metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridinium tetra­kis­(1,1,1-tri­fluoro­pentane-2,4-dionato)dysprosate

aDepartment of Chemistry & Chemical Engineering, Luliang University, Lvliang 033000, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: lllswy74@yahoo.com.cn

(Received 21 January 2011; accepted 10 February 2011; online 16 February 2011)

In the anion of the title compound, (C5H6N)[Dy(C5H4F3O2)4], the central metal ion, Dy3+, is coordinated by four bidentate 1,1,1-trifluoro­pentane-2,4-dionate (TAA) ligands, forming an approximate square-anti­prismatic configuration. The pyridin­ium cation is connected to the complex ion by an N—H⋯O hydrogen bond and electrostatic inter­actions in the crystal. There are two kinds of disorder in the structure, one involving rotational disorder of a CF3 group [occupancy ratio 0.560 (15):0.440 (15)] and the other involving an exchange between a CF3 group and CH3 group within a given bidentate ligand (occupancy ratio 0.64:0.36).

Related literature

For applications of rare earth–β-diketone complexes, see: Chu & Elgavish (1995[Chu, W. J. & Elgavish, G. A. (1995). NMR Biomed. 8, 159-163.]); Tsukube & Shinoda (2002[Tsukube, H. & Shinoda, S. (2002). Chem. Rev. 102, 2389-2404.]); Iwamuro et al. (1997[Iwamuro, M., Hasegawa, Y., Wada, Y. & Murakoshi, K. (1997). Chem. Lett. 10, 1067-1068.]). For related structures, see: Ma et al. (2000[Ma, B. Q., Zhang, D. S., Gao, S., Jin, T. Z. & Yan, C. H. (2000). Angew. Chem. Int. Ed. 39, 3644-3646.]); Tian et al. (2009[Tian, L., Ren, N., Zhang, J.-J., Sun, S.-J., Ye, H.-M., Bai, J.-H. & Wang, R.-F. (2009). J. Chem. Eng. Data. 54, 69-74.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)[Dy(C5H4F3O2)4]

  • Mr = 854.94

  • Monoclinic, P 21 /c

  • a = 10.619 (4) Å

  • b = 19.799 (7) Å

  • c = 15.715 (6) Å

  • β = 103.116 (6)°

  • V = 3217.8 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 298 K

  • 0.22 × 0.22 × 0.06 mm

Data collection
  • Bruker SMART 1K CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.616, Tmax = 0.868

  • 14449 measured reflections

  • 5670 independent reflections

  • 4126 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.121

  • S = 1.02

  • 5670 reflections

  • 483 parameters

  • 78 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O2 2.305 (5)
Dy1—O6 2.315 (5)
Dy1—O3 2.326 (5)
Dy1—O4 2.342 (5)
Dy1—O8 2.349 (4)
Dy1—O7 2.356 (5)
Dy1—O5 2.390 (5)
Dy1—O1 2.423 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 2.10 2.947 (8) 167

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rare earth-β-diketone complexes have attracted considerable attention in the past decades owing to their important applications as laser (Iwamuro et al., 1997), fluorescent probe (Tsukube & Shinoda, 2002) and NMR reagents (Chu & Elgavish, 1995). As part of our interest in this field, we have been engaged in a major effort directed toward the development of syntheses of new lanthanide-β-diketon complexes.

The structure of the title Dy3+ complex is shown in Fig. 1. It contains an eight-coordinate dysprosium ion bonded to four TAA anions with bidentate chelation, forming the [Dy(TAA)4]- anions. These are connected to pyridinium cations by a N—H···O hydrogen bond. The co-ordination polyhedron may be described as an approximate square antiprism and the two sets of four O atoms (O2, O4, O5, O7) and (O1, O3, O6, O8) form the twisted upper and lower sides respectively. The Dy—O bond lengths are in the range of 2.305 (5)–2.423 (5) Å, average 2.351 (2) Å, which is consistent with other work in literature (Ma et al., 2000; Tian et al., 2009). The average angle of O—Dy—O is 100.25° and the average dihydral angle (C—O—Dy—O) is -10.49°.

Related literature top

For applications of rare earth–β-diketone complexes, see: Chu & Elgavish (1995); Tsukube & Shinoda (2002); Iwamuro et al. (1997). For related structures, see: Ma et al. (2000); Tian et al. (2009).

Experimental top

A mixture of Dy2O3 (0.186 g) and concentrated hydrochloric (5 mL) was heated and distilled to slight dryness, yielding a crystalline precipitate (DyCl3). Then, the DyCl3 solid was redissolved in 5 mL absolute ethanol, and heated with 10 mL of absolute ethanol solution containing HTAA (0.50 mL) and pyridine (0.32 mL) at about 363 K. The reaction mixture was maintained at ambient temperature for one month until yellow crystals formed.

Refinement top

All F atoms were found to be disordered. There is disorder of the two different types: 1) disorder due to rotational disorder of the CF3 group bonded to a single carbon. F4, F5, and F6 atoms was split into to two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.56 (2) and 0.44 (2), respectively; 2) disorder due to exchange of CH3 and CF3 groups on the same ligand. Namely, F10, F11, and F12 as well as related H atoms were modelled over two sets of positions using restraint on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.64 (1) and 0.36 (1), respectively. In the final refinement, the occupancies of these disordered atoms were fixed to aid convergence. Atoms F11B, F4, F5, F6, F4B, F5B, and F6B were refined anisotropically using 42 restraints (ISOR) and the geometrical parameters of CF3 group were refined using 36 restraints (DFIX and DANG) because of the unacceptable parameters of their ellipsoids and distances between atoms. H atoms attached to C and N were placed in geometrically idealized positions with Csp^2^—H = 0.93, Csp^3^—H = 0.96, Nsp^2^—H = 0.86 Å, and constrained to ride on their carrier atoms, with Uĩso~(H) = 1.2Ũeq~(C & N) and Uĩso~(H) = 1.5Ũeq~(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the complex with displacement ellipsoids drawn at the 30% probability level. H atoms without H-bond (dotting line) and minor disorder components were omitted for clarity.
Pyridinium tetrakis(1,1,1-trifluoropentane-2,4-dionato)dysprosate top
Crystal data top
(C5H6N)[Dy(C5H4F3O2)4]F(000) = 1668
Mr = 854.94Dx = 1.765 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3207 reflections
a = 10.619 (4) Åθ = 2.2–21.0°
b = 19.799 (7) ŵ = 2.44 mm1
c = 15.715 (6) ÅT = 298 K
β = 103.116 (6)°Plate, colorless
V = 3217.8 (19) Å30.22 × 0.22 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
5670 independent reflections
Radiation source: fine-focus sealed tube4126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1212
Tmin = 0.616, Tmax = 0.868k = 1923
14449 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
5670 reflections(Δ/σ)max = 0.001
483 parametersΔρmax = 0.95 e Å3
78 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C5H6N)[Dy(C5H4F3O2)4]V = 3217.8 (19) Å3
Mr = 854.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.619 (4) ŵ = 2.44 mm1
b = 19.799 (7) ÅT = 298 K
c = 15.715 (6) Å0.22 × 0.22 × 0.06 mm
β = 103.116 (6)°
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
5670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4126 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.868Rint = 0.039
14449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05078 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.95 e Å3
5670 reflectionsΔρmin = 0.45 e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy10.54349 (3)0.155070 (15)0.274306 (19)0.05328 (14)
O10.4836 (5)0.2430 (2)0.3649 (3)0.0698 (13)
O20.3848 (5)0.2201 (2)0.1874 (3)0.0664 (13)
C10.3730 (10)0.3186 (5)0.4363 (6)0.105 (3)
H1A0.41410.29530.48890.157*
H1B0.28350.32590.43600.157*
H1C0.41470.36140.43390.157*
C20.3834 (8)0.2772 (4)0.3590 (5)0.0656 (19)
C30.2847 (8)0.2808 (4)0.2828 (5)0.069 (2)
H30.20860.30290.28600.083*
C40.2930 (7)0.2543 (4)0.2051 (5)0.0633 (19)
C50.1851 (9)0.2668 (5)0.1261 (6)0.088 (3)
F10.2181 (6)0.3041 (4)0.0687 (4)0.170 (3)
F20.1395 (7)0.2116 (4)0.0866 (5)0.165 (3)
F30.0817 (7)0.2960 (4)0.1425 (4)0.170 (3)
O30.3793 (5)0.1120 (2)0.3346 (3)0.0691 (13)
O40.4291 (6)0.0745 (3)0.1777 (3)0.0813 (15)
C60.1664 (9)0.1026 (6)0.3557 (6)0.116 (3)
H6A0.16520.06310.39080.173*
H6B0.08250.10920.31800.173*
H6C0.18860.14130.39300.173*
C70.2647 (9)0.0938 (4)0.3014 (6)0.076 (2)
C80.2294 (10)0.0660 (5)0.2176 (7)0.097 (3)
H80.14380.05300.19680.116*
C90.3145 (12)0.0569 (4)0.1642 (5)0.090 (3)
C100.2692 (12)0.0137 (6)0.0779 (8)0.129 (4)
F40.2652 (17)0.0495 (7)0.0147 (8)0.139 (5)0.560 (15)
F50.3418 (14)0.0434 (6)0.0845 (8)0.138 (5)0.560 (15)
F60.1486 (13)0.0078 (8)0.0698 (9)0.152 (6)0.560 (15)
F4B0.237 (2)0.0437 (7)0.0915 (10)0.136 (6)0.440 (15)
F5B0.158 (2)0.0463 (12)0.0364 (15)0.201 (10)0.440 (15)
F6B0.3444 (16)0.0219 (8)0.0223 (10)0.123 (6)0.440 (15)
O50.6258 (5)0.1812 (2)0.1486 (3)0.0685 (13)
O60.6880 (5)0.0700 (2)0.2623 (3)0.0687 (13)
C110.7528 (9)0.1973 (5)0.0427 (5)0.103 (3)
H11A0.67890.20410.00450.155*
H11B0.81780.17270.02190.155*
H11C0.78690.24020.06520.155*
C120.7130 (8)0.1571 (4)0.1151 (5)0.0664 (19)
C130.7781 (8)0.0965 (4)0.1434 (5)0.075 (2)
H130.83920.08170.11350.089*
C140.7591 (7)0.0577 (3)0.2112 (5)0.0641 (19)
C150.8293 (10)0.0080 (5)0.2295 (7)0.093 (3)
F70.9130 (8)0.0209 (3)0.1817 (6)0.170 (3)
F80.7516 (7)0.0582 (3)0.2151 (6)0.185 (4)
F90.8939 (9)0.0126 (4)0.3073 (5)0.194 (4)
O70.7171 (5)0.2319 (2)0.3091 (3)0.0692 (13)
O80.6620 (5)0.1262 (2)0.4147 (3)0.0624 (12)
C160.9245 (11)0.2782 (6)0.3435 (7)0.104 (3)
H16A0.96990.26880.29620.104*0.64
H16B1.00120.28540.39630.104*0.64
H16C0.89370.32610.33170.104*0.64
F10B1.0364 (15)0.2718 (10)0.3858 (12)0.157 (8)0.36
F11B0.924 (2)0.2781 (10)0.2596 (11)0.160 (7)0.36
F12B0.879 (2)0.3390 (8)0.3519 (18)0.193 (12)0.36
C170.8278 (8)0.2252 (4)0.3569 (5)0.068 (2)
C180.8665 (8)0.1759 (4)0.4206 (5)0.070 (2)
H180.95360.17350.44830.084*
C190.7838 (7)0.1309 (3)0.4447 (4)0.0589 (18)
C200.8358 (10)0.0834 (5)0.5191 (6)0.099 (3)
H20A0.76250.04250.52060.099*0.36
H20B0.85090.09750.57610.099*0.36
H20C0.90730.04960.51460.099*0.36
F100.9621 (9)0.0751 (5)0.5361 (6)0.141 (3)0.64
F110.7907 (13)0.0241 (5)0.5025 (9)0.243 (9)0.64
F120.8159 (13)0.1056 (7)0.5915 (6)0.194 (6)0.64
N10.5608 (8)0.3261 (3)0.1375 (6)0.096 (2)
H10.59240.28590.14240.115*
C210.5610 (9)0.3615 (5)0.2096 (6)0.089 (3)
H210.59630.34350.26450.106*
C220.5089 (10)0.4241 (4)0.2015 (6)0.088 (3)
H220.50720.44950.25100.105*
C230.4599 (9)0.4493 (4)0.1219 (6)0.089 (3)
H230.42240.49200.11620.106*
C240.4647 (9)0.4130 (4)0.0494 (6)0.088 (3)
H240.43410.43160.00570.106*
C250.5124 (10)0.3516 (4)0.0571 (7)0.089 (3)
H250.51290.32590.00760.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0585 (2)0.0521 (2)0.0466 (2)0.00072 (16)0.00630 (14)0.00471 (15)
O10.067 (3)0.074 (3)0.062 (3)0.006 (3)0.002 (2)0.007 (2)
O20.062 (3)0.078 (3)0.054 (3)0.011 (3)0.004 (2)0.009 (2)
C10.123 (9)0.100 (6)0.092 (7)0.029 (6)0.027 (6)0.018 (5)
C20.068 (5)0.054 (4)0.075 (5)0.003 (4)0.017 (4)0.007 (4)
C30.068 (5)0.063 (5)0.076 (5)0.015 (4)0.013 (4)0.009 (4)
C40.058 (5)0.062 (4)0.063 (5)0.004 (4)0.001 (4)0.020 (4)
C50.072 (6)0.108 (7)0.077 (6)0.010 (6)0.000 (5)0.014 (6)
F10.125 (5)0.248 (8)0.120 (5)0.011 (5)0.008 (4)0.111 (6)
F20.137 (6)0.161 (6)0.148 (6)0.001 (5)0.067 (4)0.004 (5)
F30.106 (5)0.275 (9)0.111 (5)0.088 (6)0.010 (4)0.003 (5)
O30.071 (4)0.071 (3)0.063 (3)0.009 (3)0.009 (3)0.010 (3)
O40.084 (4)0.085 (4)0.071 (3)0.020 (3)0.008 (3)0.026 (3)
C60.078 (7)0.159 (10)0.122 (8)0.001 (7)0.049 (6)0.015 (7)
C70.075 (6)0.065 (5)0.083 (6)0.013 (4)0.007 (5)0.014 (4)
C80.081 (7)0.105 (7)0.096 (7)0.021 (5)0.002 (6)0.004 (6)
C90.123 (9)0.069 (5)0.063 (5)0.020 (6)0.008 (5)0.006 (4)
C100.130 (11)0.126 (11)0.122 (10)0.037 (9)0.008 (8)0.026 (8)
F40.147 (7)0.143 (7)0.122 (6)0.008 (5)0.021 (5)0.001 (4)
F50.145 (7)0.131 (7)0.130 (6)0.002 (4)0.015 (4)0.025 (4)
F60.148 (7)0.151 (7)0.151 (7)0.022 (5)0.020 (5)0.006 (5)
F4B0.143 (8)0.128 (7)0.137 (7)0.008 (5)0.030 (5)0.011 (5)
F5B0.201 (11)0.203 (11)0.194 (11)0.002 (5)0.033 (5)0.008 (5)
F6B0.127 (7)0.125 (7)0.115 (7)0.006 (5)0.025 (5)0.012 (5)
O50.083 (4)0.067 (3)0.058 (3)0.006 (3)0.021 (3)0.011 (2)
O60.085 (4)0.061 (3)0.064 (3)0.015 (3)0.024 (3)0.005 (2)
C110.118 (8)0.129 (8)0.078 (6)0.001 (7)0.053 (6)0.021 (6)
C120.064 (5)0.077 (5)0.057 (4)0.002 (4)0.013 (4)0.010 (4)
C130.078 (6)0.081 (6)0.071 (5)0.001 (5)0.030 (4)0.014 (4)
C140.065 (5)0.051 (4)0.070 (5)0.005 (4)0.002 (4)0.018 (4)
C150.099 (8)0.077 (6)0.108 (8)0.014 (6)0.034 (6)0.001 (6)
F70.184 (7)0.125 (5)0.231 (8)0.067 (5)0.112 (7)0.020 (5)
F80.154 (7)0.062 (3)0.348 (12)0.006 (4)0.074 (7)0.012 (5)
F90.267 (10)0.153 (6)0.129 (6)0.118 (7)0.024 (6)0.014 (5)
O70.061 (3)0.072 (3)0.071 (3)0.005 (3)0.006 (3)0.007 (3)
O80.063 (3)0.067 (3)0.053 (3)0.004 (3)0.005 (2)0.012 (2)
C160.091 (8)0.123 (9)0.095 (7)0.029 (7)0.015 (6)0.000 (6)
F10B0.084 (13)0.21 (2)0.160 (16)0.055 (13)0.010 (11)0.055 (14)
F11B0.158 (8)0.168 (8)0.157 (8)0.016 (5)0.043 (5)0.003 (5)
F12B0.15 (2)0.110 (14)0.35 (4)0.061 (13)0.14 (2)0.024 (16)
C170.067 (5)0.074 (5)0.064 (5)0.008 (4)0.019 (4)0.016 (4)
C180.056 (5)0.076 (5)0.069 (5)0.008 (4)0.002 (4)0.005 (4)
C190.060 (5)0.058 (4)0.050 (4)0.017 (4)0.004 (3)0.006 (3)
C200.086 (7)0.105 (8)0.085 (7)0.005 (6)0.025 (5)0.028 (6)
F100.107 (8)0.146 (8)0.145 (8)0.029 (6)0.020 (6)0.041 (6)
F110.243 (14)0.124 (8)0.253 (15)0.077 (9)0.170 (12)0.118 (9)
F120.239 (14)0.273 (15)0.079 (6)0.122 (12)0.052 (8)0.063 (8)
N10.114 (7)0.059 (4)0.134 (7)0.011 (4)0.069 (6)0.016 (5)
C210.098 (7)0.094 (7)0.073 (6)0.007 (5)0.017 (5)0.020 (5)
C220.126 (8)0.065 (5)0.074 (6)0.003 (5)0.024 (5)0.011 (5)
C230.098 (7)0.064 (5)0.105 (7)0.017 (5)0.024 (6)0.002 (5)
C240.109 (7)0.080 (6)0.072 (5)0.008 (5)0.010 (5)0.017 (5)
C250.116 (8)0.067 (6)0.100 (7)0.023 (5)0.058 (6)0.016 (5)
Geometric parameters (Å, º) top
Dy1—O22.305 (5)C13—H130.9300
Dy1—O62.315 (5)C14—C151.494 (11)
Dy1—O32.326 (5)C15—F91.263 (10)
Dy1—O42.342 (5)C15—F81.278 (10)
Dy1—O82.349 (4)C15—F71.313 (9)
Dy1—O72.356 (5)O7—C171.250 (9)
Dy1—O52.390 (5)O8—C191.275 (8)
Dy1—O12.423 (5)C16—F10B1.230 (14)
O1—C21.247 (8)C16—F12B1.314 (14)
O2—C41.269 (8)C16—F11B1.317 (14)
C1—C21.492 (10)C16—C171.517 (12)
C1—H1A0.9600C16—H16A0.9912
C1—H1B0.9600C16—H16B1.0321
C1—H1C0.9600C16—H16C1.0056
C2—C31.403 (10)F10B—H16A1.4259
C3—C41.350 (10)F10B—H16B0.5180
C3—H30.9300F11B—H16A0.6894
C4—C51.507 (11)F12B—H16C0.4623
C5—F11.275 (9)C17—C181.392 (10)
C5—F21.295 (9)C18—C191.363 (10)
C5—F31.317 (9)C18—H180.9300
O3—C71.264 (8)C19—C201.505 (10)
O4—C91.238 (11)C20—F111.272 (11)
C6—C71.501 (11)C20—F121.281 (11)
C6—H6A0.9600C20—F101.317 (10)
C6—H6B0.9600C20—H20A1.1271
C6—H6C0.9600C20—H20B0.9180
C7—C81.397 (12)C20—H20C1.0263
C8—C91.378 (13)F10—H20C0.7857
C8—H80.9300F11—H20A0.5838
C9—C101.582 (14)F11—H20C1.3102
C10—F41.213 (12)F12—H20B0.5114
C10—F4B1.220 (14)N1—C211.333 (11)
C10—F6B1.321 (14)N1—C251.350 (12)
C10—F61.328 (13)N1—H10.8600
C10—F51.359 (13)C21—C221.350 (11)
C10—F5B1.372 (16)C21—H210.9300
O5—C121.258 (8)C22—C231.338 (11)
O6—C141.245 (8)C22—H220.9300
C11—C121.525 (10)C23—C241.358 (11)
C11—H11A0.9600C23—H230.9300
C11—H11B0.9600C24—C251.312 (11)
C11—H11C0.9600C24—H240.9300
C12—C131.405 (10)C25—H250.9300
C13—C141.365 (10)
O2—Dy1—O6140.08 (17)F6—C10—C9110.8 (11)
O2—Dy1—O386.05 (17)F5—C10—C9109.1 (10)
O6—Dy1—O3109.78 (17)F5B—C10—C9102.3 (13)
O2—Dy1—O478.12 (19)C12—O5—Dy1134.9 (5)
O6—Dy1—O473.0 (2)C14—O6—Dy1134.8 (5)
O3—Dy1—O471.84 (18)C12—C11—H11A109.5
O2—Dy1—O8148.85 (17)C12—C11—H11B109.5
O6—Dy1—O871.07 (16)H11A—C11—H11B109.5
O3—Dy1—O879.62 (17)C12—C11—H11C109.5
O4—Dy1—O8122.14 (17)H11A—C11—H11C109.5
O2—Dy1—O7101.87 (18)H11B—C11—H11C109.5
O6—Dy1—O789.42 (18)O5—C12—C13123.2 (7)
O3—Dy1—O7139.54 (17)O5—C12—C11118.0 (7)
O4—Dy1—O7148.56 (18)C13—C12—C11118.7 (7)
O8—Dy1—O773.40 (16)C14—C13—C12125.3 (7)
O2—Dy1—O575.24 (17)C14—C13—H13117.4
O6—Dy1—O573.54 (16)C12—C13—H13117.4
O3—Dy1—O5149.75 (18)O6—C14—C13127.8 (7)
O4—Dy1—O581.05 (18)O6—C14—C15113.3 (7)
O8—Dy1—O5127.59 (17)C13—C14—C15119.0 (8)
O7—Dy1—O568.84 (17)F9—C15—F8107.6 (10)
O2—Dy1—O172.12 (16)F9—C15—F7104.5 (9)
O6—Dy1—O1146.89 (17)F8—C15—F7103.9 (8)
O3—Dy1—O172.74 (17)F9—C15—C14112.7 (8)
O4—Dy1—O1134.69 (19)F8—C15—C14111.7 (8)
O8—Dy1—O177.24 (16)F7—C15—C14115.7 (8)
O7—Dy1—O172.29 (17)C17—O7—Dy1130.6 (5)
O5—Dy1—O1121.60 (16)C19—O8—Dy1127.7 (4)
C2—O1—Dy1132.8 (5)F10B—C16—F12B112.0 (17)
C4—O2—Dy1131.5 (4)F10B—C16—F11B108.9 (15)
C2—C1—H1A109.5F12B—C16—F11B100.6 (16)
C2—C1—H1B109.5F10B—C16—C17117.0 (12)
H1A—C1—H1B109.5F12B—C16—C17110.0 (11)
C2—C1—H1C109.5F11B—C16—C17106.8 (12)
H1A—C1—H1C109.5C17—C16—H16A115.7
H1B—C1—H1C109.5C17—C16—H16B114.7
O1—C2—C3123.5 (7)H16A—C16—H16B101.5
O1—C2—C1117.3 (7)C17—C16—H16C118.4
C3—C2—C1119.2 (8)H16A—C16—H16C103.4
C4—C3—C2124.2 (7)H16B—C16—H16C100.6
C4—C3—H3117.9H16A—F10B—H16B96.0
C2—C3—H3117.9C16—F11B—H16A47.4
O2—C4—C3128.1 (7)O7—C17—C18126.1 (7)
O2—C4—C5112.7 (7)O7—C17—C16114.7 (8)
C3—C4—C5119.2 (7)C18—C17—C16119.1 (8)
F1—C5—F2106.4 (9)C19—C18—C17123.6 (7)
F1—C5—F3105.0 (8)C19—C18—H18118.2
F2—C5—F3103.1 (9)C17—C18—H18118.2
F1—C5—C4113.5 (8)O8—C19—C18127.5 (6)
F2—C5—C4112.8 (7)O8—C19—C20113.8 (7)
F3—C5—C4115.0 (8)C18—C19—C20118.6 (7)
C7—O3—Dy1132.6 (5)F11—C20—F12111.6 (13)
C9—O4—Dy1130.5 (6)F11—C20—F10104.2 (11)
C7—C6—H6A109.5F12—C20—F10103.2 (9)
C7—C6—H6B109.5F11—C20—C19111.3 (8)
H6A—C6—H6B109.5F12—C20—C19111.8 (9)
C7—C6—H6C109.5F10—C20—C19114.4 (9)
H6A—C6—H6C109.5C19—C20—H20A109.4
H6B—C6—H6C109.5C19—C20—H20B121.4
O3—C7—C8121.9 (8)H20A—C20—H20B99.6
O3—C7—C6117.5 (8)C19—C20—H20C120.1
C8—C7—C6120.6 (9)H20A—C20—H20C93.3
C9—C8—C7123.6 (9)H20B—C20—H20C107.3
C9—C8—H8118.2C20—F10—H20C51.2
C7—C8—H8118.2C20—F11—H20A62.4
O4—C9—C8127.8 (8)C20—F11—H20C46.8
O4—C9—C10113.3 (9)H20A—F11—H20C105.2
C8—C9—C10118.7 (10)C21—N1—C25121.7 (7)
F4—C10—F4B136.8 (15)C21—N1—H1119.2
F4—C10—F6B45.6 (9)C25—N1—H1119.2
F4B—C10—F6B117.9 (15)N1—C21—C22118.8 (8)
F4—C10—F6104.8 (13)N1—C21—H21120.6
F4B—C10—F654.0 (10)C22—C21—H21120.6
F6B—C10—F6133.7 (13)C23—C22—C21119.7 (8)
F4—C10—F5117.5 (14)C23—C22—H22120.1
F4B—C10—F552.5 (10)C21—C22—H22120.1
F6B—C10—F574.6 (12)C22—C23—C24120.3 (8)
F6—C10—F5105.0 (12)C22—C23—H23119.8
F4—C10—F5B57.9 (11)C24—C23—H23119.8
F4B—C10—F5B106.0 (15)C25—C24—C23120.0 (9)
F6B—C10—F5B102.1 (14)C25—C24—H24120.0
F6—C10—F5B53.2 (11)C23—C24—H24120.0
F5—C10—F5B147.1 (15)C24—C25—N1119.4 (8)
F4—C10—C9109.5 (10)C24—C25—H25120.3
F4B—C10—C9113.3 (11)N1—C25—H25120.3
F6B—C10—C9112.8 (11)
O2—Dy1—O1—C224.6 (6)O7—Dy1—O6—C1467.3 (7)
O6—Dy1—O1—C2166.8 (6)O5—Dy1—O6—C140.8 (6)
O3—Dy1—O1—C266.9 (6)O1—Dy1—O6—C14122.4 (6)
O4—Dy1—O1—C226.9 (7)Dy1—O5—C12—C139.0 (11)
O8—Dy1—O1—C2149.8 (7)Dy1—O5—C12—C11168.6 (5)
O7—Dy1—O1—C2133.8 (7)O5—C12—C13—C142.2 (12)
O5—Dy1—O1—C283.7 (7)C11—C12—C13—C14175.4 (8)
O6—Dy1—O2—C4161.1 (6)Dy1—O6—C14—C133.7 (12)
O3—Dy1—O2—C444.6 (6)Dy1—O6—C14—C15176.3 (5)
O4—Dy1—O2—C4116.9 (6)C12—C13—C14—O64.2 (13)
O8—Dy1—O2—C417.8 (8)C12—C13—C14—C15175.7 (8)
O7—Dy1—O2—C495.3 (6)O6—C14—C15—F954.8 (11)
O5—Dy1—O2—C4159.4 (6)C13—C14—C15—F9125.2 (9)
O1—Dy1—O2—C428.5 (6)O6—C14—C15—F866.5 (10)
Dy1—O1—C2—C1169.3 (5)C13—C14—C15—F8113.5 (9)
C1—C2—C3—C4169.1 (8)O6—C14—C15—F7175.0 (8)
Dy1—O2—C4—C5158.1 (5)C13—C14—C15—F75.0 (12)
C2—C3—C4—C5174.7 (7)O2—Dy1—O7—C17177.5 (6)
C3—C4—C5—F1112.4 (10)O6—Dy1—O7—C1741.1 (6)
O2—C4—C5—F255.4 (10)O3—Dy1—O7—C1779.6 (7)
C3—C4—C5—F2126.4 (9)O4—Dy1—O7—C1795.9 (7)
O2—C4—C5—F3173.3 (8)O8—Dy1—O7—C1729.3 (6)
O2—Dy1—O3—C742.0 (7)O5—Dy1—O7—C17113.6 (6)
O6—Dy1—O3—C7100.4 (7)O1—Dy1—O7—C17110.9 (6)
O4—Dy1—O3—C736.8 (7)O2—Dy1—O8—C19119.0 (6)
O8—Dy1—O3—C7165.8 (7)O6—Dy1—O8—C1961.8 (5)
O7—Dy1—O3—C7145.7 (6)O3—Dy1—O8—C19177.0 (6)
O5—Dy1—O3—C79.3 (9)O4—Dy1—O8—C19116.3 (5)
O1—Dy1—O3—C7114.5 (7)O7—Dy1—O8—C1933.5 (5)
O2—Dy1—O4—C960.3 (7)O5—Dy1—O8—C1911.7 (6)
O6—Dy1—O4—C9147.6 (7)O1—Dy1—O8—C19108.5 (6)
O3—Dy1—O4—C929.4 (7)Dy1—O7—C17—C1818.4 (11)
O8—Dy1—O4—C993.9 (7)Dy1—O7—C17—C16163.5 (6)
O7—Dy1—O4—C9153.7 (6)F10B—C16—C17—O7176.4 (14)
O5—Dy1—O4—C9137.0 (7)F12B—C16—C17—O754.3 (17)
O1—Dy1—O4—C910.8 (8)F11B—C16—C17—O754.0 (14)
Dy1—O3—C7—C6148.8 (6)F10B—C16—C17—C185.4 (18)
C6—C7—C8—C9179.6 (9)F12B—C16—C17—C18123.9 (16)
Dy1—O4—C9—C10166.1 (6)F11B—C16—C17—C18127.7 (12)
C7—C8—C9—C10169.6 (8)O7—C17—C18—C195.8 (12)
O4—C9—C10—F6B20.3 (15)C16—C17—C18—C19172.2 (8)
C8—C9—C10—F6B164.5 (13)Dy1—O8—C19—C1828.9 (10)
O4—C9—C10—F6175.6 (11)Dy1—O8—C19—C20155.5 (6)
C8—C9—C10—F60.5 (15)C17—C18—C19—O80.1 (12)
O4—C9—C10—F560.6 (12)C17—C18—C19—C20175.5 (7)
C8—C9—C10—F5114.6 (12)O8—C19—C20—F1146.0 (14)
O4—C9—C10—F5B129.3 (15)C18—C19—C20—F11138.1 (12)
O2—Dy1—O5—C12162.0 (7)O8—C19—C20—F1279.5 (12)
O6—Dy1—O5—C127.2 (7)C18—C19—C20—F1296.5 (12)
O3—Dy1—O5—C12108.4 (7)O8—C19—C20—F10163.7 (8)
O4—Dy1—O5—C1282.0 (7)C18—C19—C20—F1020.3 (13)
O8—Dy1—O5—C1241.9 (7)C25—N1—C21—C221.3 (13)
O7—Dy1—O5—C1288.7 (7)N1—C21—C22—C230.7 (14)
O1—Dy1—O5—C12140.3 (6)C21—C22—C23—C241.4 (15)
O2—Dy1—O6—C1440.7 (8)C22—C23—C24—C253.0 (14)
O3—Dy1—O6—C14149.1 (6)C23—C24—C25—N12.4 (14)
O4—Dy1—O6—C1486.2 (7)C21—N1—C25—C240.3 (14)
O8—Dy1—O6—C14139.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.862.102.947 (8)167

Experimental details

Crystal data
Chemical formula(C5H6N)[Dy(C5H4F3O2)4]
Mr854.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.619 (4), 19.799 (7), 15.715 (6)
β (°) 103.116 (6)
V3)3217.8 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.22 × 0.22 × 0.06
Data collection
DiffractometerBruker SMART 1K CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.616, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
14449, 5670, 4126
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.121, 1.02
No. of reflections5670
No. of parameters483
No. of restraints78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.45

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL/PC (Sheldrick, 2008).

Selected bond lengths (Å) top
Dy1—O22.305 (5)Dy1—O82.349 (4)
Dy1—O62.315 (5)Dy1—O72.356 (5)
Dy1—O32.326 (5)Dy1—O52.390 (5)
Dy1—O42.342 (5)Dy1—O12.423 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.862.102.947 (8)167
 

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant No. 20673069) and the Natural Science Foundation of Shanxi province (grant No. 2007011021).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, W. J. & Elgavish, G. A. (1995). NMR Biomed. 8, 159–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIwamuro, M., Hasegawa, Y., Wada, Y. & Murakoshi, K. (1997). Chem. Lett. 10, 1067–1068.  CrossRef Web of Science Google Scholar
First citationMa, B. Q., Zhang, D. S., Gao, S., Jin, T. Z. & Yan, C. H. (2000). Angew. Chem. Int. Ed. 39, 3644–3646.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Ren, N., Zhang, J.-J., Sun, S.-J., Ye, H.-M., Bai, J.-H. & Wang, R.-F. (2009). J. Chem. Eng. Data. 54, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsukube, H. & Shinoda, S. (2002). Chem. Rev. 102, 2389–2404.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds