metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1191-m1192

Di-μ-but-2-enoato-bis­­[di­aqua­bis­(but-2-enoato)neodymium(III)] 2,6-di­amino­purine disolvate

aFacultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile, bDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile, and cDepartamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: baggio@cnea.gov.ar

(Received 15 July 2011; accepted 16 July 2011; online 2 August 2011)

The title Nd complex [Nd2(C4H5O2)6(H2O)4]·2C5H6N6 is isotypic with two previously reported Dy and Ho isologues. It is composed of [Nd(crot)3(H2O)2]2 dimers [crot(onate) = but-2-enoate = C4H5O2], built up around symmetry centres and completed by 2,6-diamine­purine mol­ecules acting as solvates. The neodymium cations are coordinated by three chelating crotonato units and two water mol­ecules. One of the chelating carboxyl­ates acts also in a bridging mode, sharing one oxygen with both cations, and the final result is a pair of NdO9 tricapped prismatic polyhedra linked to each other through a central (Nd—O)2 loop. A most attractive aspect of the structures resides in the existence of a complex inter­molecular hydrogen-bonding interaction scheme involving two sets of tightly inter­linked, non-inter­secting one-dimensional structures, one of them formed by the [Nd(crot)3(H2O)2]2 dimers running along [100] and the second by the solvate mol­ecules evolving along [010].

Related literature

For the Dy and Ho isologues, see: Atria et al. (2009[Atria, A. M., Astete, A., Garland, M. T. & Baggio, R. (2009). Acta Cryst. C65, m411-m414.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C4H5O2)6(H2O)4]·2C5H6N6

  • Mr = 1171.34

  • Triclinic, [P \overline 1]

  • a = 8.6441 (2) Å

  • b = 11.1173 (3) Å

  • c = 13.3944 (3) Å

  • α = 101.230 (9)°

  • β = 107.522 (11)°

  • γ = 106.591 (10)°

  • V = 1119.51 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 150 K

  • 0.24 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.57, Tmax = 0.72

  • 9674 measured reflections

  • 4941 independent reflections

  • 4663 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.07

  • 4941 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O22 0.88 1.92 2.784 (3) 167
N6—H6B⋯O12i 0.88 2.48 3.301 (4) 156
N6—H6A⋯N1ii 0.88 2.44 3.319 (4) 175
N2—H2A⋯N3iii 0.88 2.32 3.190 (4) 168
N2—H2B⋯O13iii 0.88 2.39 3.228 (4) 158
O1W—H1WB⋯O2Wiv 0.84 2.20 2.959 (3) 150
O1W—H1WA⋯O11v 0.85 1.89 2.699 (3) 158
O2W—H2WB⋯N7vi 0.85 1.81 2.656 (3) 177
O2W—H2WA⋯O12iv 0.84 1.84 2.665 (3) 165
C8—H8⋯O21vi 0.95 2.38 3.168 (4) 140
C23—H23⋯N7vii 0.95 2.60 3.521 (4) 163
C33—H33⋯N1iii 0.95 2.57 3.465 (4) 156
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x, -y, -z; (vi) -x+1, -y+1, -z; (vii) x-1, y-1, z.

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2002[Bruker (2002). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title Nd complex [C24H38Nd2O16, 2(C5H6N6)] is isomorphous to two previously reported Dy and Ho isologues (Atria et al., 2009) and its structure does not present any significant difference with the reported ones, for what much of the following discussion has already been made in the above refrenced paper. In the present Nd complex the three crotonate ligands do not depart from expected geometries, the middle double bonds C2nC3n (n=1,2,3) being distinctly shorter than the remaining two (mean values: <C1n—C2n>: 1.460 (4); <C2n—C3n>: 1.259 (5); <C3n—C4n>: 1.494 (5) Å), with the carboxylate ends presenting a significant resonance, as disclosed by the tight C—O span (1.231 (3)–1.268 (4) Å).

The dap molecule is planar within experimental error; and its overall geometry appears as featureless; the most attractive aspect of the molecule resides in its extreme involvement in H-bonding. In fact, the existence of a large number of efficient H-bonding donors and acceptors in the structure leads to a very complex intermolecular interaction scheme involving two sets of tightly interlinked, non intersecting H-bonded one-dimensional structures, one of them running along the crystallographic a direction and formed by the [Nd(crot)3(H2O)2]2 dimers; the second, evolving along b and formed by dap solvato molecules.

Both types of chains embed two sets of inversion centres. In the case of the dimeric chain shown in Fig.2, the same centre (site A1) which relates the two molecules in the dimer through a 4 atoms coordination loop also links them through a R22(8) H-bonded ring (Bernstein et al., 1995) almost at right angle to the former loop, viz., [(O11—Nd1—O1W—H1WA···)2] (in what follows, a 2 subindex in a loop formula will indicate duplication by centring and the ··· symbol, a H-bonding interaction). The second centre (site A2) inter-relates neighbouring dimers into chains through two centrosymmetric R22(8) motives (viz., [(O12—Nd1—O2W—H2WA···)2; (O2W—Nd1—O1W—H1WB···)2 respectively] and two, non centrosymmetric R22(6) ones flanking the former and involving just one neadimium cation each, namely (O12—Nd1—O1W—H1WB···O2W—H2WA···) and its centrosymmetric analogue.

A much simpler situation arises in the solvato chain (Fig. 3, hollow2 bonds in weak lining), which also contains two independent symmetry centres (noted as B1 and B2), and giving raise to just two, exactly similar centrosymmetric R22(8) motifs [(N3—C2—N2—H2A···)2. and (N1—C6—N6—H6A···)2]

The two perpendicular, non intersecting families of chains (the 'dimeric' one, running parallel to [100] at y z 0. and the 'solvato' one, parallel to [010] at x z 1/2) interact at their point of maximal approach through a variety of H-bonds in which there are donors and acceptors at both sides (Fig 3 and Table 1), and which determine four non-centrosymmetric (sites C1, C2, C3 and C4 in Fig. 3) and one centrosymmetric (site C5) H-bonded cycles, with Graph set descriptors R33(10); R44(14) (R22(7), R32(9) and R44(14), respectively.

There are also inter-dimeric interactions of the π···π type mediated by symmetry related crotonato double bonds, as in the case between C21C31 and its (-x, 1 - y, -z) image, characterized by an intercentroid distance of 3.547 (1) Å and a slippage angle of 25.3 (1)°. These interactions link along the [001] direction the dimeric chains which run along [100].

Related literature top

For the Dy and Ho isologues, see: Atria et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of Nd2O3 (1 mmol) and crotonic acid (3 mmol) was dissolved in water (100 mmol),followed by the addition of the 2,6-diaminopurine ligand (1 mmol) dissolved in methanol (10 ml). The resultant mixture was refluxed for 24 h, filtered while hot, and then concentrated to 25 ml. The filtrate was left at room temperature. On standing, colorless crystals suitable for single-crystal X-ray diffraction appeared, which were used without further processing.

Refinement top

All the H atoms were clearly seen in a difference Fourier; they were, however, further idealized at their expected positions and allowed to ride both in coordinates (C—H = 0.93–0.98, N–H = 0.88 Å), as well as in their isotropic displacement factors (Uiso(H) = 1.2/1.5× Uequiv(host).

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Ellipsoid plot of (1) drawn at a 40% probability level, with independent (symmetry related) atoms in bold (simple) bonds and filled (empty) ellipsoids. Symmetry codes: (i) -x, -y, -z.
[Figure 2] Fig. 2. : Packing view of (1) projected down c, showing the 'dimeric' chains and their internal H-bonding linkage (See text). For clarity, only the carboxylato end of the butenoate units have been drawn. Symmetry codes: (i) -x, -y, -z;.(v) -x + 1, -y, -z
[Figure 3] Fig. 3. : Packing view of (1) projected down a, showing on the projection plane (running vertically, in hollow bonds) the 'solvato' chains. Perpendicular to the latter and coming out of the plane (in bold, full bonds) the 'dimeric' chains. Intra- as well as inter-chain H-bonds shown in broken lines. For clarity, only the carboxylato end of the butenoate units have been drawn. Symmetry codes: (i) -x, -y, -z; (ii) x, y + 1, z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y, -z; (vi) -x + 1, -y + 1, -z; (vii) x - 1, y - 1, z.
Di-µ-but-2-enoato-bis[diaquabis(but-2-enoato)neodymium(III)] 2,6-diaminopurine disolvate top
Crystal data top
[Nd2(C4H5O2)6(H2O)4]·2C5H6N6Z = 1
Mr = 1171.34F(000) = 586
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6441 (2) ÅCell parameters from 4220 reflections
b = 11.1173 (3) Åθ = 1.9–25.7°
c = 13.3944 (3) ŵ = 2.37 mm1
α = 101.230 (9)°T = 150 K
β = 107.522 (11)°Block, colourless
γ = 106.591 (10)°0.24 × 0.20 × 0.14 mm
V = 1119.51 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4941 independent reflections
Radiation source: fine-focus sealed tube4663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
phi and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS;Bruker, 2002)
h = 1111
Tmin = 0.57, Tmax = 0.72k = 1314
9674 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.1713P]
where P = (Fo2 + 2Fc2)/3
4941 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Nd2(C4H5O2)6(H2O)4]·2C5H6N6γ = 106.591 (10)°
Mr = 1171.34V = 1119.51 (15) Å3
Triclinic, P1Z = 1
a = 8.6441 (2) ÅMo Kα radiation
b = 11.1173 (3) ŵ = 2.37 mm1
c = 13.3944 (3) ÅT = 150 K
α = 101.230 (9)°0.24 × 0.20 × 0.14 mm
β = 107.522 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4941 independent reflections
Absorption correction: multi-scan
(SADABS;Bruker, 2002)
4663 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.72Rint = 0.011
9674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.07Δρmax = 1.29 e Å3
4941 reflectionsΔρmin = 0.85 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.260333 (17)0.113788 (13)0.062493 (11)0.02382 (5)
O110.1168 (3)0.2601 (2)0.11102 (18)0.0352 (4)
O210.2709 (3)0.3212 (2)0.01582 (17)0.0359 (5)
C110.1849 (4)0.3454 (3)0.0708 (2)0.0305 (6)
C210.1654 (4)0.4734 (3)0.0913 (3)0.0398 (7)
H210.20100.53050.05140.048*
C310.1017 (5)0.5111 (4)0.1615 (3)0.0495 (9)
H310.06160.45020.19740.059*
C410.0853 (6)0.6405 (4)0.1915 (4)0.0722 (13)
H41A0.13150.69460.14990.108*
H41B0.15130.68500.27050.108*
H41C0.03790.62780.17410.108*
O120.5504 (3)0.1008 (2)0.16470 (18)0.0385 (5)
O220.5282 (3)0.2922 (2)0.19938 (18)0.0376 (5)
C120.6183 (4)0.2221 (3)0.2132 (2)0.0326 (6)
C220.8009 (5)0.2872 (5)0.2872 (3)0.0562 (10)
H220.83790.37790.32630.067*
C320.9095 (6)0.2381 (5)0.3037 (4)0.0692 (12)
H320.87560.14720.26630.083*
C421.0982 (6)0.3138 (8)0.3813 (5)0.116 (3)
H42A1.11070.40150.42230.174*
H42B1.17310.32280.33880.174*
H42C1.13280.26590.43300.174*
O130.2514 (3)0.0698 (2)0.23400 (17)0.0367 (5)
O230.0035 (2)0.02354 (19)0.09761 (15)0.0305 (4)
C130.0973 (3)0.0041 (3)0.1969 (2)0.0271 (5)
C230.0184 (4)0.0740 (3)0.2616 (2)0.0352 (6)
H230.10260.12640.22940.042*
C330.1062 (4)0.0674 (3)0.3606 (3)0.0392 (7)
H330.22430.00810.39370.047*
C430.0379 (5)0.1449 (4)0.4274 (3)0.0576 (10)
H43A0.08580.19910.38560.086*
H43B0.05120.08450.49600.086*
H43C0.10340.20200.44440.086*
O1W0.2282 (3)0.1192 (2)0.00386 (19)0.0403 (5)
H1WA0.12930.17710.04620.048*
H1WB0.30990.14660.00230.048*
O2W0.4103 (3)0.1137 (2)0.06425 (18)0.0369 (5)
H2WA0.40490.03840.09610.044*
H2WB0.41460.16210.10560.044*
N10.5071 (3)0.8157 (2)0.4590 (2)0.0354 (5)
C20.5012 (4)0.6968 (3)0.4716 (2)0.0352 (6)
N20.4739 (4)0.6752 (3)0.5609 (2)0.0506 (7)
H2A0.49280.60650.57760.061*
H2B0.52220.74820.61670.061*
N30.5160 (3)0.5994 (2)0.4061 (2)0.0338 (5)
C40.5414 (4)0.6308 (3)0.3204 (2)0.0300 (6)
C50.5486 (4)0.7467 (3)0.2965 (2)0.0304 (6)
C60.5307 (4)0.8426 (3)0.3711 (2)0.0319 (6)
N60.5395 (4)0.9612 (3)0.3599 (2)0.0425 (6)
H6A0.52201.01640.40810.051*
H6B0.53470.97340.29620.051*
N70.5774 (3)0.7426 (2)0.2006 (2)0.0359 (5)
C80.5872 (4)0.6272 (3)0.1702 (3)0.0373 (7)
H80.60580.59590.10520.045*
N90.5685 (3)0.5568 (2)0.2398 (2)0.0345 (5)
H90.57310.47780.23380.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02283 (8)0.02416 (8)0.02502 (8)0.00972 (6)0.00944 (6)0.00655 (6)
O110.0376 (11)0.0296 (10)0.0449 (12)0.0148 (9)0.0221 (10)0.0113 (9)
O210.0419 (12)0.0363 (11)0.0393 (11)0.0197 (9)0.0209 (10)0.0157 (9)
C110.0264 (13)0.0292 (14)0.0300 (14)0.0112 (11)0.0047 (11)0.0044 (11)
C210.0367 (16)0.0324 (16)0.0485 (18)0.0168 (13)0.0110 (14)0.0110 (14)
C310.048 (2)0.0411 (19)0.052 (2)0.0232 (16)0.0112 (16)0.0028 (16)
C410.071 (3)0.058 (3)0.078 (3)0.043 (2)0.012 (2)0.006 (2)
O120.0328 (11)0.0375 (12)0.0443 (12)0.0196 (9)0.0105 (9)0.0073 (10)
O220.0350 (11)0.0269 (10)0.0421 (12)0.0099 (9)0.0076 (9)0.0048 (9)
C120.0302 (14)0.0379 (16)0.0277 (14)0.0093 (12)0.0122 (11)0.0088 (12)
C220.0336 (18)0.075 (3)0.050 (2)0.0154 (18)0.0088 (16)0.0157 (19)
C320.052 (2)0.088 (3)0.064 (3)0.025 (2)0.018 (2)0.023 (2)
C420.039 (2)0.206 (8)0.091 (4)0.027 (3)0.008 (2)0.074 (5)
O130.0275 (10)0.0437 (12)0.0300 (10)0.0035 (9)0.0071 (8)0.0129 (9)
O230.0285 (10)0.0339 (10)0.0267 (10)0.0101 (8)0.0081 (8)0.0098 (8)
C130.0290 (13)0.0274 (13)0.0267 (13)0.0125 (11)0.0114 (11)0.0079 (11)
C230.0292 (14)0.0385 (16)0.0360 (15)0.0079 (12)0.0128 (12)0.0135 (13)
C330.0384 (16)0.0445 (18)0.0335 (16)0.0115 (14)0.0151 (13)0.0127 (14)
C430.062 (2)0.071 (3)0.045 (2)0.019 (2)0.0251 (18)0.0310 (19)
O1W0.0308 (11)0.0298 (11)0.0576 (14)0.0131 (9)0.0163 (10)0.0052 (10)
O2W0.0533 (13)0.0362 (11)0.0409 (12)0.0258 (10)0.0301 (10)0.0202 (9)
N10.0407 (14)0.0333 (13)0.0329 (13)0.0153 (11)0.0132 (11)0.0108 (10)
C20.0371 (15)0.0354 (15)0.0302 (14)0.0103 (13)0.0112 (12)0.0113 (12)
N20.076 (2)0.0489 (17)0.0386 (15)0.0263 (16)0.0296 (15)0.0204 (13)
N30.0387 (13)0.0323 (13)0.0314 (12)0.0118 (11)0.0132 (11)0.0141 (10)
C40.0281 (13)0.0278 (14)0.0297 (14)0.0076 (11)0.0087 (11)0.0074 (11)
C50.0295 (13)0.0283 (14)0.0311 (14)0.0077 (11)0.0103 (11)0.0107 (11)
C60.0303 (14)0.0289 (14)0.0343 (15)0.0098 (11)0.0097 (12)0.0107 (12)
N60.0630 (18)0.0351 (14)0.0426 (15)0.0268 (13)0.0256 (14)0.0179 (12)
N70.0424 (14)0.0322 (13)0.0364 (13)0.0124 (11)0.0186 (11)0.0137 (11)
C80.0430 (17)0.0349 (16)0.0358 (16)0.0118 (13)0.0201 (13)0.0104 (13)
N90.0401 (13)0.0293 (12)0.0363 (13)0.0136 (11)0.0162 (11)0.0106 (10)
Geometric parameters (Å, º) top
Nd1—O23i2.3912 (18)O23—Nd1i2.3912 (18)
Nd1—O112.415 (2)C13—C231.461 (4)
Nd1—O2W2.426 (2)C23—C331.290 (4)
Nd1—O132.459 (2)C23—H230.9500
Nd1—O222.462 (2)C33—C431.489 (5)
Nd1—O1W2.474 (2)C33—H330.9500
Nd1—O212.489 (2)C43—H43A0.9800
Nd1—O122.530 (2)C43—H43B0.9800
Nd1—O232.5402 (19)C43—H43C0.9800
O11—C111.268 (4)O1W—H1WA0.8474
O21—C111.238 (3)O1W—H1WB0.8415
C11—C211.463 (4)O2W—H2WA0.8435
C21—C311.286 (5)O2W—H2WB0.8453
C21—H210.9500N1—C61.328 (4)
C31—C411.475 (5)N1—C21.353 (4)
C31—H310.9500C2—N31.317 (4)
C41—H41A0.9800C2—N21.339 (4)
C41—H41B0.9800N2—H2A0.8800
C41—H41C0.9800N2—H2B0.8800
O12—C121.250 (4)N3—C41.323 (4)
O22—C121.250 (4)C4—N91.346 (4)
C12—C221.457 (4)C4—C51.376 (4)
C22—C321.202 (6)C5—N71.374 (4)
C22—H220.9500C5—C61.390 (4)
C32—C421.518 (6)C6—N61.339 (4)
C32—H320.9500N6—H6A0.8800
C42—H42A0.9800N6—H6B0.8800
C42—H42B0.9800N7—C81.303 (4)
C42—H42C0.9800C8—N91.346 (4)
O13—C131.231 (3)C8—H80.9500
O23—C131.269 (3)N9—H90.8800
O23i—Nd1—O1180.44 (7)C22—C32—C42123.4 (6)
O23i—Nd1—O2W86.10 (7)C22—C32—H32118.3
O11—Nd1—O2W128.71 (7)C42—C32—H32118.3
O23i—Nd1—O13118.74 (6)C32—C42—H42A109.5
O11—Nd1—O1381.64 (7)C32—C42—H42B109.5
O2W—Nd1—O13145.49 (7)H42A—C42—H42B109.5
O23i—Nd1—O22154.36 (7)C32—C42—H42C109.5
O11—Nd1—O2284.47 (7)H42A—C42—H42C109.5
O2W—Nd1—O2287.34 (8)H42B—C42—H42C109.5
O13—Nd1—O2278.97 (7)C13—O13—Nd197.38 (17)
O23i—Nd1—O1W77.04 (7)C13—O23—Nd1i155.29 (18)
O11—Nd1—O1W145.13 (7)C13—O23—Nd192.44 (16)
O2W—Nd1—O1W75.96 (7)Nd1i—O23—Nd1112.26 (7)
O13—Nd1—O1W86.25 (8)O13—C13—O23119.0 (3)
O22—Nd1—O1W125.07 (7)O13—C13—C23122.6 (3)
O23i—Nd1—O2182.11 (7)O23—C13—C23118.4 (2)
O11—Nd1—O2152.48 (7)C33—C23—C13122.7 (3)
O2W—Nd1—O2176.82 (7)C33—C23—H23118.6
O13—Nd1—O21126.93 (7)C13—C23—H23118.6
O22—Nd1—O2172.27 (7)C23—C33—C43125.5 (3)
O1W—Nd1—O21146.56 (8)C23—C33—H33117.3
O23i—Nd1—O12147.82 (7)C43—C33—H33117.3
O11—Nd1—O12131.72 (7)C33—C43—H43A109.5
O2W—Nd1—O1274.11 (7)C33—C43—H43B109.5
O13—Nd1—O1272.59 (7)H43A—C43—H43B109.5
O22—Nd1—O1251.36 (7)C33—C43—H43C109.5
O1W—Nd1—O1273.72 (7)H43A—C43—H43C109.5
O21—Nd1—O12116.47 (7)H43B—C43—H43C109.5
O23i—Nd1—O2367.74 (7)Nd1—O1W—H1WA120.1
O11—Nd1—O2373.71 (7)Nd1—O1W—H1WB125.9
O2W—Nd1—O23143.16 (7)H1WA—O1W—H1WB112.2
O13—Nd1—O2351.01 (6)Nd1—O2W—H2WA114.2
O22—Nd1—O23127.16 (7)Nd1—O2W—H2WB125.8
O1W—Nd1—O2373.26 (7)H2WA—O2W—H2WB110.5
O21—Nd1—O23121.93 (6)C6—N1—C2118.7 (3)
O12—Nd1—O23115.04 (7)N3—C2—N2116.3 (3)
C11—O11—Nd194.84 (16)N3—C2—N1128.0 (3)
C11—O21—Nd192.12 (17)N2—C2—N1115.7 (3)
O21—C11—O11119.9 (3)C2—N2—H2A116.1
O21—C11—C21119.9 (3)C2—N2—H2B111.5
O11—C11—C21120.1 (3)H2A—N2—H2B114.5
C31—C21—C11122.2 (3)C2—N3—C4111.3 (3)
C31—C21—H21118.9N3—C4—N9127.0 (3)
C11—C21—H21118.9N3—C4—C5127.0 (3)
C21—C31—C41125.9 (4)N9—C4—C5105.9 (3)
C21—C31—H31117.0N7—C5—C4109.9 (3)
C41—C31—H31117.0N7—C5—C6133.2 (3)
C31—C41—H41A109.5C4—C5—C6116.8 (3)
C31—C41—H41B109.5N1—C6—N6118.6 (3)
H41A—C41—H41B109.5N1—C6—C5118.1 (3)
C31—C41—H41C109.5N6—C6—C5123.3 (3)
H41A—C41—H41C109.5C6—N6—H6A119.2
H41B—C41—H41C109.5C6—N6—H6B118.3
C12—O12—Nd192.73 (17)H6A—N6—H6B120.5
C12—O22—Nd195.96 (17)C8—N7—C5104.0 (2)
O22—C12—O12119.8 (3)N7—C8—N9113.4 (3)
O22—C12—C22117.6 (3)N7—C8—H8123.3
O12—C12—C22122.6 (3)N9—C8—H8123.3
C32—C22—C12126.7 (5)C8—N9—C4106.7 (3)
C32—C22—H22116.6C8—N9—H9126.7
C12—C22—H22116.6C4—N9—H9126.7
O23i—Nd1—O11—C1191.82 (17)O21—Nd1—O13—C13106.38 (18)
O2W—Nd1—O11—C1114.7 (2)O12—Nd1—O13—C13143.22 (19)
O13—Nd1—O11—C11147.00 (17)O23—Nd1—O13—C132.32 (16)
O22—Nd1—O11—C1167.38 (17)O23i—Nd1—O23—C13179.2 (2)
O1W—Nd1—O11—C11142.05 (17)O11—Nd1—O23—C1394.62 (16)
O21—Nd1—O11—C114.47 (15)O2W—Nd1—O23—C13131.21 (16)
O12—Nd1—O11—C1189.43 (18)O13—Nd1—O23—C132.24 (15)
O23—Nd1—O11—C11161.28 (18)O22—Nd1—O23—C1324.95 (18)
O23i—Nd1—O21—C1188.54 (17)O1W—Nd1—O23—C1396.72 (16)
O11—Nd1—O21—C114.57 (16)O21—Nd1—O23—C13116.22 (16)
O2W—Nd1—O21—C11176.36 (18)O12—Nd1—O23—C1334.34 (17)
O13—Nd1—O21—C1131.7 (2)O23i—Nd1—O23—Nd1i0.0
O22—Nd1—O21—C1192.21 (17)O11—Nd1—O23—Nd1i86.13 (9)
O1W—Nd1—O21—C11140.16 (17)O2W—Nd1—O23—Nd1i48.03 (14)
O12—Nd1—O21—C11119.15 (17)O13—Nd1—O23—Nd1i178.52 (13)
O23—Nd1—O21—C1131.01 (19)O22—Nd1—O23—Nd1i155.80 (7)
Nd1—O21—C11—O118.0 (3)O1W—Nd1—O23—Nd1i82.53 (9)
Nd1—O21—C11—C21170.7 (2)O21—Nd1—O23—Nd1i64.54 (10)
Nd1—O11—C11—O218.2 (3)O12—Nd1—O23—Nd1i144.91 (8)
Nd1—O11—C11—C21170.4 (2)Nd1—O13—C13—O234.1 (3)
O21—C11—C21—C31168.8 (3)Nd1—O13—C13—C23174.0 (2)
O11—C11—C21—C319.8 (5)Nd1i—O23—C13—O13177.7 (3)
C11—C21—C31—C41176.8 (3)Nd1—O23—C13—O134.0 (3)
O23i—Nd1—O12—C12151.90 (16)Nd1i—O23—C13—C234.1 (6)
O11—Nd1—O12—C1230.4 (2)Nd1—O23—C13—C23174.3 (2)
O2W—Nd1—O12—C1297.70 (18)O13—C13—C23—C332.9 (5)
O13—Nd1—O12—C1291.49 (18)O23—C13—C23—C33175.2 (3)
O22—Nd1—O12—C121.83 (16)C13—C23—C33—C43174.3 (3)
O1W—Nd1—O12—C12177.35 (19)C6—N1—C2—N30.1 (5)
O21—Nd1—O12—C1231.69 (19)C6—N1—C2—N2178.9 (3)
O23—Nd1—O12—C12120.53 (17)N2—C2—N3—C4179.6 (3)
O23i—Nd1—O22—C12145.16 (18)N1—C2—N3—C40.8 (5)
O11—Nd1—O22—C12160.82 (18)C2—N3—C4—N9177.3 (3)
O2W—Nd1—O22—C1269.88 (18)C2—N3—C4—C51.5 (4)
O13—Nd1—O22—C1278.28 (18)N3—C4—C5—N7179.9 (3)
O1W—Nd1—O22—C120.9 (2)N9—C4—C5—N70.9 (3)
O21—Nd1—O22—C12146.88 (19)N3—C4—C5—C61.4 (4)
O12—Nd1—O22—C121.84 (16)N9—C4—C5—C6177.6 (3)
O23—Nd1—O22—C1296.09 (18)C2—N1—C6—N6178.8 (3)
Nd1—O22—C12—O123.4 (3)C2—N1—C6—C50.2 (4)
Nd1—O22—C12—C22176.9 (3)N7—C5—C6—N1178.5 (3)
Nd1—O12—C12—O223.3 (3)C4—C5—C6—N10.4 (4)
Nd1—O12—C12—C22177.1 (3)N7—C5—C6—N60.1 (5)
O22—C12—C22—C32173.8 (4)C4—C5—C6—N6178.2 (3)
O12—C12—C22—C326.5 (6)C4—C5—N7—C80.2 (3)
C12—C22—C32—C42179.2 (4)C6—C5—N7—C8178.0 (3)
O23i—Nd1—O13—C133.9 (2)C5—N7—C8—N90.6 (4)
O11—Nd1—O13—C1378.10 (18)N7—C8—N9—C41.1 (4)
O2W—Nd1—O13—C13127.48 (18)N3—C4—N9—C8179.8 (3)
O22—Nd1—O13—C13164.05 (19)C5—C4—N9—C81.2 (3)
O1W—Nd1—O13—C1369.12 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.922.784 (3)167
N6—H6B···O12ii0.882.483.301 (4)156
N6—H6A···N1iii0.882.443.319 (4)175
N2—H2A···N3iv0.882.323.190 (4)168
N2—H2B···O13iv0.882.393.228 (4)158
O1W—H1WB···O2Wv0.842.202.959 (3)150
O1W—H1WA···O11i0.851.892.699 (3)158
O2W—H2WB···N7vi0.851.812.656 (3)177
O2W—H2WA···O12v0.841.842.665 (3)165
C8—H8···O21vi0.952.383.168 (4)140
C23—H23···N7vii0.952.603.521 (4)163
C33—H33···N1iv0.952.573.465 (4)156
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Nd2(C4H5O2)6(H2O)4]·2C5H6N6
Mr1171.34
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6441 (2), 11.1173 (3), 13.3944 (3)
α, β, γ (°)101.230 (9), 107.522 (11), 106.591 (10)
V3)1119.51 (15)
Z1
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.24 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS;Bruker, 2002)
Tmin, Tmax0.57, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
9674, 4941, 4663
Rint0.011
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.07
No. of reflections4941
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.85

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SAINT-NT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O220.881.922.784 (3)166.9
N6—H6B···O12i0.882.483.301 (4)156.3
N6—H6A···N1ii0.882.443.319 (4)175.2
N2—H2A···N3iii0.882.323.190 (4)168.0
N2—H2B···O13iii0.882.393.228 (4)158.3
O1W—H1WB···O2Wiv0.842.202.959 (3)149.6
O1W—H1WA···O11v0.851.892.699 (3)158.4
O2W—H2WB···N7vi0.851.812.656 (3)176.5
O2W—H2WA···O12iv0.841.842.665 (3)164.9
C8—H8···O21vi0.952.383.168 (4)139.8
C23—H23···N7vii0.952.603.521 (4)163.4
C33—H33···N1iii0.952.573.465 (4)156.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) x1, y1, z.
 

Acknowledgements

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge license to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). We also acknowledge funding under project Fondecyt 1110154.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtria, A. M., Astete, A., Garland, M. T. & Baggio, R. (2009). Acta Cryst. C65, m411–m414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1191-m1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds