organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(1,3-Benzodioxol-5-yl)but-3-en-2-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 23 January 2011; accepted 1 February 2011; online 9 February 2011)

In the title compound, C11H10O3, the benzodioxole ring adopts a flattened [puckering parameters: q2 = 0.107 (2) Å, φ2 = 160 (1)°] envelope conformation with the methylene C atom as the flap. The crystal packing features chains, parallel to the c axis, composed of dimers connected by weak C—H–O hydrogen bonds and extending in layers in the bc plane.

Related literature

For the synthesis of chalcones, see: Loh et al. (2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o353-o354.]). For a related structure, see: Gao & Ng (2006[Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3517-o3518.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O3

  • Mr = 190.19

  • Monoclinic, P 21 /c

  • a = 5.3469 (3) Å

  • b = 16.4849 (8) Å

  • c = 10.5475 (6) Å

  • β = 99.183 (5)°

  • V = 917.77 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.18 × 0.11 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.950, Tmax = 1.000

  • 5375 measured reflections

  • 1737 independent reflections

  • 1121 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 0.92

  • 1737 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 (2) 2.56 (2) 3.489 (2) 166 (1)
C9—H9⋯O1i 0.93 (2) 2.60 (2) 3.517 (2) 171 (1)
C8—H8⋯O2ii 0.93 (2) 2.90 (2) 3.819 (2) 177 (1)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones and its heterocyclic analogs have been used as intermediates in organic synthesis and exhibit diverse biological activities such as antimicrobial and cytotoxic agents. From a chemistry point of view, an important feature of chalcones and their heteroanalogs is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions. In continuation with our interest in the synthesis of chalcones (Loh et al., 2010) herein we report the structure of the title compound (I).

In the title compound (I) the spatial arrangement of the keto group C(10) O(3) and the olefinic double bond C(8)C(9) with respect to the single bond C9—C10 is trans, as indicated the C(8)—C(9)—C(10)—O(3) torsion angle value(-176.10 (18)°). The C(8)C(9) (1.325 (2))Å), C(9)—C(10) (1.459 (2) Å) and C10O3 (1.225 (2) Å) distances values are similar of the structures previously reported (Gao and Ng, 2006).

Plane A is refered to C(8)/C(9)/C(10)/O(3) atoms (maximum desviation C(9) 0.0229 (17) Å). The dihedral angle between C(2)/C(7) benzene ring (maximum desviation C(4) -0.0040 (18) Å) and plane A is 7.25 (10)°. In benzodioxole ring C(1) is displaced from mean plane by 0.1351 (22) Å, forming a flattened envelope conformation with C(1) as the flap atom. The packing in the crystal structure is dominated by molecular chains made of dimers connected by C—H–O weak hydrogen bonds and extended along bc plane.

Insert scheme 1.

The asymmetric unit consists of a single molecule (I), shown in Figure 1.

Related literature top

For the synthesis of chalcones, see: Loh et al. (2010). For a related structure, see: Gao & Ng (2006).

Experimental top

A mixture of acetone (3.0 g 0.005M) and benzo[d][1,3]dioxole-5-carbaldehyde (1.5 g 0.01M) and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h, the resulting mixture was concentrated to remove ethanol then poured on to ice and neutralized with dill acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether. Recrystallized from acetone; Yield: 49% and m.pt: 412–414 K.

Refinement top

At the end of the refinement the highest peak in the electron density was 0.124 e Å -3, while the deepest hole was -0.154 e Å -3.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed parallel to the bc plane. Hydrogen bonds are indicated by dashed lines.
(E)-4-(1,3-Benzodioxol-5-yl)but-3-en-2-one top
Crystal data top
C11H10O3F(000) = 400
Mr = 190.19Dx = 1.376 Mg m3
Monoclinic, P21/cMelting point: 413 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 5.3469 (3) ÅCell parameters from 1941 reflections
b = 16.4849 (8) Åθ = 4.2–70.6°
c = 10.5475 (6) ŵ = 0.83 mm1
β = 99.183 (5)°T = 293 K
V = 917.77 (9) Å3Prismatic, yellow
Z = 40.18 × 0.11 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1737 independent reflections
Radiation source: fine-focus sealed tube1121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.2673 pixels mm-1θmax = 70.5°, θmin = 5.0°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1419
Tmin = 0.950, Tmax = 1.000l = 1211
5375 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094All H-atom parameters refined
S = 0.92 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
1737 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C11H10O3V = 917.77 (9) Å3
Mr = 190.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.3469 (3) ŵ = 0.83 mm1
b = 16.4849 (8) ÅT = 293 K
c = 10.5475 (6) Å0.18 × 0.11 × 0.09 mm
β = 99.183 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1737 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1121 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 1.000Rint = 0.029
5375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094All H-atom parameters refined
S = 0.92Δρmax = 0.12 e Å3
1737 reflectionsΔρmin = 0.15 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5552 (2)0.23540 (7)0.17522 (12)0.0686 (3)
O10.5790 (2)0.09846 (7)0.13128 (11)0.0669 (4)
C20.4130 (3)0.13463 (9)0.06159 (15)0.0528 (4)
C60.1246 (3)0.14906 (9)0.08521 (14)0.0528 (4)
C50.1132 (3)0.23186 (10)0.05728 (16)0.0597 (4)
C70.2809 (3)0.09884 (10)0.02303 (16)0.0556 (4)
C30.3994 (3)0.21645 (9)0.08768 (15)0.0557 (4)
C80.0220 (3)0.11602 (10)0.17895 (16)0.0563 (4)
C40.2514 (3)0.26731 (10)0.02911 (17)0.0627 (4)
C90.0146 (3)0.04080 (10)0.22361 (17)0.0591 (4)
O30.1186 (3)0.06111 (8)0.35856 (14)0.0857 (4)
C100.1536 (3)0.00895 (11)0.32109 (16)0.0632 (4)
C110.3362 (5)0.06204 (16)0.3750 (3)0.0802 (6)
C10.6491 (4)0.16001 (11)0.2141 (2)0.0683 (5)
H80.129 (3)0.1522 (10)0.2107 (17)0.065 (5)*
H70.295 (3)0.0424 (10)0.0405 (15)0.058 (4)*
H40.242 (3)0.3245 (11)0.0461 (17)0.074 (5)*
H90.085 (3)0.0018 (11)0.1929 (15)0.069 (5)*
H50.007 (3)0.2651 (10)0.0987 (15)0.061 (4)*
H1A0.567 (3)0.1472 (11)0.304 (2)0.079 (6)*
H1B0.839 (4)0.1638 (11)0.2067 (17)0.078 (5)*
H11A0.415 (6)0.0290 (19)0.423 (3)0.156 (12)*
H11C0.247 (5)0.1005 (18)0.433 (3)0.148 (12)*
H11B0.442 (6)0.0918 (19)0.316 (3)0.147 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0755 (7)0.0532 (7)0.0818 (8)0.0007 (5)0.0272 (6)0.0100 (6)
O10.0752 (8)0.0532 (7)0.0789 (8)0.0086 (5)0.0323 (6)0.0055 (6)
C20.0533 (8)0.0466 (8)0.0587 (9)0.0033 (7)0.0092 (7)0.0001 (7)
C60.0540 (8)0.0482 (9)0.0560 (9)0.0025 (7)0.0082 (7)0.0004 (7)
C50.0658 (10)0.0485 (9)0.0663 (10)0.0081 (8)0.0148 (8)0.0030 (8)
C70.0602 (9)0.0430 (9)0.0643 (10)0.0042 (7)0.0121 (7)0.0024 (8)
C30.0569 (9)0.0497 (9)0.0605 (10)0.0023 (7)0.0090 (7)0.0046 (7)
C80.0565 (9)0.0530 (10)0.0594 (9)0.0041 (7)0.0094 (7)0.0033 (8)
C40.0719 (10)0.0427 (9)0.0745 (11)0.0031 (8)0.0144 (8)0.0047 (8)
C90.0610 (9)0.0497 (10)0.0684 (10)0.0019 (7)0.0153 (8)0.0020 (8)
O30.1042 (10)0.0586 (8)0.0963 (10)0.0024 (7)0.0216 (8)0.0171 (7)
C100.0642 (10)0.0564 (10)0.0673 (10)0.0067 (8)0.0048 (8)0.0047 (8)
C110.0771 (13)0.0829 (15)0.0875 (16)0.0063 (12)0.0340 (12)0.0146 (14)
C10.0753 (12)0.0575 (10)0.0766 (13)0.0014 (9)0.0260 (10)0.0071 (9)
Geometric parameters (Å, º) top
O2—C31.3746 (19)C8—C91.325 (2)
O2—C11.425 (2)C8—H80.926 (18)
O1—C21.3755 (18)C4—H40.960 (18)
O1—C11.428 (2)C9—C101.459 (2)
C2—C71.358 (2)C9—H90.927 (18)
C2—C31.376 (2)O3—C101.225 (2)
C6—C51.396 (2)C10—C111.490 (3)
C6—C71.410 (2)C11—H11A0.90 (3)
C6—C81.462 (2)C11—H11C0.95 (3)
C5—C41.390 (2)C11—H11B0.92 (3)
C5—H50.944 (17)C1—H1A1.005 (19)
C7—H70.948 (17)C1—H1B1.009 (19)
C3—C41.366 (2)
C3—O2—C1105.93 (12)C3—C4—H4122.5 (11)
C2—O1—C1105.90 (12)C5—C4—H4121.1 (11)
C7—C2—O1127.63 (14)C8—C9—C10126.69 (16)
C7—C2—C3122.73 (14)C8—C9—H9120.7 (11)
O1—C2—C3109.63 (13)C10—C9—H9112.6 (11)
C5—C6—C7119.01 (14)O3—C10—C9119.83 (17)
C5—C6—C8119.81 (14)O3—C10—C11120.43 (17)
C7—C6—C8121.17 (14)C9—C10—C11119.74 (17)
C4—C5—C6122.66 (16)C10—C11—H11A105 (2)
C4—C5—H5118.7 (10)C10—C11—H11C110.3 (18)
C6—C5—H5118.6 (10)H11A—C11—H11C106 (2)
C2—C7—C6117.36 (15)C10—C11—H11B115.3 (19)
C2—C7—H7121.4 (9)H11A—C11—H11B115 (3)
C6—C7—H7121.3 (9)H11C—C11—H11B106 (3)
C4—C3—O2128.40 (14)O2—C1—O1107.73 (14)
C4—C3—C2121.79 (15)O2—C1—H1A109.7 (11)
O2—C3—C2109.80 (13)O1—C1—H1A108.3 (11)
C9—C8—C6126.90 (16)O2—C1—H1B108.7 (10)
C9—C8—H8117.3 (11)O1—C1—H1B110.9 (10)
C6—C8—H8115.8 (11)H1A—C1—H1B111.5 (15)
C3—C4—C5116.44 (16)
C1—O1—C2—C7174.79 (18)C7—C2—C3—O2179.18 (15)
C1—O1—C2—C36.33 (18)O1—C2—C3—O20.24 (18)
C7—C6—C5—C40.4 (3)C5—C6—C8—C9173.77 (17)
C8—C6—C5—C4178.81 (16)C7—C6—C8—C95.4 (3)
O1—C2—C7—C6178.83 (15)O2—C3—C4—C5179.36 (16)
C3—C2—C7—C60.1 (2)C2—C3—C4—C50.6 (3)
C5—C6—C7—C20.0 (2)C6—C5—C4—C30.7 (3)
C8—C6—C7—C2179.22 (15)C6—C8—C9—C10177.30 (16)
C1—O2—C3—C4175.19 (18)C8—C9—C10—O3176.10 (17)
C1—O2—C3—C25.96 (19)C8—C9—C10—C113.5 (3)
C7—C2—C3—C40.3 (3)C3—O2—C1—O19.8 (2)
O1—C2—C3—C4178.69 (15)C2—O1—C1—O29.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.95 (2)2.56 (2)3.489 (2)166 (1)
C9—H9···O1i0.93 (2)2.60 (2)3.517 (2)171 (1)
C8—H8···O2ii0.93 (2)2.90 (2)3.819 (2)177 (1)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10O3
Mr190.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3469 (3), 16.4849 (8), 10.5475 (6)
β (°) 99.183 (5)
V3)917.77 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.18 × 0.11 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.950, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5375, 1737, 1121
Rint0.029
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 0.92
No. of reflections1737
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.95 (2)2.56 (2)3.489 (2)166 (1)
C9—H9···O1i0.93 (2)2.60 (2)3.517 (2)171 (1)
C8—H8···O2ii0.93 (2)2.90 (2)3.819 (2)177 (1)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z+1/2.
 

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal). Financial support was provided by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding and the Spanish MICINN (MAT2006–01997, MAT2010–15095 and the Factoría de Cristalización Consolider Ingenio 2010).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3517–o3518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o353–o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds