13)C18—C16—C17—N3142 (2)
N1—Zn—O3—S175.78 (12)N1—C16—C17—N334 (3)
N2—Zn—O3—S1153.85 (12)N1—C16—C18—N21.0 (2)
O2—Zn—N1—C15108.97 (15)C17—C16—C18—N2177.83 (14)
O1—Zn—N1—C157.03 (13)N1—C16—C18—C19176.23 (14)
O3—Zn—N1—C15102.59 (13)C17—C16—C18—C190.6 (2)
N2—Zn—N1—C15171.63 (14)C20—N2—C18—C16177.49 (14)
O2—Zn—N1—C1676.88 (14)Zn—N2—C18—C1613.30 (17)
O1—Zn—N1—C16178.82 (11)C20—N2—C18—C190.2 (2)
O3—Zn—N1—C1671.56 (11)Zn—N2—C18—C19163.95 (12)
N2—Zn—N1—C1614.22 (10)C16—C18—C19—N4144 (2)
O2—Zn—N2—C2027.25 (13)N2—C18—C19—N433 (2)
O1—Zn—N2—C20130.72 (15)C18—N2—C20—C21178.19 (15)
O3—Zn—N2—C2076.57 (13)Zn—N2—C20—C2115.9 (2)
N1—Zn—N2—C20178.78 (13)N2—C20—C21—C22177.32 (15)
O2—Zn—N2—C18168.69 (11)N2—C20—C21—C262.7 (3)
O1—Zn—N2—C1865.23 (19)C20—C21—C22—C23178.94 (15)
O3—Zn—N2—C1887.48 (11)C26—C21—C22—C231.0 (2)
N1—Zn—N2—C1814.73 (10)C21—C22—C23—C240.9 (2)
Zn—O1—C1—C66.6 (2)C21—C22—C23—C27176.69 (15)
Zn—O1—C1—C2173.09 (11)C22—C23—C24—C250.5 (2)
O1—C1—C2—C3174.06 (15)C27—C23—C24—C25176.99 (16)
C6—C1—C2—C36.2 (2)C23—C24—C25—C260.4 (3)
O1—C1—C2—C78.2 (2)C23—C24—C25—C31179.57 (15)
C6—C1—C2—C7171.50 (14)Zn—O2—C26—C25153.79 (12)
C1—C2—C3—C43.7 (2)Zn—O2—C26—C2126.7 (2)
C7—C2—C3—C4173.99 (15)C24—C25—C26—O2179.06 (15)
C2—C3—C4—C50.4 (2)C31—C25—C26—O21.0 (2)
C2—C3—C4—C11177.95 (15)C24—C25—C26—C210.5 (2)
C3—C4—C5—C61.7 (2)C31—C25—C26—C21179.45 (14)
C11—C4—C5—C6179.12 (15)C20—C21—C26—O21.3 (2)
C4—C5—C6—C15176.22 (15)C22—C21—C26—O2178.71 (15)
C4—C5—C6—C11.1 (2)C20—C21—C26—C25179.17 (15)
O1—C1—C6—C157.7 (3)C22—C21—C26—C250.8 (2)
C2—C1—C6—C15172.05 (15)C22—C23—C27—C2850.7 (2)
O1—C1—C6—C5175.20 (15)C24—C23—C27—C28131.85 (18)
C2—C1—C6—C55.1 (2)C22—C23—C27—C29173.39 (16)
C3—C2—C7—C82.6 (2)C24—C23—C27—C299.2 (2)
C1—C2—C7—C8175.02 (15)C22—C23—C27—C3068.0 (2)
C3—C2—C7—C9116.96 (17)C24—C23—C27—C30109.38 (18)
C1—C2—C7—C965.43 (19)C24—C25—C31—C321.6 (2)
C3—C2—C7—C10121.71 (17)C26—C25—C31—C32178.31 (16)
C1—C2—C7—C1055.90 (19)C24—C25—C31—C33117.58 (17)
C5—C4—C11—C137.8 (2)C26—C25—C31—C3362.5 (2)
C3—C4—C11—C13169.57 (15)C24—C25—C31—C34120.71 (17)
C5—C4—C11—C12112.85 (18)C26—C25—C31—C3459.2 (2)

Experimental details

Crystal data
Chemical formula[Zn(C34H42N4O2)(C2H6OS)]·C2H3N
Mr723.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.3288 (7), 17.7043 (9), 17.3932 (9)
β (°) 92.4391 (8)
V3)3793.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.45 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.603, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
35700, 8699, 7157
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.02
No. of reflections8699
No. of parameters448
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn—O11.9470 (11)Zn—N12.0939 (14)
Zn—O21.9390 (11)Zn—N22.1001 (13)
Zn—O32.0467 (12)
 

Footnotes

Additional correspondence author, e-mail: wayfield8@yahoo.com.

Acknowledgements

The authors acknowledge King Abdulaziz University for financial support (grant No. 17–013/430). The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Qiao, J., Xie, J., Duan, L., Zhang, D., Wang, L. & Qiu, Y. (2009). Inorg. Chim. Acta, 362, 2327–2333.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiuzzo, V., Oberhauser, W. & Pucci, A. (2010). Inorg. Chem. Commun. 13, 686–688.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492–5499.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirai, K., Matsuoka, M. & Fukunishi, K. (2000). Dyes Pigments, 47, 107–115.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m314-m315
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds