organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Methyl-4,5-di­hydro-1H-benzo[g]indazol-1-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title compound, C18H17N3O2S, the aromatic ring bearing the sulfamide unit is aligned at 61.65 (1)° with respect to the pyrrole ring; its amino group forms N—H⋯N and N—H⋯O hydrogen bonds to neighboring mol­ecules, generating sheets in the ac plane.

Related literature

For the crystal structure of a pyrrole synthesized using 2-acetyl­tetra­lone as a reactant, see: Portilla et al. (2007[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o458-o461.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O2S

  • Mr = 339.41

  • Monoclinic, P 21 /n

  • a = 4.8838 (1) Å

  • b = 27.3894 (4) Å

  • c = 12.2399 (2) Å

  • β = 94.738 (1)°

  • V = 1631.67 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.600, Tmax = 0.703

  • 11808 measured reflections

  • 3255 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.184

  • S = 1.11

  • 3255 reflections

  • 226 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 (1) 2.05 (1) 2.925 (4) 173 (5)
N1—H2⋯O2ii 0.88 (1) 1.95 (2) 2.806 (4) 165 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among the wide range of compounds tested for medicinal properties, the compounds having the benzenesulfonamide unit that is grafted to pyrazoles, a class of chemotherapeutically active heterocycles, are expected to exhibit enhanced activity. The ketone, 2-acetyl-tetralone, condenses with a variety of primary amines such as 5-amino-3-methyl-1H-pyrazole and 5-amino-3-tert-butyl-1H-pyrazole (Portilla et al., 2007). However, with 4-hydrazinobenzenesulfamide, the ketone yields a conventional Schiff base that cyclizes to form a pyrazole in a one-pot synthesis. In C18H17N3O2S (Scheme I), the benzene and pyrrole rings that are fused to a central cyclohexadiene ring are somewhat twisted owing to the –CH2CH2– fragment of the cyclohexadiene ring (dihedral angle between benzene and pyrrole rings is 17.3 (2) °. The benzene ring bearing the sulfamide unit is aligned at 61.6 (1) ° with respect to the pyrrole ring; its amino group is hydrogen-bond donor to the acceptor sites of neighboring molecules to generating sheets in the ac-plane (Table 1).

Related literature top

For the crystal structure of a pyrrole synthesized using 2-acetyltetralone as a reactant, see: Portilla et al. (2007).

Experimental top

2-Acetyl-1-tetralone (1.88 g, 10 mmol) in ethanol (50 ml) condensed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g,10 mmol) by heating the reactants for 2 h. The mixture was allowed to cool, and the solid material was collected and recrystallized from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H atoms were located in a difference Fourier, and were refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

As the two oxygen atoms showed somewhat elongated ellipsoids, their anisotropic temperature factors were restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C18H17N3O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(3-Methyl-4,5-dihydro-1H-benzo[g]indazol-1-yl)benzenesulfonamide top
Crystal data top
C18H17N3O2SF(000) = 712
Mr = 339.41Dx = 1.382 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7385 reflections
a = 4.8838 (1) Åθ = 3.2–74.2°
b = 27.3894 (4) ŵ = 1.89 mm1
c = 12.2399 (2) ÅT = 100 K
β = 94.738 (1)°Prism, orange brown
V = 1631.67 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3255 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3166 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.2°
ω scansh = 36
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3433
Tmin = 0.600, Tmax = 0.703l = 1415
11808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0755P)2 + 3.2939P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.70 e Å3
14 restraintsΔρmin = 0.65 e Å3
Crystal data top
C18H17N3O2SV = 1631.67 (5) Å3
Mr = 339.41Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.8838 (1) ŵ = 1.89 mm1
b = 27.3894 (4) ÅT = 100 K
c = 12.2399 (2) Å0.30 × 0.25 × 0.20 mm
β = 94.738 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3255 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3166 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.703Rint = 0.018
11808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06814 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.70 e Å3
3255 reflectionsΔρmin = 0.65 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89421 (18)0.67458 (3)0.78209 (7)0.0424 (3)
O10.8478 (8)0.63001 (10)0.8387 (2)0.0718 (11)
O21.1649 (6)0.69481 (19)0.7792 (3)0.0936 (15)
N10.7213 (6)0.71611 (10)0.8343 (2)0.0316 (6)
N20.4538 (6)0.64587 (9)0.3184 (2)0.0325 (6)
N30.2861 (7)0.68173 (10)0.2717 (2)0.0430 (8)
C10.4586 (7)0.60588 (11)0.2510 (2)0.0286 (6)
C20.6045 (6)0.55949 (10)0.2675 (2)0.0260 (6)
C30.8268 (6)0.55121 (11)0.3446 (2)0.0287 (6)
H30.89450.57710.39090.034*
C40.9494 (7)0.50567 (12)0.3544 (2)0.0338 (7)
H41.10120.50040.40680.041*
C50.8501 (7)0.46774 (12)0.2875 (3)0.0348 (7)
H50.92950.43610.29570.042*
C60.6338 (7)0.47599 (11)0.2082 (2)0.0305 (7)
H60.56980.45000.16160.037*
C70.5095 (6)0.52151 (11)0.1959 (2)0.0260 (6)
C80.2724 (7)0.53032 (12)0.1096 (2)0.0312 (7)
H8A0.09750.52350.14230.037*
H8B0.28750.50700.04860.037*
C90.2622 (8)0.58217 (12)0.0634 (2)0.0373 (8)
H9A0.41250.58700.01490.045*
H9B0.08500.58780.01990.045*
C100.2932 (7)0.61727 (12)0.1578 (2)0.0340 (7)
C110.1879 (8)0.66404 (13)0.1747 (3)0.0407 (8)
C120.0164 (11)0.69262 (15)0.1018 (4)0.0586 (12)
H12A0.06830.72220.13990.088*
H12B0.18020.67260.08360.088*
H12C0.06600.70160.03430.088*
C130.5657 (7)0.65231 (11)0.4290 (2)0.0293 (7)
C140.7437 (8)0.69042 (14)0.4540 (3)0.0435 (9)
H140.79410.71180.39790.052*
C150.8491 (8)0.69741 (14)0.5616 (3)0.0462 (9)
H150.97280.72350.57980.055*
C160.7714 (7)0.66571 (12)0.6426 (3)0.0316 (7)
C170.5945 (7)0.62796 (12)0.6171 (3)0.0344 (7)
H170.54360.60650.67290.041*
C180.4900 (7)0.62110 (12)0.5098 (3)0.0333 (7)
H180.36640.59500.49170.040*
H10.756 (10)0.7464 (7)0.815 (4)0.061 (14)*
H20.547 (3)0.7076 (14)0.829 (3)0.041 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0376 (5)0.0539 (6)0.0321 (5)0.0161 (4)0.0181 (3)0.0213 (4)
O10.134 (3)0.0376 (14)0.0361 (14)0.0337 (17)0.0418 (17)0.0086 (11)
O20.0354 (16)0.172 (4)0.072 (2)0.001 (2)0.0045 (15)0.070 (3)
N10.0401 (16)0.0257 (13)0.0280 (13)0.0022 (11)0.0041 (11)0.0051 (10)
N20.0532 (17)0.0240 (12)0.0185 (12)0.0055 (11)0.0070 (11)0.0000 (9)
N30.069 (2)0.0290 (14)0.0290 (15)0.0111 (14)0.0105 (14)0.0018 (11)
C10.0418 (17)0.0252 (14)0.0182 (13)0.0001 (12)0.0021 (12)0.0003 (11)
C20.0346 (16)0.0257 (14)0.0173 (13)0.0009 (12)0.0006 (11)0.0018 (11)
C30.0326 (16)0.0316 (15)0.0210 (14)0.0013 (12)0.0039 (11)0.0035 (11)
C40.0394 (18)0.0405 (17)0.0208 (14)0.0080 (14)0.0018 (12)0.0006 (12)
C50.0451 (19)0.0299 (15)0.0296 (16)0.0081 (14)0.0041 (14)0.0006 (12)
C60.0451 (18)0.0264 (14)0.0203 (14)0.0047 (13)0.0041 (12)0.0035 (11)
C70.0313 (15)0.0293 (14)0.0175 (13)0.0038 (12)0.0024 (11)0.0023 (11)
C80.0371 (17)0.0366 (16)0.0189 (14)0.0040 (13)0.0039 (12)0.0048 (12)
C90.051 (2)0.0397 (18)0.0191 (14)0.0002 (15)0.0066 (13)0.0019 (13)
C100.0474 (19)0.0321 (16)0.0211 (14)0.0003 (14)0.0058 (13)0.0024 (12)
C110.059 (2)0.0350 (17)0.0256 (16)0.0056 (16)0.0105 (15)0.0034 (13)
C120.083 (3)0.043 (2)0.044 (2)0.016 (2)0.026 (2)0.0050 (17)
C130.0408 (17)0.0245 (14)0.0211 (14)0.0039 (12)0.0056 (12)0.0041 (11)
C140.057 (2)0.0407 (19)0.0329 (18)0.0142 (17)0.0063 (16)0.0043 (15)
C150.046 (2)0.049 (2)0.044 (2)0.0169 (17)0.0021 (16)0.0193 (17)
C160.0301 (16)0.0381 (16)0.0248 (15)0.0071 (13)0.0074 (12)0.0104 (12)
C170.0456 (19)0.0330 (16)0.0227 (15)0.0008 (14)0.0085 (13)0.0001 (12)
C180.0418 (18)0.0312 (15)0.0247 (15)0.0050 (13)0.0098 (13)0.0008 (12)
Geometric parameters (Å, º) top
S1—O11.431 (3)C7—C81.521 (4)
S1—O21.437 (4)C8—C91.528 (5)
S1—N11.582 (3)C8—H8A0.9900
S1—C161.778 (3)C8—H8B0.9900
N1—H10.882 (11)C9—C101.502 (4)
N1—H20.880 (11)C9—H9A0.9900
N2—N31.373 (4)C9—H9B0.9900
N2—C11.372 (4)C10—C111.402 (5)
N2—C131.428 (4)C11—C121.503 (5)
N3—C111.334 (5)C12—H12A0.9800
C1—C101.377 (4)C12—H12B0.9800
C1—C21.463 (4)C12—H12C0.9800
C2—C71.413 (4)C13—C141.377 (5)
C2—C31.398 (4)C13—C181.381 (4)
C3—C41.385 (4)C14—C151.387 (5)
C3—H30.9500C14—H140.9500
C4—C51.385 (5)C15—C161.395 (5)
C4—H40.9500C15—H150.9500
C5—C61.392 (5)C16—C171.367 (5)
C5—H50.9500C17—C181.382 (4)
C6—C71.390 (4)C17—H170.9500
C6—H60.9500C18—H180.9500
O1—S1—O2121.6 (3)C9—C8—H8B108.8
O1—S1—N1107.85 (18)H8A—C8—H8B107.7
O2—S1—N1104.8 (2)C10—C9—C8108.2 (2)
O1—S1—C16107.07 (16)C10—C9—H9A110.1
O2—S1—C16105.50 (19)C8—C9—H9A110.1
N1—S1—C16109.67 (15)C10—C9—H9B110.1
S1—N1—H1116 (3)C8—C9—H9B110.1
S1—N1—H2109 (3)H9A—C9—H9B108.4
H1—N1—H2116 (4)C1—C10—C11106.4 (3)
N3—N2—C1111.1 (2)C1—C10—C9120.5 (3)
N3—N2—C13118.3 (2)C11—C10—C9133.1 (3)
C1—N2—C13130.1 (3)N3—C11—C10110.7 (3)
C11—N3—N2105.6 (3)N3—C11—C12120.8 (3)
N2—C1—C10106.2 (3)C10—C11—C12128.5 (3)
N2—C1—C2130.0 (3)C11—C12—H12A109.5
C10—C1—C2123.8 (3)C11—C12—H12B109.5
C7—C2—C3119.8 (3)H12A—C12—H12B109.5
C7—C2—C1115.0 (3)C11—C12—H12C109.5
C3—C2—C1125.2 (3)H12A—C12—H12C109.5
C4—C3—C2120.7 (3)H12B—C12—H12C109.5
C4—C3—H3119.6C14—C13—C18120.8 (3)
C2—C3—H3119.6C14—C13—N2119.3 (3)
C5—C4—C3119.8 (3)C18—C13—N2119.9 (3)
C5—C4—H4120.1C13—C14—C15119.6 (3)
C3—C4—H4120.1C13—C14—H14120.2
C4—C5—C6119.9 (3)C15—C14—H14120.2
C4—C5—H5120.1C14—C15—C16119.2 (3)
C6—C5—H5120.1C14—C15—H15120.4
C7—C6—C5121.4 (3)C16—C15—H15120.4
C7—C6—H6119.3C17—C16—C15120.8 (3)
C5—C6—H6119.3C17—C16—S1118.7 (3)
C6—C7—C2118.4 (3)C15—C16—S1120.5 (3)
C6—C7—C8121.2 (3)C16—C17—C18119.8 (3)
C2—C7—C8120.4 (3)C16—C17—H17120.1
C7—C8—C9113.8 (3)C18—C17—H17120.1
C7—C8—H8A108.8C17—C18—C13119.8 (3)
C9—C8—H8A108.8C17—C18—H18120.1
C7—C8—H8B108.8C13—C18—H18120.1
C1—N2—N3—C110.4 (4)C8—C9—C10—C134.6 (4)
C13—N2—N3—C11173.2 (3)C8—C9—C10—C11147.1 (4)
N3—N2—C1—C101.3 (4)N2—N3—C11—C100.7 (4)
C13—N2—C1—C10173.0 (3)N2—N3—C11—C12177.0 (4)
N3—N2—C1—C2179.2 (3)C1—C10—C11—N31.5 (4)
C13—N2—C1—C27.5 (6)C9—C10—C11—N3177.0 (4)
N2—C1—C2—C7163.9 (3)C1—C10—C11—C12176.0 (4)
C10—C1—C2—C716.6 (5)C9—C10—C11—C125.5 (7)
N2—C1—C2—C317.6 (5)N3—N2—C13—C1463.9 (5)
C10—C1—C2—C3161.8 (3)C1—N2—C13—C14124.9 (4)
C7—C2—C3—C42.2 (5)N3—N2—C13—C18114.7 (4)
C1—C2—C3—C4179.4 (3)C1—N2—C13—C1856.5 (5)
C2—C3—C4—C50.4 (5)C18—C13—C14—C150.2 (6)
C3—C4—C5—C62.2 (5)N2—C13—C14—C15178.8 (3)
C4—C5—C6—C71.5 (5)C13—C14—C15—C160.3 (6)
C5—C6—C7—C21.1 (5)C14—C15—C16—C170.3 (6)
C5—C6—C7—C8179.7 (3)C14—C15—C16—S1178.1 (3)
C3—C2—C7—C62.9 (4)O1—S1—C16—C1718.0 (3)
C1—C2—C7—C6178.5 (3)O2—S1—C16—C17148.8 (3)
C3—C2—C7—C8178.5 (3)N1—S1—C16—C1798.8 (3)
C1—C2—C7—C80.1 (4)O1—S1—C16—C15163.6 (3)
C6—C7—C8—C9148.2 (3)O2—S1—C16—C1532.7 (4)
C2—C7—C8—C933.2 (4)N1—S1—C16—C1579.7 (3)
C7—C8—C9—C1048.0 (4)C15—C16—C17—C180.3 (5)
N2—C1—C10—C111.6 (4)S1—C16—C17—C18178.2 (3)
C2—C1—C10—C11178.8 (3)C16—C17—C18—C130.2 (5)
N2—C1—C10—C9177.1 (3)C14—C13—C18—C170.2 (5)
C2—C1—C10—C92.5 (5)N2—C13—C18—C17178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (1)2.05 (1)2.925 (4)173 (5)
N1—H2···O2ii0.88 (1)1.95 (2)2.806 (4)165 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H17N3O2S
Mr339.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.8838 (1), 27.3894 (4), 12.2399 (2)
β (°) 94.738 (1)
V3)1631.67 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.89
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.600, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
11808, 3255, 3166
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.184, 1.11
No. of reflections3255
No. of parameters226
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.65

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (1)2.05 (1)2.925 (4)173 (5)
N1—H2···O2ii0.88 (1)1.95 (2)2.806 (4)165 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o458–o461.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds