metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m317-m318

Bis(cytosinium) aqua­penta­chlorido­indate(III)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and bCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du général Leclerc, 35042 Rennes, France.
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 1 February 2011; accepted 3 February 2011; online 12 February 2011)

The asymmetric unit of the title compound, (C4H6N3O)2[InCl5(H2O)], comprises two independent cytosinium cations and an aquapentachloridoindate anion. The InIII ion is in a slightly distorted octa­hedral coordination geometry. In the crystal, alternating layers of cations and anions are arranged along [010] and are linked via inter­molecular N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming sheets parallel to (001). Additional stabilization within these sheeets is provided by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Bouacida (2008[Bouacida, S. (2008). PhD Thesis, Montouri-Constantine University, Algeria.]); Bouacida et al. (2005[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m2072-m2074.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]); Casellato et al. (1995[Casellato, U., Graziani, R., Martelli, M. & Plazzogna, G. (1995). Acta Cryst. C51, 2293-2295.]); Cherouana et al. (2003[Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983-o985.]). For standard bond lengths see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H6N3O)2[InCl5(H2O)]

  • Mr = 534.32

  • Triclinic, [P \overline 1]

  • a = 6.863 (1) Å

  • b = 10.487 (2) Å

  • c = 12.765 (2) Å

  • α = 104.608 (1)°

  • β = 97.998 (1)°

  • γ = 98.121 (1)°

  • V = 865.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 295 K

  • 0.18 × 0.09 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 18109 measured reflections

  • 3933 independent reflections

  • 3572 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.048

  • S = 1.07

  • 3929 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1i 0.80 (3) 2.52 (3) 3.3033 (17) 167 (2)
N2A—H2A⋯Cl4ii 0.86 2.41 3.2185 (18) 156
N2B—H2B⋯Cl2iii 0.86 2.47 3.2774 (18) 157
O1W—H2W⋯Cl2ii 0.78 (3) 2.49 (3) 3.2667 (18) 174 (3)
N6A—H6A⋯Cl3iii 0.86 2.37 3.2104 (17) 164
N6B—H6B⋯Cl5ii 0.86 2.38 3.2160 (18) 163
N7A—H71A⋯O1Ai 0.86 2.19 2.965 (3) 150
N7B—H71B⋯O1Wiii 0.86 2.38 3.226 (3) 168
N7A—H72A⋯Cl1ii 0.86 2.69 3.471 (2) 152
N7B—H72B⋯O1Biv 0.86 2.22 2.987 (3) 149
C4A—H4A⋯O1Ai 0.93 2.30 3.068 (3) 140
C4B—H4B⋯O1Biv 0.93 2.28 3.051 (3) 140
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg et al., 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interaction in the crystal structures of protonated amines (Bouacida, 2008; Bouacida et al., 2009). The asymmetric unit of the title compound (I) is shown in Fig. 1. The bond distances (Allen et al. 1987) and angles are within the ranges of accepted values. In the title compound the imine N atom is protonated as in other related structures (Bouacida et al., 2005; Casellato, et al. 1995; Cherouana et al., 2003). The In atom is six-coordinated (by five chlorine atoms and one water molecule) forming a slightly-distorted octahedral geometry. In the crystal structure alternating layers of cations and anions are arranged along [010] and are linked via intermolecular N—H···O, O—H···Cl and N—H···Cl hydrogen bonds to form a two-dimensional sheets parallel to (001) (see Fig. 2). Additional stabilization within these sheeets is provided by weak intermolecular C—H···O interactions.

Related literature top

For related structures, see: Bouacida et al. (2005, 2008, 2009); Casellato et al. (1995); Cherouana et al. (2003). For standard bond lengths see: Allen et al. (1987).

Experimental top

A solution of 1 mmol InCl3 and 2 mmol cytosine in hydrochloric acid was slowly evaporated to dryness over a period of two weeks yielding red crystals suitable for X-ray diffraction.

Refinement top

All H atoms were visible in differnce Fourier maps but were introduced in calculated positions and treated as riding on C and N atoms with C—H = 0.93Å and N—H = 0.86Å and Uiso(H) = 1.2(C,N). The water H atoms were located in a difference Fourier map and their positions were refined with Uiso(H) =1.5 Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Bis(cytosinium) aquapentachloridoindate(III) top
Crystal data top
(C4H6N3O)2[InCl5(H2O)]Z = 2
Mr = 534.32F(000) = 524
Triclinic, P1Dx = 2.051 Mg m3
a = 6.863 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.487 (2) ÅCell parameters from 8762 reflections
c = 12.765 (2) Åθ = 3.1–27.5°
α = 104.608 (1)°µ = 2.16 mm1
β = 97.998 (1)°T = 295 K
γ = 98.121 (1)°Needle, red
V = 865.3 (2) Å30.18 × 0.09 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.032
Graphite monochromatorθmax = 27.6°, θmin = 1.7°
CCD rotation images, thick slices scansh = 88
18109 measured reflectionsk = 1313
3933 independent reflectionsl = 1616
3572 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.02Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.0464P]
where P = (Fo2 + 2Fc2)/3
3929 reflections(Δ/σ)max = 0.002
214 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C4H6N3O)2[InCl5(H2O)]γ = 98.121 (1)°
Mr = 534.32V = 865.3 (2) Å3
Triclinic, P1Z = 2
a = 6.863 (1) ÅMo Kα radiation
b = 10.487 (2) ŵ = 2.16 mm1
c = 12.765 (2) ÅT = 295 K
α = 104.608 (1)°0.18 × 0.09 × 0.07 mm
β = 97.998 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3572 reflections with I > 2σ(I)
18109 measured reflectionsRint = 0.032
3933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
3929 reflectionsΔρmin = 0.61 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

4 bad reflections were omitted from the refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.550968 (18)0.423292 (12)0.265050 (10)0.02044 (5)
Cl20.68990 (8)0.33651 (5)0.42094 (4)0.03022 (11)
Cl30.35973 (7)0.19643 (4)0.16412 (4)0.02749 (11)
Cl40.36901 (7)0.51814 (5)0.13047 (4)0.03375 (12)
Cl50.68860 (8)0.65285 (5)0.38414 (5)0.03400 (12)
Cl10.84669 (8)0.39953 (6)0.17617 (5)0.03882 (13)
N2B0.6503 (2)0.06652 (16)0.62369 (13)0.0249 (4)
H2B0.59210.14690.61750.03*
O1B0.3547 (2)0.00633 (15)0.63256 (14)0.0405 (4)
N6A0.3443 (2)0.01389 (16)0.88504 (14)0.0282 (4)
H6A0.4110.05020.88040.034*
O1A0.6221 (2)0.16293 (15)0.89141 (15)0.0455 (4)
N6B0.6325 (2)0.15524 (17)0.63714 (15)0.0316 (4)
H6B0.56620.21950.6410.038*
N7B0.9460 (2)0.14472 (16)0.62174 (14)0.0304 (4)
H71B0.88270.22270.6190.037*
H72B1.07280.13210.62250.037*
C4B0.9437 (3)0.08585 (19)0.63066 (16)0.0264 (4)
H4B1.080.10510.63030.032*
C3B0.8491 (3)0.04516 (19)0.62486 (15)0.0227 (4)
C4A0.0348 (3)0.08195 (19)0.89372 (16)0.0258 (4)
H4A0.10120.06240.89510.031*
C5B0.8318 (3)0.1819 (2)0.63676 (17)0.0302 (5)
H5B0.89220.26850.64080.036*
C1B0.5332 (3)0.0312 (2)0.63174 (16)0.0266 (4)
C3A0.1280 (3)0.21374 (18)0.90100 (15)0.0234 (4)
O1W0.2642 (2)0.42641 (16)0.35025 (13)0.0319 (3)
H1W0.166 (4)0.433 (2)0.312 (2)0.048*
H2W0.272 (4)0.487 (3)0.402 (2)0.048*
C5A0.1454 (3)0.01407 (19)0.88486 (16)0.0267 (4)
H3A0.08490.10150.87850.032*
C1A0.4435 (3)0.1381 (2)0.89219 (17)0.0284 (4)
N7A0.0296 (3)0.31296 (17)0.90638 (15)0.0354 (4)
H72A0.0910.39110.90820.042*
H71A0.09630.29990.90810.042*
N2A0.3263 (2)0.23531 (16)0.89832 (14)0.0258 (4)
H2A0.38280.31480.90060.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01960 (8)0.01626 (7)0.02516 (8)0.00200 (5)0.00384 (5)0.00607 (5)
Cl20.0331 (3)0.0272 (2)0.0304 (3)0.0062 (2)0.0002 (2)0.0106 (2)
Cl30.0290 (3)0.0184 (2)0.0310 (3)0.00087 (18)0.0023 (2)0.00312 (19)
Cl40.0287 (3)0.0312 (3)0.0428 (3)0.0015 (2)0.0020 (2)0.0198 (2)
Cl50.0313 (3)0.0185 (2)0.0444 (3)0.0001 (2)0.0013 (2)0.0017 (2)
Cl10.0277 (3)0.0490 (3)0.0454 (3)0.0106 (2)0.0166 (2)0.0159 (3)
N2B0.0211 (8)0.0216 (8)0.0346 (9)0.0037 (6)0.0062 (7)0.0118 (7)
O1B0.0207 (8)0.0379 (9)0.0675 (11)0.0080 (7)0.0129 (7)0.0187 (8)
N6A0.0253 (9)0.0235 (8)0.0384 (10)0.0089 (7)0.0066 (8)0.0101 (7)
O1A0.0206 (8)0.0371 (9)0.0813 (13)0.0066 (7)0.0145 (8)0.0175 (9)
N6B0.0244 (9)0.0256 (9)0.0501 (11)0.0096 (7)0.0088 (8)0.0162 (8)
N7B0.0255 (9)0.0268 (9)0.0386 (10)0.0071 (7)0.0055 (8)0.0072 (8)
C4B0.0183 (9)0.0304 (11)0.0312 (11)0.0022 (8)0.0048 (8)0.0113 (9)
C3B0.0229 (10)0.0257 (10)0.0193 (9)0.0051 (8)0.0034 (7)0.0060 (8)
C4A0.0180 (9)0.0301 (11)0.0288 (11)0.0011 (8)0.0043 (8)0.0093 (8)
C5B0.0268 (11)0.0241 (10)0.0402 (12)0.0012 (8)0.0051 (9)0.0135 (9)
C1B0.0215 (10)0.0310 (11)0.0306 (11)0.0079 (8)0.0062 (8)0.0122 (9)
C3A0.0212 (9)0.0230 (9)0.0243 (10)0.0035 (8)0.0038 (8)0.0041 (8)
O1W0.0262 (8)0.0365 (9)0.0297 (8)0.0082 (7)0.0045 (6)0.0022 (6)
C5A0.0263 (10)0.0246 (10)0.0276 (11)0.0005 (8)0.0041 (8)0.0079 (8)
C1A0.0219 (10)0.0284 (10)0.0353 (11)0.0061 (8)0.0069 (9)0.0078 (9)
N7A0.0239 (9)0.0265 (9)0.0529 (12)0.0052 (7)0.0076 (8)0.0054 (8)
N2A0.0191 (8)0.0216 (8)0.0372 (10)0.0015 (6)0.0062 (7)0.0095 (7)
Geometric parameters (Å, º) top
In1—O1W2.3776 (15)N7B—H71B0.86
In1—Cl12.4718 (6)N7B—H72B0.86
In1—Cl52.4720 (6)C4B—C5B1.344 (3)
In1—Cl42.4730 (6)C4B—C3B1.413 (3)
In1—Cl32.4787 (6)C4B—H4B0.93
In1—Cl22.5155 (6)C4A—C5A1.337 (3)
N2B—C3B1.349 (2)C4A—C3A1.413 (3)
N2B—C1B1.381 (2)C4A—H4A0.93
N2B—H2B0.86C5B—H5B0.93
O1B—C1B1.218 (2)C3A—N7A1.311 (2)
N6A—C5A1.354 (2)C3A—N2A1.355 (2)
N6A—C1A1.356 (3)O1W—H1W0.80 (2)
N6A—H6A0.86O1W—H2W0.78 (3)
O1A—C1A1.218 (2)C5A—H3A0.93
N6B—C5B1.357 (2)C1A—N2A1.379 (2)
N6B—C1B1.361 (2)N7A—H72A0.86
N6B—H6B0.86N7A—H71A0.86
N7B—C3B1.310 (2)N2A—H2A0.86
O1W—In1—Cl1175.07 (4)N7B—C3B—N2B119.31 (17)
O1W—In1—Cl588.65 (4)N7B—C3B—C4B123.05 (17)
Cl1—In1—Cl595.26 (2)N2B—C3B—C4B117.64 (17)
O1W—In1—Cl486.45 (4)C5A—C4A—C3A118.82 (17)
Cl1—In1—Cl496.55 (2)C5A—C4A—H4A120.6
Cl5—In1—Cl489.56 (2)C3A—C4A—H4A120.6
O1W—In1—Cl380.65 (4)C4B—C5B—N6B121.53 (18)
Cl1—In1—Cl395.42 (2)C4B—C5B—H5B119.2
Cl5—In1—Cl3169.296 (17)N6B—C5B—H5B119.2
Cl4—In1—Cl389.95 (2)O1B—C1B—N6B123.31 (18)
O1W—In1—Cl283.91 (4)O1B—C1B—N2B121.90 (18)
Cl1—In1—Cl293.21 (2)N6B—C1B—N2B114.78 (16)
Cl5—In1—Cl288.07 (2)N7A—C3A—N2A119.53 (17)
Cl4—In1—Cl2170.125 (18)N7A—C3A—C4A122.86 (18)
Cl3—In1—Cl290.60 (2)N2A—C3A—C4A117.57 (17)
C3B—N2B—C1B124.87 (16)In1—O1W—H1W114.4 (18)
C3B—N2B—H2B117.6In1—O1W—H2W115.7 (19)
C1B—N2B—H2B117.6H1W—O1W—H2W101 (2)
C5A—N6A—C1A123.24 (17)C4A—C5A—N6A121.06 (18)
C5A—N6A—H6A118.4C4A—C5A—H3A119.5
C1A—N6A—H6A118.4N6A—C5A—H3A119.5
C5B—N6B—C1B122.77 (17)O1A—C1A—N6A123.22 (18)
C5B—N6B—H6B118.6O1A—C1A—N2A121.78 (18)
C1B—N6B—H6B118.6N6A—C1A—N2A114.99 (17)
C3B—N7B—H71B120C3A—N7A—H72A120
C3B—N7B—H72B120C3A—N7A—H71A120
H71B—N7B—H72B120H72A—N7A—H71A120
C5B—C4B—C3B118.37 (18)C3A—N2A—C1A124.27 (16)
C5B—C4B—H4B120.8C3A—N2A—H2A117.9
C3B—C4B—H4B120.8C1A—N2A—H2A117.9
C1B—N2B—C3B—N7B176.87 (18)C5A—C4A—C3A—N7A177.79 (19)
C1B—N2B—C3B—C4B2.5 (3)C5A—C4A—C3A—N2A0.1 (3)
C5B—C4B—C3B—N7B178.07 (19)C3A—C4A—C5A—N6A1.3 (3)
C5B—C4B—C3B—N2B1.2 (3)C1A—N6A—C5A—C4A1.1 (3)
C3B—C4B—C5B—N6B0.2 (3)C5A—N6A—C1A—O1A179.4 (2)
C1B—N6B—C5B—C4B0.2 (3)C5A—N6A—C1A—N2A0.6 (3)
C5B—N6B—C1B—O1B179.6 (2)N7A—C3A—N2A—C1A179.71 (19)
C5B—N6B—C1B—N2B1.2 (3)C4A—C3A—N2A—C1A2.0 (3)
C3B—N2B—C1B—O1B178.40 (19)O1A—C1A—N2A—C3A179.1 (2)
C3B—N2B—C1B—N6B2.4 (3)N6A—C1A—N2A—C3A2.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl1i0.80 (3)2.52 (3)3.3033 (17)167 (2)
N2A—H2A···Cl4ii0.862.413.2185 (18)156
N2B—H2B···Cl2iii0.862.473.2774 (18)157
O1W—H2W···Cl2ii0.78 (3)2.49 (3)3.2667 (18)174 (3)
N6A—H6A···Cl3iii0.862.373.2104 (17)164
N6B—H6B···Cl5ii0.862.383.2160 (18)163
N7A—H71A···O1Ai0.862.192.965 (3)150
N7B—H71B···O1Wiii0.862.383.226 (3)168
N7A—H72A···Cl1ii0.862.693.471 (2)152
N7B—H72B···O1Biv0.862.222.987 (3)149
C4A—H4A···O1Ai0.932.303.068 (3)140
C4B—H4B···O1Biv0.932.283.051 (3)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C4H6N3O)2[InCl5(H2O)]
Mr534.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.863 (1), 10.487 (2), 12.765 (2)
α, β, γ (°)104.608 (1), 97.998 (1), 98.121 (1)
V3)865.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.18 × 0.09 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18109, 3933, 3572
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.02, 0.048, 1.07
No. of reflections3929
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.61

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl1i0.80 (3)2.52 (3)3.3033 (17)167 (2)
N2A—H2A···Cl4ii0.862.413.2185 (18)156
N2B—H2B···Cl2iii0.862.473.2774 (18)157
O1W—H2W···Cl2ii0.78 (3)2.49 (3)3.2667 (18)174 (3)
N6A—H6A···Cl3iii0.862.373.2104 (17)164
N6B—H6B···Cl5ii0.862.383.2160 (18)163
N7A—H71A···O1Ai0.862.192.965 (3)150
N7B—H71B···O1Wiii0.862.383.226 (3)168
N7A—H72A···Cl1ii0.862.693.471 (2)152
N7B—H72B···O1Biv0.862.222.987 (3)149
C4A—H4A···O1Ai0.932.303.068 (3)140
C4B—H4B···O1Biv0.932.283.051 (3)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Footnotes

Current address: Département Sciences de la Matière, Facult des Sciences Exactes et Sciences de la Nature et de la Vie, Universit Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria.

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBouacida, S. (2008). PhD Thesis, Montouri-Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasellato, U., Graziani, R., Martelli, M. & Plazzogna, G. (1995). Acta Cryst. C51, 2293–2295.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983–o985.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m317-m318
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds