metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazinediium tetra­chloridocadmate monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bChemistry Department and Centro di Strutturistica Diffrattometrica, University of Ferrara, Via L. Borsari 46, I-44121 FerrarA, Italy
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 1 February 2011; accepted 10 February 2011; online 16 February 2011)

In the title compound, (C4H12N2)[CdCl4]·H2O, the [CdCl4]2− anions adopt a slightly distorted tetra­hedral configuration. In the crystal, O—H⋯Cl hydrogen bonds link the anions and water mol­ecules into corrugated inorganic chains along the b axis which are inter­connected via piperazinediiumN—H⋯O and N—H⋯Cl inter­actions into a three-dimensional framework structure.

Related literature

For common applications of organic–inorganic hybrid mat­erials, see: Kobel & Hanack (1986[Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103-107.]); Pierpont & Jung (1994[Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229-2230.]). For a related structure and discussion of geometrical features, see: Sutherland & Harrison (2009[Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.]). For the coordination around the CdII cation, see: El Glaoui et al. (2009[El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Can. J. Anal. Sci. Spectrosc. 54, 282-291.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[CdCl4]·H2O

  • Mr = 360.38

  • Monoclinic, P 21 /c

  • a = 6.6204 (2) Å

  • b = 12.8772 (3) Å

  • c = 14.0961 (4) Å

  • β = 92.1710 (12)°

  • V = 1200.86 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 295 K

  • 0.52 × 0.48 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.374, Tmax = 0.444

  • 8531 measured reflections

  • 3461 independent reflections

  • 2903 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.09

  • 3461 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.93 (3) 2.35 (3) 3.254 (2) 164 (3)
N1—H2⋯Cl3 0.89 (3) 2.41 (4) 3.155 (2) 141 (3)
N2—H3⋯O1W 0.89 (3) 1.93 (3) 2.808 (3) 167 (3)
N2—H4⋯Cl4ii 0.81 (3) 2.46 (3) 3.190 (2) 151 (3)
O1W—H1W⋯Cl2iii 0.84 2.44 3.267 (3) 168
O1W—H2W⋯Cl4iv 0.85 2.54 3.304 (2) 150
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: Kappa-CCD Server Software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic-inorganic hybrid materials continue to attract much attention due to their potential applications in various field (Kobel & Hanack, 1986; Pierpont & Jung, 1994). In this work, we report the crystal structure of one such compound, C4H12N2 [CdCl4] . H2O (I), formed from the reaction of piperazine with cadmium chloride. In (I) the asymmetric unit comprises a piperazine-1,4-diium dication, a [CdCl4]2- anion and a water molecule of solvation (Fig. 1). The atomic arrangement of (I) can be described as built up of corrugated inorganic chains of [CdCl4]2- tetrahedra and water molecules held together by O—H···Cl hydrogen bonds and extending along the b direction of the unit cell. These chains are interconnected by a set of piperazinium N—H···Cl hydrogen bonds to form layers extending along the (1 1 O) planes (Fig. 2, Table 1). Fig 3 shows that two such layers cross the unit cell at z = 1/4 and z = 3/4 and the bodies of the organic groups are located between these layers and connect them by weak C—H···Cl hydrogen bonds [C···Cl, 3.535 (3) Å], giving a three-dimensional framework structure. In the organic entity, the piperazium ring adopts a typical chair conformation and all the geometrical features agree with those found in piperazindiium tetrachlorozincate(II) (Sutherland & Harrison, 2009). It is worth noting that in the anion of (I), the Cd—Cl bond lengths and Cl—Cd—Cl bond angles are not equal, but vary with the environment around the Cl atom. The Cd—Cl bond lengths vary between 2.4418 (6) and 2.4892 (7) Å and the Cl—Cd—Cl angles range from 103.07 (2) to 115.19 (2) °. These values are in good agreement with those reported previously, clearly indicating that the [CdCl4]2- anion has a slightly distorted tetrahedral stereochemistry (El Glaoui et al. (2009).

Related literature top

For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986); Pierpont & Jung (1994). For a related structure and discussion of geometrical features, see: Sutherland & Harrison (2009). For the coordination around the CdII cation, see: El Glaoui et al. (2009).

Experimental top

An aqueous solution of piperazine (4 mmol, 0.344 g), cadmium chloride (4 mmol, 0.732 g) and HCl (10 ml, 0.8 M) in a Petri dish was slowly evaporated at room temperature. Single crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after several days (yield 68%).

Refinement top

All N—H hydrogen atoms were found in the difference Fourier map and refined isotropically. The water hydrogen atoms were also found in the difference Fourier but their positions were kept fixed during the refinement and their Uiso values were given a value equal to 1.2 times Ueq of the parent oxygen. All C—H atoms were allowed to ride with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate N—H···O and N—H···Cl hydrogen bonds.
[Figure 2] Fig. 2. A projection along the c axis of the inorganic layer structure at z = 1/4.
[Figure 3] Fig. 3. The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.
Piperazinediium tetrachloridocadmate monohydrate top
Crystal data top
(C4H12N2)[CdCl4]·H2OF(000) = 704
Mr = 360.38Dx = 1.993 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8531 reflections
a = 6.6204 (2) Åθ = 2.0–30.0°
b = 12.8772 (3) ŵ = 2.67 mm1
c = 14.0961 (4) ÅT = 295 K
β = 92.1710 (12)°Prismatic, colourless
V = 1200.86 (6) Å30.52 × 0.48 × 0.30 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3461 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ scans and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 99
Tmin = 0.374, Tmax = 0.444k = 1717
8531 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.4362P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3461 reflectionsΔρmax = 0.78 e Å3
126 parametersΔρmin = 1.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0778 (19)
Crystal data top
(C4H12N2)[CdCl4]·H2OV = 1200.86 (6) Å3
Mr = 360.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6204 (2) ŵ = 2.67 mm1
b = 12.8772 (3) ÅT = 295 K
c = 14.0961 (4) Å0.52 × 0.48 × 0.30 mm
β = 92.1710 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3461 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2903 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.444Rint = 0.037
8531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.78 e Å3
3461 reflectionsΔρmin = 1.75 e Å3
126 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.02921 (3)0.001890 (11)0.235463 (13)0.03178 (9)
Cl10.07520 (10)0.19208 (5)0.22725 (4)0.03972 (16)
Cl20.34472 (9)0.01950 (5)0.22883 (5)0.03628 (15)
Cl30.17473 (9)0.05843 (5)0.38740 (5)0.03822 (15)
Cl40.13421 (9)0.09489 (5)0.09660 (5)0.03906 (16)
N10.5582 (3)0.20385 (16)0.38723 (15)0.0312 (4)
N20.7142 (3)0.28658 (16)0.56419 (15)0.0321 (4)
C10.4546 (4)0.29108 (19)0.43473 (18)0.0358 (5)
H50.35090.26360.47460.043*
H60.38970.33550.38710.043*
C20.6036 (4)0.35402 (17)0.49466 (17)0.0343 (5)
H70.69910.38750.45400.041*
H80.53220.40770.52810.041*
C30.8195 (4)0.20021 (19)0.51588 (18)0.0345 (5)
H90.88790.15640.56290.041*
H100.92030.22850.47490.041*
C40.6703 (4)0.13687 (17)0.45821 (17)0.0318 (5)
H110.57520.10460.49980.038*
H120.74060.08220.42550.038*
O1W0.4133 (3)0.2110 (2)0.68116 (18)0.0644 (7)
H10.646 (5)0.232 (2)0.344 (2)0.038 (8)*
H20.461 (5)0.168 (3)0.357 (2)0.053 (9)*
H30.632 (5)0.255 (2)0.604 (2)0.040 (8)*
H40.803 (5)0.319 (2)0.592 (2)0.041 (8)*
H1W0.38880.14920.69620.080*
H2W0.31140.25060.67520.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03183 (12)0.03025 (13)0.03330 (13)0.00147 (6)0.00181 (8)0.00206 (6)
Cl10.0483 (4)0.0303 (3)0.0411 (3)0.0064 (2)0.0091 (3)0.0011 (2)
Cl20.0298 (3)0.0379 (3)0.0412 (3)0.0020 (2)0.0026 (2)0.0031 (2)
Cl30.0358 (3)0.0386 (3)0.0400 (3)0.0045 (2)0.0036 (2)0.0027 (2)
Cl40.0327 (3)0.0419 (3)0.0433 (3)0.0050 (2)0.0105 (2)0.0109 (3)
N10.0336 (11)0.0330 (10)0.0270 (10)0.0009 (8)0.0001 (8)0.0034 (8)
N20.0328 (11)0.0316 (10)0.0320 (10)0.0065 (8)0.0030 (8)0.0065 (8)
C10.0362 (13)0.0354 (12)0.0361 (13)0.0073 (10)0.0022 (10)0.0015 (10)
C20.0417 (14)0.0238 (10)0.0381 (13)0.0017 (9)0.0097 (10)0.0025 (9)
C30.0304 (12)0.0330 (11)0.0397 (13)0.0019 (9)0.0031 (10)0.0061 (10)
C40.0366 (12)0.0252 (10)0.0333 (12)0.0016 (9)0.0009 (9)0.0026 (9)
O1W0.0435 (13)0.0692 (14)0.0818 (18)0.0050 (11)0.0183 (12)0.0334 (13)
Geometric parameters (Å, º) top
Cd1—Cl32.4418 (6)C1—C21.510 (4)
Cd1—Cl42.4435 (6)C1—H50.9700
Cd1—Cl12.4712 (6)C1—H60.9700
Cd1—Cl22.4891 (7)C2—H70.9700
N1—C11.488 (3)C2—H80.9700
N1—C41.497 (3)C3—C41.497 (3)
N1—H10.93 (3)C3—H90.9700
N1—H20.89 (3)C3—H100.9700
N2—C21.482 (3)C4—H110.9700
N2—C31.491 (3)C4—H120.9700
N2—H30.89 (3)O1W—H1W0.84
N2—H40.81 (3)O1W—H2W0.85
Cl3—Cd1—Cl4115.19 (2)C2—C1—H6109.5
Cl3—Cd1—Cl1108.13 (2)H5—C1—H6108.1
Cl4—Cd1—Cl1115.38 (2)N2—C2—C1110.57 (19)
Cl3—Cd1—Cl2110.89 (2)N2—C2—H7109.5
Cl4—Cd1—Cl2103.07 (2)C1—C2—H7109.5
Cl1—Cd1—Cl2103.42 (2)N2—C2—H8109.5
C1—N1—C4111.06 (18)C1—C2—H8109.5
C1—N1—H2106 (2)H7—C2—H8108.1
C4—N1—H2111 (2)N2—C3—C4110.14 (19)
C1—N1—H1107.8 (18)N2—C3—H9109.6
C4—N1—H1111.2 (19)C4—C3—H9109.6
H1—N1—H2110 (3)N2—C3—H10109.6
C2—N2—C3111.28 (19)C4—C3—H10109.6
C2—N2—H3113 (2)H9—C3—H10108.1
C3—N2—H3104.5 (18)C3—C4—N1110.45 (19)
C2—N2—H4110 (2)C3—C4—H11109.6
C3—N2—H4106 (2)N1—C4—H11109.6
H3—N2—H4112 (3)C3—C4—H12109.6
N1—C1—C2110.8 (2)N1—C4—H12109.6
N1—C1—H5109.5H11—C4—H12108.1
C2—C1—H5109.5H1W—O1W—H2W116
N1—C1—H6109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.93 (3)2.35 (3)3.254 (2)164 (3)
N1—H2···Cl30.89 (3)2.41 (4)3.155 (2)141 (3)
N2—H3···O1W0.89 (3)1.93 (3)2.808 (3)167 (3)
N2—H4···Cl4ii0.81 (3)2.46 (3)3.190 (2)151 (3)
O1W—H1W···Cl2iii0.842.443.267 (3)168
O1W—H2W···Cl4iv0.852.543.304 (2)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H12N2)[CdCl4]·H2O
Mr360.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.6204 (2), 12.8772 (3), 14.0961 (4)
β (°) 92.1710 (12)
V3)1200.86 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.52 × 0.48 × 0.30
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.374, 0.444
No. of measured, independent and
observed [I > 2σ(I)] reflections
8531, 3461, 2903
Rint0.037
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.09
No. of reflections3461
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 1.75

Computer programs: Kappa-CCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.93 (3)2.35 (3)3.254 (2)164 (3)
N1—H2···Cl30.89 (3)2.41 (4)3.155 (2)141 (3)
N2—H3···O1W0.89 (3)1.93 (3)2.808 (3)167 (3)
N2—H4···Cl4ii0.81 (3)2.46 (3)3.190 (2)151 (3)
O1W—H1W···Cl2iii0.842.443.267 (3)168
O1W—H2W···Cl4iv0.852.543.304 (2)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEl Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Can. J. Anal. Sci. Spectrosc. 54, 282–291.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds