organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{2-[(4S)-4-tert-Butyl-4,5-di­hydro-1,3-oxazol-2-yl]phen­yl}-5,6-di­phenyl-1,2,4-triazin-3-amine

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bDepartment of General and Ecological Chemistry, Technical University, ul. Żeromskiego 115, 90-924 Łódź, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 7 February 2011; accepted 14 February 2011; online 19 February 2011)

The title compound, C28H27N5O, was synthesized using palladium cross-coupling amination of 3-bromo-5,6-diphenyl-1,2,4-triazine with 2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline. The oxazoline ring is almost planar, with a maximum atomic deviation of 0.023 (5) Å. The phenyl rings make dihedral angles of 29.0 (1) and 54.6 (1)° with the triazine ring while the benzene ring makes a dihedral angle of 0.6 (1)° with the oxazoline ring. The conformation of the mol­ecule is influenced by strong intra­molecular N—H⋯N and weak C—H⋯N hydrogen bonds. In the crystal, screw-axis related mol­ecules are linked into supra­molecular chains by inter­molecular C—H⋯O hydrogen bonds. ππ stacking is observed between the oxazoline and triazine rings of adjacent mol­ecules, with a centroid–centroid distance of 3.749 (2) Å.

Related literature

For applications of compounds containing a chiral oxazoline ring in asymmetric catalysis, see: Lindsey & Layton (2004[Lindsey, C. W. & Layton, M. E. (2004). Science of Synthesis, Houben-Weyl Methods of Molecular Transformation, Vol. 17, p. 357. Stuttgart: Georg Thieme Verlag.]); Desimoni et al. (2006[Desimoni, G., Faita, G. & Jørgensen, K. A. (2006). Chem. Rev. 106, 3561-3651.]); Hargaden & Guiry (2009[Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.]). For related structures, see: Castro et al. (2001[Castro, J., Cabaleiro, S., Perez-Lourido, P., Romero, J., Garcia-Vazquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329-2337.]); Coeffard et al. (2009[Coeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723-1734.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27N5O

  • Mr = 449.55

  • Orthorhombic, P 21 21 21

  • a = 6.3306 (2) Å

  • b = 16.9244 (6) Å

  • c = 22.5787 (8) Å

  • V = 2419.12 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.54 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 1.000

  • 28527 measured reflections

  • 2625 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.05

  • 2625 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯N15 0.97 (4) 1.87 (5) 2.671 (4) 138 (4)
C13—H13⋯N2 0.93 2.31 2.919 (5) 122
C53—H53⋯O18i 0.93 2.54 3.250 (5) 133
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds containing a chiral oxazoline ring have proven to be one of the most successful ligand classes for asymmetric catalysis. A diverse range of di-, tri- and tetradentate oxazoline ligands incorporating various heteroatoms and specific structural features have been synthesized and used in a wide range of metal catalyzed asymmetric processes (Desimoni et al., 2006; Hargaden et al., 2009). Introduction of 1,2,4-triazine ring into ligand structure can significantly increase ligand binding properties, since 1,2,4-triazine is known as a good metal chelator (Lindsey et al., 2004). Due to our interest in developing new oxazoline-based ligands the titled compound was synthesized and its application in asymmetric catalysis is currently under investigation.

The central secondary N7-amine group is planar with the sum of the angles around N atom of 359.1°. The unusually large C3—N7—C8 angle of 131.1 (3)° is constrained by the strong N7—H7···N15 intramolecular hydrogen bond (Table 1), which forced a cis-cis conformation of the amine spacer between 1,2,4-triazine ring and the (oxazolyl)phenyl group with the torsion angles N2—C3—N7—C8 and C3—N7—C8—C13 of 3.9 (6) and –12.4 (6)°, respectively. The similar geometry and conformation of the [(oxazolyl)phenyl]amine subunit have been reported in closely related structures (Castro et al., 2001; Coeffard et al., 2009). The 5- and 6-phenyl substituents of the 1,2,4-triazine ring are inclined to its mean plane with the dihedral angle of 29.0 (1) and 54.6 (1)°, respectively.

In the crystal structure, Fig. 2, the screw-related molecules are linked into chains along the [010] direction by C53—H53···O18 intermolecular hydrogen bond (Table 1). Additionally, the π-electron systems of the oxazoline and triazine rings belonging to the translation-related molecules overlap each other, with centroid-to-centroid separation of 3.749 (2) Å between the oxazoline ring at (x, y, z) and triazine ring at (1+x, y, z), and triazine ring at (x, y, z) and oxazoline ring at (–1+x, y, z). The π···π distances are 3.2389 (16) and 3.4927 (13) Å, respectively.

Related literature top

For applications of compounds containing a chiral oxazoline ring in asymmetric catalysis, see: Lindsey & Layton (2004); Desimoni et al. (2006); Hargaden & Guiry (2009). For related structures, see: Castro et al. (2001); Coeffard et al. (2009).

Experimental top

The titled compound was synthesized using palladium cross-coupling amination of 5,6-diphenyl-3-bromo-1,2,4-triazine with readily available 2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline as the key step. An oven dried three-necked flask was washed with argon and charged with Pd2dba3 (45.7 mg, 0.05 mmol), Xantphos (57.8 mg, 0.1 mmol), 2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (0.131 g, 0.6 mmol), 3-bromo-5,6-diphenyl-1,2,4-triazine (155 mg, 0.5 mmol) and K2CO3 (1.38g, 10 mmol). Then, the flask was evacuated and backfilled with argon. Dioxane (10 ml) was added trough the septum. The mixture was refluxed for 24 hours. After cooling, the solid material was filtered off and washed with CH2Cl2. The solvent was evaporated, and the resulting crude product was purified by column chromatography using hexanes/ethyl acetate (10:1) as eluent. Product was recrystalized from ethanol to give 5,6-diphenyl-3-{2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}amino-1,2,4-triazine as a yellow crystals; yield: 0.095 g, 42%; mp 489-490 K; [α]D20 of –15.69°. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a methanol solution.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the absolute configuration of started 2-[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]aniline. All H atom were located by difference Fourier synthesis. N-bound H atom was refined freely. The remaining H atoms were treated as riding on their C atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Dashed lines indicate weak C—H···O intermolecular interaction [symmetry code: (i) –x+1, y–1/2, –z+3/2].
N-{2-[(4S)-4-tert-Butyl-4,5-dihydro-1,3-oxazol- 2-yl]phenyl}-5,6-diphenyl-1,2,4-triazin-3-amine top
Crystal data top
C28H27N5ODx = 1.234 Mg m3
Mr = 449.55Melting point = 489–490 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 1210 reflections
a = 6.3306 (2) Åθ = 4.6–30.0°
b = 16.9244 (6) ŵ = 0.61 mm1
c = 22.5787 (8) ÅT = 293 K
V = 2419.12 (14) Å3Needle, yellow
Z = 40.54 × 0.02 × 0.02 mm
F(000) = 952
Data collection top
Bruker SMART APEXII CCD
diffractometer
2625 independent reflections
Radiation source: fine-focus sealed tube1648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 70.2°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 76
Tmin = 0.882, Tmax = 1.000k = 2020
28527 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0683P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2625 reflectionsΔρmax = 0.15 e Å3
311 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (5)
Crystal data top
C28H27N5OV = 2419.12 (14) Å3
Mr = 449.55Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.3306 (2) ŵ = 0.61 mm1
b = 16.9244 (6) ÅT = 293 K
c = 22.5787 (8) Å0.54 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1648 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 1.000Rint = 0.090
28527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
2625 reflectionsΔρmin = 0.17 e Å3
311 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3) δ: 1.05 (s, 9H, (CH3)3C), 4.25–4.35 (m, 2H, (CH2O and CHN), 4.45–4.50 (m, 1H, CH2O), 7.11 (t, 1H, J = 7.6 Hz, Ph), 7.31–7.37 (m, 5H, Ph), 7.42–7.44 (m, 1H, Ph), 7.50–7.52 (m, 2H, Ph), 7.56–7.60 (m, 3H, Ph), 7.91 (d, 1H, J = 7.6 Hz, Ph), 8.89 (d, 1H, J = 8.4 Hz, Ph), 12.98 (s, 1H, NH); 13C NMR (50 MHz, CDCl3) δ: 25.9, 34.0, 67.5, 76.1, 112.8, 118.9, 120.7, 128.2, 128.3, 128.6, 129.2, 129.3, 129.8, 130.4, 132.3, 136.0, 136.1, 140.8, 150.8, 156.0, 158.8, 163.4; Analysis calculated for C28H27N5O: C 74.81; H 6.05; N 15.58; found: C 74.79; H 6.03; N 15.51.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O180.9330 (4)0.61773 (16)0.78505 (12)0.0793 (8)
N10.0592 (5)0.54476 (19)0.97426 (12)0.0735 (9)
N20.0979 (5)0.58502 (18)0.94731 (14)0.0728 (9)
N40.1210 (5)0.48257 (17)0.87487 (12)0.0640 (8)
N70.3575 (5)0.58275 (18)0.87252 (13)0.0697 (9)
H70.411 (8)0.548 (2)0.8420 (18)0.105*
N150.6459 (5)0.54077 (19)0.79214 (13)0.0716 (9)
C30.1856 (6)0.5505 (2)0.90057 (16)0.0611 (9)
C50.0365 (6)0.4448 (2)0.90072 (15)0.0578 (9)
C60.1237 (6)0.4751 (2)0.95379 (15)0.0613 (9)
C80.4787 (6)0.6496 (2)0.88589 (15)0.0647 (10)
C90.6707 (6)0.6585 (2)0.85444 (16)0.0637 (10)
C100.7987 (7)0.7239 (2)0.86881 (17)0.0784 (11)
H100.92680.73060.84930.118*
C110.7389 (8)0.7781 (3)0.91095 (19)0.0894 (14)
H110.82660.82050.92000.134*
C120.5491 (8)0.7693 (2)0.93957 (18)0.0828 (12)
H120.50800.80640.96770.124*
C130.4183 (8)0.7061 (2)0.92720 (16)0.0780 (12)
H130.28930.70140.94660.117*
C140.7399 (6)0.6022 (2)0.80992 (16)0.0647 (10)
C160.7797 (6)0.5003 (2)0.74766 (16)0.0668 (10)
H160.83050.45090.76530.100*
C170.9690 (7)0.5565 (3)0.74209 (19)0.0855 (12)
H1711.09990.52890.75040.128*
H1720.97640.57860.70250.128*
C190.6617 (6)0.4794 (2)0.69076 (17)0.0741 (11)
C200.4820 (8)0.4227 (3)0.7063 (2)0.1036 (15)
H2010.39250.44660.73570.155*
H2020.53980.37440.72170.155*
H2030.40070.41150.67140.155*
C210.8171 (9)0.4373 (3)0.64968 (19)0.1075 (16)
H2110.88150.39400.67040.161*
H2120.92430.47370.63710.161*
H2130.74290.41760.61570.161*
C220.5743 (10)0.5535 (3)0.6608 (2)0.1179 (18)
H2210.68840.58880.65160.177*
H2220.47690.57930.68700.177*
H2230.50260.53890.62500.177*
C510.1113 (6)0.3731 (2)0.86873 (14)0.0588 (9)
C520.0351 (7)0.3342 (2)0.83248 (16)0.0694 (11)
H520.17470.35130.83170.104*
C530.0247 (7)0.2709 (2)0.7979 (2)0.0833 (12)
H530.07420.24560.77410.125*
C540.2320 (7)0.2451 (2)0.7986 (2)0.0828 (12)
H540.27290.20260.77510.124*
C550.3780 (7)0.2826 (2)0.83435 (18)0.0802 (12)
H550.51710.26500.83510.120*
C560.3186 (6)0.3463 (2)0.86901 (16)0.0684 (10)
H560.41840.37130.89270.103*
C610.2858 (6)0.4352 (2)0.99015 (15)0.0676 (10)
C620.2523 (8)0.3591 (2)1.01024 (18)0.0882 (13)
H620.12720.33281.00130.132*
C630.4080 (12)0.3219 (4)1.0441 (2)0.119 (2)
H630.38630.27071.05790.179*
C640.5935 (11)0.3607 (5)1.0572 (2)0.133 (3)
H640.69720.33551.07940.200*
C650.6258 (9)0.4369 (4)1.0375 (2)0.1133 (19)
H650.75130.46311.04600.170*
C660.4700 (6)0.4739 (3)1.00486 (17)0.0838 (13)
H660.48970.52580.99260.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O180.0671 (17)0.0869 (18)0.0839 (17)0.0114 (14)0.0118 (14)0.0045 (16)
N10.079 (2)0.074 (2)0.068 (2)0.0071 (18)0.0151 (17)0.0099 (17)
N20.078 (2)0.072 (2)0.0678 (19)0.0101 (17)0.0166 (17)0.0130 (17)
N40.0636 (19)0.0691 (19)0.0592 (17)0.0067 (16)0.0089 (15)0.0032 (15)
N70.072 (2)0.070 (2)0.067 (2)0.0153 (17)0.0156 (17)0.0113 (16)
N150.074 (2)0.073 (2)0.0673 (19)0.0073 (18)0.0152 (17)0.0071 (17)
C30.062 (2)0.063 (2)0.058 (2)0.0057 (19)0.0050 (18)0.0041 (19)
C50.059 (2)0.060 (2)0.054 (2)0.0002 (18)0.0035 (17)0.0006 (17)
C60.066 (2)0.067 (2)0.051 (2)0.0009 (19)0.0042 (18)0.0020 (18)
C80.072 (2)0.064 (2)0.058 (2)0.007 (2)0.0023 (19)0.0023 (19)
C90.066 (2)0.065 (2)0.059 (2)0.0057 (19)0.0018 (18)0.0071 (19)
C100.080 (3)0.078 (3)0.076 (3)0.022 (2)0.002 (2)0.009 (2)
C110.110 (4)0.078 (3)0.080 (3)0.026 (3)0.009 (3)0.005 (2)
C120.103 (3)0.074 (3)0.071 (3)0.013 (3)0.001 (3)0.012 (2)
C130.093 (3)0.075 (3)0.066 (2)0.013 (2)0.003 (2)0.014 (2)
C140.059 (2)0.073 (2)0.061 (2)0.007 (2)0.0077 (19)0.009 (2)
C160.066 (2)0.074 (2)0.061 (2)0.0077 (19)0.0127 (19)0.0087 (19)
C170.075 (3)0.101 (3)0.080 (3)0.005 (3)0.014 (2)0.003 (3)
C190.078 (3)0.079 (3)0.065 (2)0.008 (2)0.003 (2)0.001 (2)
C200.095 (3)0.108 (4)0.108 (3)0.017 (3)0.008 (3)0.024 (3)
C210.109 (4)0.136 (4)0.077 (3)0.014 (3)0.023 (3)0.016 (3)
C220.123 (4)0.128 (4)0.103 (4)0.032 (4)0.023 (3)0.025 (3)
C510.065 (2)0.056 (2)0.056 (2)0.0021 (18)0.0004 (18)0.0003 (17)
C520.071 (3)0.063 (2)0.075 (3)0.002 (2)0.006 (2)0.008 (2)
C530.086 (3)0.070 (3)0.094 (3)0.003 (2)0.010 (3)0.018 (2)
C540.088 (3)0.072 (3)0.088 (3)0.004 (2)0.008 (3)0.017 (2)
C550.076 (3)0.073 (3)0.092 (3)0.006 (2)0.008 (2)0.014 (2)
C560.064 (2)0.073 (2)0.068 (2)0.004 (2)0.0008 (19)0.002 (2)
C610.072 (3)0.080 (3)0.051 (2)0.015 (2)0.0057 (18)0.000 (2)
C620.110 (4)0.088 (3)0.067 (2)0.022 (3)0.003 (2)0.008 (2)
C630.159 (6)0.117 (4)0.081 (3)0.054 (4)0.001 (4)0.020 (3)
C640.126 (5)0.199 (7)0.075 (3)0.074 (6)0.013 (4)0.007 (4)
C650.086 (4)0.180 (6)0.074 (3)0.032 (4)0.015 (3)0.001 (4)
C660.065 (3)0.125 (4)0.062 (2)0.011 (3)0.009 (2)0.005 (2)
Geometric parameters (Å, º) top
O18—C141.370 (4)C19—C211.529 (6)
O18—C171.437 (5)C20—H2010.9600
N1—C61.330 (4)C20—H2020.9600
N1—N21.351 (4)C20—H2030.9600
N2—C31.328 (4)C21—H2110.9600
N4—C51.320 (4)C21—H2120.9600
N4—C31.351 (4)C21—H2130.9600
N7—C31.372 (4)C22—H2210.9600
N7—C81.399 (4)C22—H2220.9600
N7—H70.97 (4)C22—H2230.9600
N15—C141.264 (5)C51—C561.389 (5)
N15—C161.482 (5)C51—C521.401 (5)
C5—C61.415 (5)C52—C531.379 (5)
C5—C511.490 (5)C52—H520.9300
C6—C611.478 (5)C53—C541.383 (6)
C8—C131.390 (5)C53—H530.9300
C8—C91.416 (5)C54—C551.382 (6)
C9—C101.410 (5)C54—H540.9300
C9—C141.452 (5)C55—C561.383 (5)
C10—C111.375 (6)C55—H550.9300
C10—H100.9300C56—H560.9300
C11—C121.372 (6)C61—C661.377 (5)
C11—H110.9300C61—C621.382 (5)
C12—C131.381 (6)C62—C631.397 (7)
C12—H120.9300C62—H620.9300
C13—H130.9300C63—C641.378 (9)
C16—C191.527 (5)C63—H630.9300
C16—C171.536 (6)C64—C651.380 (8)
C16—H160.9800C64—H640.9300
C17—H1710.9700C65—C661.381 (6)
C17—H1720.9700C65—H650.9300
C19—C221.528 (5)C66—H660.9300
C19—C201.530 (6)
C14—O18—C17106.3 (3)C20—C19—C21109.0 (3)
C6—N1—N2121.1 (3)C19—C20—H201109.5
C3—N2—N1116.3 (3)C19—C20—H202109.5
C5—N4—C3116.8 (3)H201—C20—H202109.5
C3—N7—C8131.1 (3)C19—C20—H203109.5
C3—N7—H7111 (3)H201—C20—H203109.5
C8—N7—H7117 (3)H202—C20—H203109.5
C14—N15—C16109.1 (3)C19—C21—H211109.5
N2—C3—N4126.1 (3)C19—C21—H212109.5
N2—C3—N7121.5 (3)H211—C21—H212109.5
N4—C3—N7112.4 (3)C19—C21—H213109.5
N4—C5—C6119.6 (3)H211—C21—H213109.5
N4—C5—C51114.8 (3)H212—C21—H213109.5
C6—C5—C51125.6 (3)C19—C22—H221109.5
N1—C6—C5119.7 (3)C19—C22—H222109.5
N1—C6—C61115.2 (3)H221—C22—H222109.5
C5—C6—C61125.1 (3)C19—C22—H223109.5
C13—C8—N7123.4 (3)H221—C22—H223109.5
C13—C8—C9119.9 (3)H222—C22—H223109.5
N7—C8—C9116.7 (3)C56—C51—C52118.3 (3)
C10—C9—C8117.5 (4)C56—C51—C5124.4 (3)
C10—C9—C14120.0 (4)C52—C51—C5117.1 (3)
C8—C9—C14122.4 (3)C53—C52—C51120.9 (4)
C11—C10—C9121.7 (4)C53—C52—H52119.5
C11—C10—H10119.2C51—C52—H52119.5
C9—C10—H10119.2C52—C53—C54120.0 (4)
C10—C11—C12119.6 (4)C52—C53—H53120.0
C10—C11—H11120.2C54—C53—H53120.0
C12—C11—H11120.2C53—C54—C55119.7 (4)
C11—C12—C13121.0 (4)C53—C54—H54120.1
C11—C12—H12119.5C55—C54—H54120.1
C13—C12—H12119.5C54—C55—C56120.4 (4)
C12—C13—C8120.3 (4)C54—C55—H55119.8
C12—C13—H13119.9C56—C55—H55119.8
C8—C13—H13119.9C55—C56—C51120.6 (4)
N15—C14—O18116.6 (4)C55—C56—H56119.7
N15—C14—C9128.1 (3)C51—C56—H56119.7
O18—C14—C9115.3 (3)C66—C61—C62119.6 (4)
N15—C16—C19113.4 (3)C66—C61—C6120.3 (4)
N15—C16—C17102.4 (3)C62—C61—C6120.1 (4)
C19—C16—C17117.1 (3)C61—C62—C63119.4 (5)
N15—C16—H16107.8C61—C62—H62120.3
C19—C16—H16107.8C63—C62—H62120.3
C17—C16—H16107.8C64—C63—C62120.2 (6)
O18—C17—C16105.5 (3)C64—C63—H63119.9
O18—C17—H171110.6C62—C63—H63119.9
C16—C17—H171110.6C65—C64—C63120.2 (6)
O18—C17—H172110.6C65—C64—H64119.9
C16—C17—H172110.6C63—C64—H64119.9
H171—C17—H172108.8C64—C65—C66119.3 (6)
C16—C19—C22111.1 (3)C64—C65—H65120.3
C16—C19—C20108.4 (3)C66—C65—H65120.3
C22—C19—C20110.3 (4)C61—C66—C65121.2 (5)
C16—C19—C21107.7 (3)C61—C66—H66119.4
C22—C19—C21110.3 (4)C65—C66—H66119.4
C6—N1—N2—C31.4 (5)C14—N15—C16—C19130.0 (4)
N1—N2—C3—N45.9 (6)C14—N15—C16—C172.9 (4)
N1—N2—C3—N7174.7 (3)C14—O18—C17—C163.5 (4)
C5—N4—C3—N24.1 (5)N15—C16—C17—O183.8 (4)
C5—N4—C3—N7176.4 (3)C19—C16—C17—O18128.6 (4)
C8—N7—C3—N23.9 (6)N15—C16—C19—C2259.9 (5)
C8—N7—C3—N4176.7 (3)C17—C16—C19—C2259.1 (5)
C3—N4—C5—C61.9 (5)N15—C16—C19—C2061.5 (4)
C3—N4—C5—C51176.3 (3)C17—C16—C19—C20179.5 (3)
N2—N1—C6—C54.2 (5)N15—C16—C19—C21179.2 (3)
N2—N1—C6—C61175.7 (3)C17—C16—C19—C2161.8 (5)
N4—C5—C6—N16.0 (5)N4—C5—C51—C56148.3 (4)
C51—C5—C6—N1172.0 (3)C6—C5—C51—C5629.8 (6)
N4—C5—C6—C61174.0 (3)N4—C5—C51—C5226.6 (4)
C51—C5—C6—C618.0 (6)C6—C5—C51—C52155.3 (3)
C3—N7—C8—C1312.4 (6)C56—C51—C52—C530.0 (5)
C3—N7—C8—C9168.3 (4)C5—C51—C52—C53175.1 (3)
C13—C8—C9—C102.8 (5)C51—C52—C53—C540.1 (6)
N7—C8—C9—C10177.8 (3)C52—C53—C54—C550.4 (7)
C13—C8—C9—C14178.7 (3)C53—C54—C55—C560.5 (7)
N7—C8—C9—C140.7 (5)C54—C55—C56—C510.4 (6)
C8—C9—C10—C111.1 (6)C52—C51—C56—C550.1 (5)
C14—C9—C10—C11179.6 (4)C5—C51—C56—C55174.9 (3)
C9—C10—C11—C120.7 (6)N1—C6—C61—C6654.0 (5)
C10—C11—C12—C130.8 (7)C5—C6—C61—C66126.1 (4)
C11—C12—C13—C80.9 (6)N1—C6—C61—C62125.2 (4)
N7—C8—C13—C12177.9 (4)C5—C6—C61—C6254.7 (5)
C9—C8—C13—C122.8 (6)C66—C61—C62—C631.4 (6)
C16—N15—C14—O180.8 (5)C6—C61—C62—C63179.4 (4)
C16—N15—C14—C9178.1 (3)C61—C62—C63—C640.2 (8)
C17—O18—C14—N151.9 (4)C62—C63—C64—C650.7 (9)
C17—O18—C14—C9179.1 (3)C63—C64—C65—C660.4 (8)
C10—C9—C14—N15179.6 (4)C62—C61—C66—C652.5 (6)
C8—C9—C14—N151.2 (6)C6—C61—C66—C65178.3 (4)
C10—C9—C14—O180.7 (5)C64—C65—C66—C612.0 (7)
C8—C9—C14—O18177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N150.97 (4)1.87 (5)2.671 (4)138 (4)
C13—H13···N20.932.312.919 (5)122
C53—H53···O18i0.932.543.250 (5)133
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC28H27N5O
Mr449.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.3306 (2), 16.9244 (6), 22.5787 (8)
V3)2419.12 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.54 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.882, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28527, 2625, 1648
Rint0.090
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.05
No. of reflections2625
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N150.97 (4)1.87 (5)2.671 (4)138 (4)
C13—H13···N20.932.312.919 (5)122
C53—H53···O18i0.932.543.250 (5)133
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, J., Cabaleiro, S., Perez-Lourido, P., Romero, J., Garcia-Vazquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329–2337.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723–1734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDesimoni, G., Faita, G. & Jørgensen, K. A. (2006). Chem. Rev. 106, 3561–3651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505–2550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLindsey, C. W. & Layton, M. E. (2004). Science of Synthesis, Houben–Weyl Methods of Molecular Transformation, Vol. 17, p. 357. Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds