metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m295-m296

Poly[[[di­aqua­sodium]-μ3-5-carb­­oxy-2-ethyl-1H-imidazole-4-carboxyl­ato-κ4N3,O4:O5:O5] monohydrate]

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Agriculture, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 13 January 2011; accepted 20 January 2011; online 2 February 2011)

In the title complex, {[Na(C7H7N2O4)(H2O)2]·H2O}n, the NaI atom exhibits a distorted octa­hedral geometry and is six-coordinated in an NO5 environment. The equatorial plane is defined by three O atoms and one N atom from two distinct 5-carb­oxy-2-ethyl-1H-imidazole-4-carboxyl­ate (H2EIDC) ligands and one coordinated water mol­ecule, and the apical sites are occupied by one carboxyl O atom from one H2EIDC ligand and one O atom from the other coordinated water mol­ecule. The NaI atoms are linked by H2EIDC ligands, generating an infinite double chain along the a axis. These chains are further connected via O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For the rational design of metal coordination complexes, see: Sava et al. (2009[Sava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394-10396.]); Lu et al. (2010[Lu, J., Ting, H., Zhang, X. X., Wang, D. Q. & Niu, M. J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]); Xue et al. (2009[Xue, M., Zhu, G. S., Ding, H., Wu, L., Zhao, X. J., Jin, Z. & Qiu, S. L. (2009). Cryst. Growth Des. 9, 1481-1488.]). For H3IDC complexes with supra­molecular architectures, see: Zou et al. (2006[Zou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]); Li et al. (2006[Li, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. & Tong, M. L. (2006). Eur. J. Inorg. Chem. pp. 1931-1935.]); Sun et al. (2005[Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]). For related coord­in­ation polymers based on H3EIDC, see: Wang et al. (2008[Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662-1666.]); Zhang et al. (2010[Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C7H7N2O4)(H2O)2]·H2O

  • Mr = 260.18

  • Monoclinic, P 21 /n

  • a = 8.5231 (8) Å

  • b = 7.0598 (7) Å

  • c = 19.0329 (17) Å

  • β = 98.880 (1)°

  • V = 1131.51 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.34 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.946

  • 5410 measured reflections

  • 1991 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.04

  • 1991 reflections

  • 162 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H6W⋯O2Wi 0.85 2.09 2.872 (3) 154
O3W—H5W⋯O2ii 0.85 2.07 2.904 (3) 165
O2W—H4W⋯O3ii 0.85 2.04 2.888 (3) 174
O2W—H3W⋯O1iii 0.85 1.96 2.812 (3) 174
O1W—H2W⋯O3Wiv 0.84 (1) 1.86 (1) 2.701 (3) 178 (3)
O1W—H1W⋯O1v 0.84 (1) 2.33 (2) 3.096 (3) 152 (3)
O3—H3⋯O2 0.82 1.64 2.453 (2) 168
N2—H2⋯O1Wvi 0.86 2.01 2.857 (3) 171
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) x+1, y-1, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x+1, y, z; (vi) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of novel metal-coordination complexes via deliberate selection of metal ions and organic ligands has attracted much attention due to the fascinating structures that can be obtained and their potential applications in catalysis, magnetism, photoluminescence and gas storage (Sava et al.,2009; Lu et al., 2010; Xue et al., 2009). The 4,5-imidazoledicarboxylic acid (H3IDC) ligand exhibits flexible multi-functional coordination sites involving two N atoms of the imidazole ring and four carboxyl O atoms, and has been widely used to construct novel supramolecular architectures (Zou et al., 2006; Li et al., 2006; Sun et al., 2005). To augment the data for the well studied H3IDC ligand, we recently chose to study a closely related ligand, 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (H3EIDC) with an ethyl substitutent in the 2-position of the imidazole group, which could be a good candidate for generating intriguing supramolecular networks. To the best of our knowledge, only a few coordination polymers based on the H3EIDC ligand have been reported so far (Wang et al., 2008; Zhang et al., 2010). We report herein the hydrothermal synthesis and crystal structure of a new NaI complex, the title compound.

As illustrated in Fig. 1, the title complex, [Na(C7H7N2O4)2(H2O)2].H2O, comprises one H2EIDC ligand, one NaI ion, two coordinated water molecules and one solvent water molecule. Each NaI cation exhibits a distorted octahedral geometry and is six-coordinated by three oxygen (O4, O1i and O4ii) atoms and one nitrogen (Ni) atom of three distinct H2EIDC ligands and two oxygen atoms (O1W and O2W) from two coordinated water molecules (symmetry codes: i = 1-x, 1-y, 1-z; ii = 2-x, 1-y, 1-z). The equatorial plane is built by the O4, O1i, O1W and N1i atoms and the apical positions are occupied by O2W and O4ii. Two adjacent Na centers are bridged by two carboxyl oxygen atoms to form a Na2O2 subunit with a Na—Na distance of 3.684 (2) Å, and the Na2O2 subunits are linked by H2EIDC ligands to generate a one-dimensional double chain propagating along the a axis (Fig. 2a). The adjacent one-dimensional chains are connected into a three-dimensional supramolecular structure (Fig. 2 b) via N—H···O and O—H···O hydrogen bonds involving the uncoordinated imidazole N atoms, the uncoordinated and coordinated carboxylate O atoms from the H2EIDC ligands and the uncoordinated and coordinated water molecules (Table 1).

Related literature top

For the rational design of metal coordination complexes, see: Sava et al. (2009); Lu et al. (2010); Xue et al. (2009). For H3IDC complexes with supramolecular architectures, see: Zou et al. (2006); Li et al. (2006); Sun et al. (2005). For related coordination polymers based on H3EIDC, see: Wang et al. (2008); Zhang et al. (2010).

Experimental top

A mixture of NaOH (0.1 mmol, 0.004 g) and 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.9 g) in 10 ml of H2O was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated to 433 K for 4 days. Colorless crystals were obtained by slow evaporation of the solvent at room temperature with a yield of 42% based on NaOH.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined as riding with an O—H distance restraint of 0.84 (1) Å, with Uiso(H) = 1.5 Ueq. The H···H distances within the water molecules were restraint to 1.39 (1) Å. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O). Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5 Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (symmetry codes: i = 1-x, 1-y, 1-z; ii = 2-x, 1-y, 1-z).
[Figure 2] Fig. 2. (a) One-dimensional double chain constructed of Na2O2 subunits and H2EIDC ligands propagating along the a axis (H atoms are omitted for clarity); (b) A view of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions (H atoms not involved in the hydrogen bonds are omitted for clarity).
Poly[[[diaquasodium]-µ3-5-carboxy-2-ethyl-1H- imidazole-4-carboxylato-κ4N3,O4:O5:O5] monohydrate] top
Crystal data top
[Na(C7H7N2O4)(H2O)2]·H2OF(000) = 544
Mr = 260.18Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1702 reflections
a = 8.5231 (8) Åθ = 2.5–25.9°
b = 7.0598 (7) ŵ = 0.17 mm1
c = 19.0329 (17) ÅT = 298 K
β = 98.880 (1)°Block, colorless
V = 1131.51 (18) Å30.49 × 0.48 × 0.34 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1991 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 610
Tmin = 0.923, Tmax = 0.946k = 88
5410 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.658P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1991 reflectionsΔρmax = 0.33 e Å3
162 parametersΔρmin = 0.27 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.116 (7)
Crystal data top
[Na(C7H7N2O4)(H2O)2]·H2OV = 1131.51 (18) Å3
Mr = 260.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5231 (8) ŵ = 0.17 mm1
b = 7.0598 (7) ÅT = 298 K
c = 19.0329 (17) Å0.49 × 0.48 × 0.34 mm
β = 98.880 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1549 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.946Rint = 0.043
5410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0399 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
1991 reflectionsΔρmin = 0.27 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.93820 (11)0.32398 (16)0.56175 (5)0.0388 (4)
N10.3469 (2)0.7014 (3)0.42293 (10)0.0288 (5)
N20.5987 (2)0.6488 (3)0.41437 (10)0.0283 (5)
H20.68160.61650.39660.034*
O10.2192 (2)0.8220 (3)0.54163 (10)0.0413 (5)
O20.4583 (2)0.8601 (3)0.60539 (9)0.0361 (5)
O30.7371 (2)0.8029 (3)0.59418 (9)0.0361 (5)
H30.64530.83600.59530.054*
O40.8713 (2)0.6644 (3)0.51722 (9)0.0374 (5)
O1W1.1322 (2)0.5012 (3)0.63961 (10)0.0413 (5)
H1W1.132 (4)0.608 (2)0.6204 (13)0.062*
H2W1.152 (4)0.509 (4)0.6843 (6)0.062*
O2W1.0214 (2)0.0314 (3)0.61812 (10)0.0444 (6)
H3W1.08610.02630.59580.067*
H4W0.93470.03030.61280.067*
O3W0.3117 (3)0.0343 (4)0.71733 (11)0.0803 (9)
H5W0.37040.01610.69020.120*
H6W0.21350.02740.70050.120*
C10.3656 (3)0.8138 (4)0.54743 (13)0.0292 (6)
C20.4401 (3)0.7466 (3)0.48677 (12)0.0256 (6)
C30.5973 (3)0.7131 (3)0.48215 (12)0.0255 (6)
C40.7464 (3)0.7262 (4)0.53360 (13)0.0277 (6)
C50.4475 (3)0.6448 (4)0.38032 (13)0.0280 (6)
C60.4053 (3)0.5841 (5)0.30430 (13)0.0391 (7)
H6A0.45220.46100.29860.047*
H6B0.45120.67310.27440.047*
C70.2284 (3)0.5722 (5)0.27913 (15)0.0472 (8)
H7A0.18320.47700.30590.071*
H7B0.20940.53970.22960.071*
H7C0.18040.69250.28590.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0261 (6)0.0525 (8)0.0381 (6)0.0021 (5)0.0057 (4)0.0010 (5)
N10.0239 (11)0.0336 (12)0.0288 (11)0.0004 (9)0.0038 (9)0.0000 (9)
N20.0228 (11)0.0363 (13)0.0270 (11)0.0012 (9)0.0083 (8)0.0012 (9)
O10.0241 (10)0.0583 (13)0.0433 (11)0.0016 (9)0.0107 (8)0.0118 (10)
O20.0295 (10)0.0503 (12)0.0289 (10)0.0009 (8)0.0057 (7)0.0098 (8)
O30.0243 (9)0.0520 (13)0.0319 (10)0.0009 (8)0.0033 (7)0.0077 (9)
O40.0229 (10)0.0517 (13)0.0379 (10)0.0049 (8)0.0061 (8)0.0022 (9)
O1W0.0422 (11)0.0494 (13)0.0332 (10)0.0032 (10)0.0086 (9)0.0007 (9)
O2W0.0342 (10)0.0526 (13)0.0464 (12)0.0014 (9)0.0062 (8)0.0099 (10)
O3W0.0568 (15)0.148 (3)0.0359 (12)0.0132 (16)0.0053 (10)0.0115 (15)
C10.0279 (14)0.0297 (14)0.0312 (14)0.0002 (11)0.0082 (11)0.0000 (11)
C20.0246 (12)0.0257 (13)0.0272 (12)0.0007 (10)0.0056 (10)0.0015 (10)
C30.0257 (13)0.0260 (13)0.0255 (12)0.0001 (10)0.0060 (10)0.0000 (10)
C40.0255 (13)0.0291 (14)0.0293 (13)0.0002 (11)0.0062 (10)0.0011 (11)
C50.0266 (13)0.0307 (14)0.0272 (13)0.0003 (10)0.0054 (10)0.0006 (11)
C60.0391 (16)0.0506 (19)0.0275 (14)0.0012 (13)0.0048 (11)0.0024 (13)
C70.0446 (17)0.058 (2)0.0351 (15)0.0049 (15)0.0052 (12)0.0008 (14)
Geometric parameters (Å, º) top
Na1—O4i2.378 (2)O4—Na1i2.378 (2)
Na1—O2W2.384 (2)O1W—H1W0.840 (11)
Na1—O1W2.396 (2)O1W—H2W0.843 (11)
Na1—O1ii2.433 (2)O2W—H3W0.8500
Na1—N1ii2.498 (2)O2W—H4W0.8500
Na1—O42.583 (2)O3W—H5W0.8500
N1—C51.329 (3)O3W—H6W0.8499
N1—C21.383 (3)C1—C21.480 (3)
N1—Na1ii2.498 (2)C2—C31.377 (3)
N2—C51.351 (3)C3—C41.482 (3)
N2—C31.369 (3)C5—C61.499 (3)
N2—H20.8600C6—C71.512 (4)
O1—C11.237 (3)C6—H6A0.9700
O1—Na1ii2.432 (2)C6—H6B0.9700
O2—C11.296 (3)C7—H7A0.9600
O3—C41.287 (3)C7—H7B0.9600
O3—H30.8200C7—H7C0.9600
O4—C41.234 (3)
O4i—Na1—O2W97.45 (7)Na1—O1W—H2W132 (2)
O4i—Na1—O1W84.24 (7)H1W—O1W—H2W111.4 (15)
O2W—Na1—O1W92.58 (7)Na1—O2W—H3W111.2
O4i—Na1—O1ii81.27 (7)Na1—O2W—H4W101.4
O2W—Na1—O1ii94.91 (8)H3W—O2W—H4W108.2
O1W—Na1—O1ii164.44 (8)H5W—O3W—H6W112.6
O4i—Na1—N1ii147.95 (8)O1—C1—O2122.6 (2)
O2W—Na1—N1ii96.45 (8)O1—C1—C2119.6 (2)
O1W—Na1—N1ii123.79 (8)O2—C1—C2117.8 (2)
O1ii—Na1—N1ii68.86 (7)C3—C2—N1109.7 (2)
O4i—Na1—O484.16 (7)C3—C2—C1130.1 (2)
O2W—Na1—O4171.50 (8)N1—C2—C1120.1 (2)
O1W—Na1—O479.24 (7)N2—C3—C2105.48 (19)
O1ii—Na1—O493.59 (7)N2—C3—C4120.8 (2)
N1ii—Na1—O486.31 (7)C2—C3—C4133.7 (2)
O4i—Na1—Na1i44.22 (5)O4—C4—O3123.3 (2)
O2W—Na1—Na1i140.98 (7)O4—C4—C3119.7 (2)
O1W—Na1—Na1i78.72 (6)O3—C4—C3116.9 (2)
O1ii—Na1—Na1i86.90 (6)N1—C5—N2111.0 (2)
N1ii—Na1—Na1i120.13 (7)N1—C5—C6126.4 (2)
O4—Na1—Na1i39.94 (4)N2—C5—C6122.6 (2)
C5—N1—C2105.55 (19)C5—C6—C7113.6 (2)
C5—N1—Na1ii141.28 (17)C5—C6—H6A108.8
C2—N1—Na1ii110.58 (15)C7—C6—H6A108.8
C5—N2—C3108.2 (2)C5—C6—H6B108.8
C5—N2—H2125.9C7—C6—H6B108.8
C3—N2—H2125.9H6A—C6—H6B107.7
C1—O1—Na1ii118.37 (16)C6—C7—H7A109.5
C4—O3—H3109.5C6—C7—H7B109.5
C4—O4—Na1i147.92 (17)H7A—C7—H7B109.5
C4—O4—Na1113.65 (16)C6—C7—H7C109.5
Na1i—O4—Na195.84 (7)H7A—C7—H7C109.5
Na1—O1W—H1W104 (2)H7B—C7—H7C109.5
O4i—Na1—O4—C4167.0 (2)N1—C2—C3—N20.6 (3)
O1W—Na1—O4—C4107.73 (17)C1—C2—C3—N2178.7 (2)
O1ii—Na1—O4—C486.20 (17)N1—C2—C3—C4176.6 (3)
N1ii—Na1—O4—C417.68 (17)C1—C2—C3—C41.5 (5)
Na1i—Na1—O4—C4167.0 (2)Na1i—O4—C4—O3121.0 (3)
O4i—Na1—O4—Na1i0.0Na1—O4—C4—O383.8 (3)
O1W—Na1—O4—Na1i85.23 (7)Na1i—O4—C4—C359.2 (4)
O1ii—Na1—O4—Na1i80.84 (7)Na1—O4—C4—C396.0 (2)
N1ii—Na1—O4—Na1i149.36 (8)N2—C3—C4—O45.9 (4)
Na1ii—O1—C1—O2168.77 (19)C2—C3—C4—O4171.0 (3)
Na1ii—O1—C1—C210.4 (3)N2—C3—C4—O3174.3 (2)
C5—N1—C2—C31.1 (3)C2—C3—C4—O38.9 (4)
Na1ii—N1—C2—C3164.78 (16)C2—N1—C5—N21.1 (3)
C5—N1—C2—C1179.3 (2)Na1ii—N1—C5—N2157.43 (19)
Na1ii—N1—C2—C113.5 (3)C2—N1—C5—C6178.6 (3)
O1—C1—C2—C3175.0 (3)Na1ii—N1—C5—C622.8 (5)
O2—C1—C2—C34.3 (4)C3—N2—C5—N10.7 (3)
O1—C1—C2—N12.9 (4)C3—N2—C5—C6179.0 (2)
O2—C1—C2—N1177.8 (2)N1—C5—C6—C75.9 (4)
C5—N2—C3—C20.0 (3)N2—C5—C6—C7174.4 (2)
C5—N2—C3—C4177.7 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O2Wiii0.852.092.872 (3)154
O3W—H5W···O2iv0.852.072.904 (3)165
O2W—H4W···O3iv0.852.042.888 (3)174
O2W—H3W···O1v0.851.962.812 (3)174
O1W—H2W···O3Wvi0.84 (1)1.86 (1)2.701 (3)178 (3)
O1W—H1W···O1vii0.84 (1)2.33 (2)3.096 (3)152 (3)
O3—H3···O20.821.642.453 (2)168
N2—H2···O1Wi0.862.012.857 (3)171
Symmetry codes: (i) x+2, y+1, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+3/2, y+1/2, z+3/2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Na(C7H7N2O4)(H2O)2]·H2O
Mr260.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.5231 (8), 7.0598 (7), 19.0329 (17)
β (°) 98.880 (1)
V3)1131.51 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.49 × 0.48 × 0.34
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.923, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
5410, 1991, 1549
Rint0.043
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.04
No. of reflections1991
No. of parameters162
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O2Wi0.852.092.872 (3)154
O3W—H5W···O2ii0.852.072.904 (3)165
O2W—H4W···O3ii0.852.042.888 (3)174
O2W—H3W···O1iii0.851.962.812 (3)174
O1W—H2W···O3Wiv0.843 (11)1.859 (12)2.701 (3)178 (3)
O1W—H1W···O1v0.840 (11)2.326 (17)3.096 (3)152 (3)
O3—H3···O20.821.642.453 (2)168
N2—H2···O1Wvi0.862.012.857 (3)171
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y1, z; (iv) x+3/2, y+1/2, z+3/2; (v) x+1, y, z; (vi) x+2, y+1, z+1.
 

Acknowledgements

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Ocean Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087 061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002).

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. & Tong, M. L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935.  Web of Science CSD CrossRef Google Scholar
First citationLu, J., Ting, H., Zhang, X. X., Wang, D. Q. & Niu, M. J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.  Web of Science CSD CrossRef CAS Google Scholar
First citationSava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394–10396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, M., Zhu, G. S., Ding, H., Wu, L., Zhao, X. J., Jin, Z. & Qiu, S. L. (2009). Cryst. Growth Des. 9, 1481–1488.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m295-m296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds