organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o550-o551

Nitro­furan­toin methanol monosolvate

aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
*Correspondence e-mail: venugopal_vangala@ices.a-star.edu.sg, reginald_tan@ices.a-star.edu.sg

(Received 28 January 2011; accepted 28 January 2011; online 2 February 2011)

The anti­biotic nitro­furan­toin {systematic name: (E)-1-[(5-nitro-2-fur­yl)methyl­idene­amino]­imidazolidine-2,4-dione} crys­tallizes as a methanol monosolvate, C8H6N4O5·CH4O. The nitro­furan­toin mol­ecule adopts a nearly planar conformation (r.m.s. deviation = 0.0344 Å). Hydrogen bonds involve the co-operative N—H⋯O—H⋯O heterosynthons between the cyclic imide of nitro­furan­toin and methanol O—H groups. There are also C—H⋯O hydrogen bonds involving the nitro­furan­toin mol­ecules which support the key hydrogen-bonding synthon. The overall crystal packing is further assisted by weak C—H⋯O inter­actions, giving a herringbone pattern.

Related literature

For polymorphism and pseudopolymorphs, see: Bernstein (2002[Bernstein, J. (2002). In Polymorphism in Molecular Crystals. Oxford: Clarendon Press.]); Byrn et al. (1999[Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). Solid-State Chemistry of Drugs, 2nd ed. West Lafayette, IN, USA: SSCI Inc.]); Aitipamula et al. (2010[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Cryst. Growth Des. 10, 2229-2238.]). For nitro­furan­toin hydrate and anhydrate crystal structures, see: Otsuka et al. (1991[Otsuka, M., Teraoka, R. & Matsuda, Y. (1991). Pharm. Res. 8, 1066-1068.]); Pienaar et al. (1993a[Pienaar, E. W., Caira, M. R. & Lötter, A. P. (1993a). J. Crystallogr. Spectrosc. Res. 23, 739-744.],b[Pienaar, E. W., Caira, M. R. & Lötter, A. P. (1993b). J. Crystallogr. Spectrosc. Res. 23, 785-790.]); Bertolasi et al. (1993)[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1993). Acta Cryst. C49, 741-744.] and for nitro­furan­toin pseudopolymorphs, see: Caira et al. (1996[Caira, M. R., Pienaar, E. W. & Lötter, A. P. (1996). Mol. Cryst. Liq. Cryst. 279, 241-264.]); Tutughamiarso et al. (2011[Tutughamiarso, M., Bolte, M., Wagner, G. & Egert, E. (2011). Acta Cryst. C67, o18-o25.]). For a 1:1 co-crystal involving nitro­furan­toin and 4-hy­droxy­benzoic acid, see: Vangala et al. (2011[Vangala, V. R., Chow, P. S. & Tan, R. B. H. (2011). CrystEngComm, 13, 759-762.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.], 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N4O5·CH4O

  • Mr = 270.21

  • Monoclinic, P 21 /c

  • a = 6.4084 (13) Å

  • b = 6.5941 (13) Å

  • c = 26.705 (5) Å

  • β = 91.70 (3)°

  • V = 1128.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 110 K

  • 0.13 × 0.11 × 0.11 mm

Data collection
  • Rigaku Saturn 70 CCD area-deterctor diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.985

  • 17441 measured reflections

  • 3299 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.129

  • S = 1.24

  • 3299 reflections

  • 212 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O6 0.88 (3) 1.88 (3) 2.755 (2) 170 (3)
O6—H6⋯O5i 0.86 (3) 1.93 (3) 2.787 (2) 172 (3)
C5—H5⋯O4ii 0.95 (2) 2.22 (2) 3.155 (2) 169.2 (18)
C3—H3⋯O3ii 0.94 (2) 2.42 (2) 3.176 (3) 138 (2)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2008)[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; data reduction: CrystalClear[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Polymorphism is an ability of a molecule to exist in two or more crystal structures. Incorporation of solvent molecules into the crystalline lattice are routinely referred to as solvates, inclusion complexes and/or pseudopolymorphs (Bernstein, 2002; Byrn et al., 1999; Aitipamula et al., 2010). A full characterization of various crystal forms of an active pharmaceutical ingredient (API) may reveal desired physical form. Thus, it is relevant to pharmaceutical industry. Nitrofurantoin {(E)-1-[(5-nitro-2-furyl)methylideneamino]imidazoldine-2,4-dione} is an antibacterial agent used in the treatment of genitourinary tract infections. It exists in both anhydrous (α- and β-) and hydrate forms (Forms I and II) (Pienaar et al., 1993a, 1993b; Bertolasi et al., 1993), and literature findings show that nitrofurantoin has poor physical properties (Otsuka et al., 1991; Caira et al., 1996). We have recently reported a 1:1 co-crystal involving nitrofurantoin and 4-hydroxybenzoic acid and shown that co-crystal displayed superior physicochemical and photo-stability to that of nitrofurantoin. However, co-crystallization attempt of nitrofurantoin with fumaric acid in methanol instead yielded the title pseudopolymorph, nitrofurantoin methanol monosolvate. It was reported that this API is known to form inclusion complexes with dimethylformamide, dimethyl sulfoxide and dimethylacetamide (Caira et al., 1996; Tutughamiarso et al., 2011). Herein we report the structural features of a 1:1 pseudopolymorph involving nitrofurantoin and methanol (Fig. 1).

Thermogravimetric analysis (TGA traces) of the title compound is shown in Fig. 2. The measured weight loss (11.6% w/w) in the temperature range of 110–140 °C is in agreement with the stoichiometric weight content for a methanol monosolvate (11.8% w/w).

Single crystal X-ray diffraction analysis reveals that the crystal structure contains one molecule each of nitrofurantoin and methanol in the asymmetric unit (Fig. 1). It has crystallized in the monoclinic crystal system with P21/c space group. In the structure, nitrofurantoin and methanol molecules were essentially held together by a primary co-operative synthon of N—H···O—H···O [D/Å, θ/°: 2.755 (2), 170 (3); 2.787 (2), 172 (3)] between amide N4—H4, methanolic O6—H6 and imide O5 along the a-axis (Fig. 3). In addition, there are significant C—H···O hydrogen bonds (Desiraju & Steiner 1999; Desiraju 2002; Desiraju 2007) within nitrofurantoin molecules, which lead to ribbons running along a-axis and support the key hydrogen bonding synthon (Fig. 4). It has structural reminiscences with anhydrous nitrofurantoin (β-form), where the packing is stabilized by imide catemer of N—H···O interactions (Pienaar et al., 1993b; Bertolasi et al., 1993). Here, however, it is replaced with N—H···O—H···O catemer type of heterosynthon by retaining a two fold screw axis. Recently, we have noted an identical synthon in a 1:1 co-crystal involving nitrofurantoin and phenolic co-former (4-hydroxybenzoic acid) (Vangala et al., 2011). Hence, supramolecularly methnolic O–H interacted similar to what phenolic O–H is able to do in the reported co-crystal. The overall crystal packing of the title pseudopolymorph is further assisted by weak C—H···O interactions to give a herringbone type of pattern (Fig. 5). Further analysis showed that this herringbone pattern was comparable to that of a crystal structure of nitrofurantoin dimethyl sulfoxide monosolvate (Tutughamiarso et al., 2011).

Related literature top

For polymorphism and pseudopolymorphs, see: Bernstein (2002); Byrn et al. (1999); Aitipamula et al. (2010). For nitrofurantoin hydrate and anhydrate crystal structures, see: Otsuka et al. (1991); Pienaar et al. (1993a,b); Bertolasi et al. (1993) and for nitrofurantoin pseudopolymorphs, see: Caira et al. (1996); Tutughamiarso et al. (2011). For a 1:1 co-crystal involving nitrofurantoin and 4-hydroxybenzoic acid, see: Vangala et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999); Desiraju (2002, 2007).

Experimental top

The title psuedopolymorph was obtained by evaporative crystallization during attempts to co-crystallize a commercially available (purchased from Aldrich) nitrofurantoin (β-form, 119 mg, 0.5 mmol) with fumaric acid (58 mg, 0.5 mmol) in methanol (25 ml) at ambient conditions. The yellow needle shaped crystals suitable for single-crystal X-ray diffraction were obtained in three days.

Refinement top

All H atoms bonded to C, N, O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigak, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view showing the molecular structures of nitrofurantoin and methanol, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The dashed line shows the N—H···O hydrogen bond.
[Figure 2] Fig. 2. TGA traces showed that there was a weight loss of 11.6% (w/w), which can be attributed to a methanol solvate.
[Figure 3] Fig. 3. A partial packing diagram of the title pseudopolymorph is viewed down b-axis, showing formation of the N—H···O—H···O synthon along a-axis. Notice the strong C—H···O hydrogen bonds within nitrofurantoin molecules to support the solid-state structure.
[Figure 4] Fig. 4. A partial packing diagram of the title pseudopolymorph is viewed down b-axis, showing ribbons running along a-axis. Notice the methanol monosolvate showed in space filled style.
[Figure 5] Fig. 5. Crystal packing of the title pseudopolymorph is viewed down the a-axis, showing a herringbone pattern. Notice also the methanol monosolvate showed in space filled style.
(E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione methanol monosolvate top
Crystal data top
C8H6N4O5·CH4ODx = 1.591 Mg m3
Mr = 270.21Melting point: 547 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.4084 (13) ÅCell parameters from 2901 reflections
b = 6.5941 (13) Åθ = 1.5–31.2°
c = 26.705 (5) ŵ = 0.14 mm1
β = 91.70 (3)°T = 110 K
V = 1128.0 (4) Å3Block, yellow
Z = 40.13 × 0.11 × 0.11 mm
F(000) = 560
Data collection top
Rigaku Saturn 70 CCD area-deterctor
diffractometer
3299 independent reflections
Radiation source: fine-focus sealed tube2849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 31.2°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 69
Tmin = 0.983, Tmax = 0.985k = 89
17441 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129All H-atom parameters refined
S = 1.24 w = 1/[σ2(Fo2) + (0.033P)2 + 0.7077P]
where P = (Fo2 + 2Fc2)/3
3299 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H6N4O5·CH4OV = 1128.0 (4) Å3
Mr = 270.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4084 (13) ŵ = 0.14 mm1
b = 6.5941 (13) ÅT = 110 K
c = 26.705 (5) Å0.13 × 0.11 × 0.11 mm
β = 91.70 (3)°
Data collection top
Rigaku Saturn 70 CCD area-deterctor
diffractometer
3299 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2849 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.985Rint = 0.048
17441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.129All H-atom parameters refined
S = 1.24Δρmax = 0.24 e Å3
3299 reflectionsΔρmin = 0.26 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.9997 (2)0.1389 (2)0.22463 (5)0.0263 (3)
C90.9409 (4)0.0216 (3)0.18136 (8)0.0278 (4)
H9C0.997 (4)0.115 (4)0.1824 (10)0.042 (7)*
H9B0.990 (4)0.085 (4)0.1496 (10)0.039 (7)*
H9A0.786 (4)0.017 (4)0.1807 (10)0.047 (8)*
H61.134 (5)0.139 (4)0.2267 (10)0.046 (8)*
O30.6808 (2)0.3602 (2)0.58168 (5)0.0284 (3)
N30.5389 (2)0.0501 (2)0.36110 (6)0.0215 (3)
O20.4103 (2)0.4243 (2)0.62695 (5)0.0295 (3)
C70.5011 (3)0.0753 (3)0.28106 (7)0.0215 (4)
N20.5159 (3)0.1188 (2)0.40903 (6)0.0215 (3)
N40.7053 (3)0.0642 (3)0.29543 (6)0.0221 (3)
C40.3538 (3)0.3193 (3)0.54700 (7)0.0217 (4)
C80.3751 (3)0.0024 (3)0.32458 (7)0.0212 (4)
C10.2822 (3)0.2104 (3)0.47230 (7)0.0210 (4)
C60.7351 (3)0.0089 (3)0.34419 (7)0.0218 (4)
C30.1432 (3)0.3112 (3)0.54369 (8)0.0250 (4)
C20.0962 (3)0.2407 (3)0.49475 (8)0.0238 (4)
C50.3262 (3)0.1396 (3)0.42254 (7)0.0214 (4)
H50.208 (3)0.109 (3)0.4017 (8)0.016 (5)*
H20.034 (4)0.218 (3)0.4794 (9)0.027 (6)*
H8B0.284 (4)0.114 (4)0.3365 (9)0.028 (6)*
O10.4459 (2)0.2587 (2)0.50437 (5)0.0212 (3)
H40.807 (4)0.098 (4)0.2753 (10)0.039 (7)*
H30.053 (4)0.348 (4)0.5693 (9)0.034 (7)*
H8A0.292 (4)0.116 (4)0.3134 (9)0.038 (7)*
O50.4315 (2)0.1331 (2)0.24050 (5)0.0259 (3)
O40.9013 (2)0.0278 (2)0.36653 (5)0.0281 (3)
N10.4910 (3)0.3720 (2)0.58760 (6)0.0226 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0204 (7)0.0356 (8)0.0228 (7)0.0026 (6)0.0015 (6)0.0021 (6)
C90.0291 (11)0.0273 (10)0.0269 (10)0.0001 (8)0.0004 (8)0.0039 (8)
O30.0195 (7)0.0364 (8)0.0294 (7)0.0017 (6)0.0000 (6)0.0018 (6)
N30.0171 (8)0.0272 (8)0.0200 (7)0.0002 (6)0.0007 (6)0.0018 (6)
O20.0340 (8)0.0333 (8)0.0216 (7)0.0004 (6)0.0075 (6)0.0031 (6)
C70.0192 (9)0.0216 (9)0.0236 (9)0.0011 (7)0.0004 (7)0.0016 (7)
N20.0243 (8)0.0214 (8)0.0186 (7)0.0018 (6)0.0003 (6)0.0005 (6)
N40.0176 (8)0.0279 (8)0.0208 (8)0.0013 (6)0.0019 (6)0.0001 (6)
C40.0229 (9)0.0212 (9)0.0211 (8)0.0006 (7)0.0037 (7)0.0008 (7)
C80.0179 (9)0.0240 (9)0.0215 (9)0.0005 (7)0.0014 (7)0.0014 (7)
C10.0189 (9)0.0205 (9)0.0236 (9)0.0006 (7)0.0003 (7)0.0020 (7)
C60.0184 (9)0.0242 (9)0.0228 (9)0.0016 (7)0.0000 (7)0.0027 (7)
C30.0229 (10)0.0254 (10)0.0269 (10)0.0021 (8)0.0058 (8)0.0014 (7)
C20.0187 (9)0.0250 (9)0.0276 (10)0.0004 (7)0.0003 (8)0.0025 (7)
C50.0185 (9)0.0214 (9)0.0241 (9)0.0001 (7)0.0012 (7)0.0003 (7)
O10.0196 (7)0.0246 (7)0.0195 (6)0.0005 (5)0.0015 (5)0.0007 (5)
O50.0235 (7)0.0324 (8)0.0217 (7)0.0007 (6)0.0016 (5)0.0036 (5)
O40.0186 (7)0.0390 (8)0.0267 (7)0.0029 (6)0.0004 (5)0.0026 (6)
N10.0246 (9)0.0215 (8)0.0219 (8)0.0017 (6)0.0026 (6)0.0013 (6)
Geometric parameters (Å, º) top
O6—C91.432 (2)N4—H40.88 (3)
O6—H60.86 (3)C4—C31.351 (3)
C9—H9C0.97 (3)C4—O11.358 (2)
C9—H9B1.00 (3)C4—N11.419 (3)
C9—H9A1.00 (3)C8—H8B1.00 (2)
O3—N11.234 (2)C8—H8A0.99 (3)
N3—N21.370 (2)C1—C21.365 (3)
N3—C61.375 (2)C1—O11.372 (2)
N3—C81.454 (2)C1—C51.444 (3)
O2—N11.234 (2)C6—O41.212 (2)
C7—O51.220 (2)C3—C21.411 (3)
C7—N41.355 (2)C3—H30.94 (2)
C7—C81.513 (3)C2—H20.93 (2)
N2—C51.286 (3)C5—H50.95 (2)
N4—C61.396 (2)
C9—O6—H6107.0 (19)N3—C8—H8A112.7 (15)
O6—C9—H9C112.9 (16)C7—C8—H8A108.3 (15)
O6—C9—H9B112.2 (15)H8B—C8—H8A111.3 (19)
H9C—C9—H9B106 (2)C2—C1—O1110.68 (17)
O6—C9—H9A105.6 (16)C2—C1—C5130.44 (18)
H9C—C9—H9A110 (2)O1—C1—C5118.88 (16)
H9B—C9—H9A109 (2)O4—C6—N3128.06 (18)
N2—N3—C6119.80 (15)O4—C6—N4126.05 (18)
N2—N3—C8127.60 (15)N3—C6—N4105.89 (16)
C6—N3—C8112.43 (15)C4—C3—C2104.99 (17)
O5—C7—N4126.39 (18)C4—C3—H3125.3 (16)
O5—C7—C8126.25 (17)C2—C3—H3129.7 (16)
N4—C7—C8107.36 (16)C1—C2—C3106.88 (18)
C5—N2—N3115.25 (16)C1—C2—H2124.4 (15)
C7—N4—C6112.76 (16)C3—C2—H2128.8 (15)
C7—N4—H4122.4 (17)N2—C5—C1120.33 (17)
C6—N4—H4124.8 (17)N2—C5—H5124.0 (13)
C3—C4—O1113.05 (17)C1—C5—H5115.7 (13)
C3—C4—N1130.92 (18)C4—O1—C1104.40 (14)
O1—C4—N1115.98 (16)O2—N1—O3124.47 (17)
N3—C8—C7101.52 (15)O2—N1—C4116.97 (16)
N3—C8—H8B112.3 (14)O3—N1—C4118.54 (16)
C7—C8—H8B110.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O60.88 (3)1.88 (3)2.755 (2)170 (3)
O6—H6···O5i0.86 (3)1.93 (3)2.787 (2)172 (3)
C5—H5···O4ii0.95 (2)2.22 (2)3.155 (2)169.2 (18)
C3—H3···O3ii0.94 (2)2.42 (2)3.176 (3)138 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H6N4O5·CH4O
Mr270.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)6.4084 (13), 6.5941 (13), 26.705 (5)
β (°) 91.70 (3)
V3)1128.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.13 × 0.11 × 0.11
Data collection
DiffractometerRigaku Saturn 70 CCD area-deterctor
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.983, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
17441, 3299, 2849
Rint0.048
(sin θ/λ)max1)0.728
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.129, 1.24
No. of reflections3299
No. of parameters212
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: CrystalClear (Rigaku, 2008), CrystalClear (Rigak, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O60.88 (3)1.88 (3)2.755 (2)170 (3)
O6—H6···O5i0.86 (3)1.93 (3)2.787 (2)172 (3)
C5—H5···O4ii0.95 (2)2.22 (2)3.155 (2)169.2 (18)
C3—H3···O3ii0.94 (2)2.42 (2)3.176 (3)138 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

References

First citationAitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Cryst. Growth Des. 10, 2229–2238.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J. (2002). In Polymorphism in Molecular Crystals. Oxford: Clarendon Press.  Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1993). Acta Cryst. C49, 741–744.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationByrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). Solid-State Chemistry of Drugs, 2nd ed. West Lafayette, IN, USA: SSCI Inc.  Google Scholar
First citationCaira, M. R., Pienaar, E. W. & Lötter, A. P. (1996). Mol. Cryst. Liq. Cryst. 279, 241–264.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press.  Google Scholar
First citationOtsuka, M., Teraoka, R. & Matsuda, Y. (1991). Pharm. Res. 8, 1066–1068.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPienaar, E. W., Caira, M. R. & Lötter, A. P. (1993a). J. Crystallogr. Spectrosc. Res. 23, 739–744.  CSD CrossRef CAS Web of Science Google Scholar
First citationPienaar, E. W., Caira, M. R. & Lötter, A. P. (1993b). J. Crystallogr. Spectrosc. Res. 23, 785–790.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M., Wagner, G. & Egert, E. (2011). Acta Cryst. C67, o18–o25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVangala, V. R., Chow, P. S. & Tan, R. B. H. (2011). CrystEngComm, 13, 759–762.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o550-o551
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds