organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl [(S)-1-phenylpropanamido]­phosphate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and cDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 12 August 2011; accepted 22 August 2011; online 27 August 2011)

The title compound, C21H22NO3P, was synthesized from the reaction of (C6H5O)2P(O)(Cl) and S-1-phenyl­propyl­amine (1:2 mole ratio) at 273 K, followed by removal of the S-1-phenyl­propyl­amine hydro­chloride by-product by dissolving in H2O. The P atom is located in a distorted tetra­hedral environment. The bond angles at the P atom vary from 99.51 (12) to 116.68 (12)°. The sp2 character of the N atom is reflected by the C—N—P angle [120.9 (2)°]. The P=O group and the N—H unit adopt an anti orientation with respect to one another. In the crystal, adjacent mol­ecules are linked via N—H⋯O(P) hydrogen bonds into a one-dimensional arrangement running parallel to the a axis.

Related literature

For background literature on phospho­ramidates having a C(=O)NHP(=O) skeleton, and the hydrogen-bond patterns and strengths, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]); Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For a related phospho­ramidate with a P(=O)(O)2(N) skeleton, and its bond lengths and angles, see: Pourayoubi et al. (2010[Pourayoubi, M., Eshtiagh-Hosseini, H., Zargaran, P. & Divjakovic, V. (2010). Acta Cryst. E66, o204.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22NO3P

  • Mr = 367.37

  • Orthorhombic, P 21 21 21

  • a = 5.4853 (3) Å

  • b = 8.1450 (11) Å

  • c = 41.162 (4) Å

  • V = 1839.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.981, Tmax = 1.000

  • 4914 measured reflections

  • 3000 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.089

  • S = 1.07

  • 3000 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1052 Friedel pairs

  • Flack parameter: −0.09 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.84 (1) 2.25 (1) 3.077 (3) 167 (3)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In recently published papers concerning phosphoramidate compounds having a C(O)NHP(O)(N)2 skeleton, the hydrogen bonds pattern (Toghraee et al., 2011) and strengths (Pourayoubi et al., 2011) were analyzed. In our continuing interest, we collected the structural data related to a new compound with a P(O)(O)2(N) skeleton belonging to the phosphoramide family.

The molecular structure of the title compound is given in Fig. 1. The PO, P—O and P—N bond lengths and the C—N—P and C—O—P angles are standard for this category of phosphoramidate compounds (Pourayoubi et al., 2010).

In the crystal structure, molecules are linked via N—H···O(P) hydrogen bonds into extended chains running parallel to the a axis (Table 1, Fig. 2).

Related literature top

For background literature on phosphoramidates having a C(O)NHP(O) skeleton, and the hydrogen-bond patterns and strengths, see: Toghraee et al. (2011); Pourayoubi et al. (2011). For a related phosphoramidate with a P(O)(O)2(N) skeleton, and its bond lengths and angles, see: Pourayoubi et al. (2010).

Experimental top

To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of S-1-phenylpropylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h of stirring, the solvent was removed and the obtained solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CHCl3/n-C7H16 after slow evaporation at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and treated as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atom was located in a difference Fourier map and its coordinates were refined using restraint on the N—H distance (0.85 (1) Å) with Uiso = 1.5Ueq(N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound with the hydrogen bonds shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).
Diphenyl [(S)-1-phenylpropanamido]phosphate top
Crystal data top
C21H22NO3PF(000) = 776
Mr = 367.37Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1550 reflections
a = 5.4853 (3) Åθ = 3.2–27.6°
b = 8.1450 (11) ŵ = 0.17 mm1
c = 41.162 (4) ÅT = 120 K
V = 1839.0 (3) Å3Plate, colorless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
3000 independent reflections
Radiation source: Enhance (Mo) X-ray Source2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 56
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 95
Tmin = 0.981, Tmax = 1.000l = 4848
4914 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.0316P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3000 reflectionsΔρmax = 0.41 e Å3
239 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 1052 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (14)
Crystal data top
C21H22NO3PV = 1839.0 (3) Å3
Mr = 367.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4853 (3) ŵ = 0.17 mm1
b = 8.1450 (11) ÅT = 120 K
c = 41.162 (4) Å0.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
3000 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2404 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1.000Rint = 0.029
4914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.41 e Å3
S = 1.07Δρmin = 0.42 e Å3
3000 reflectionsAbsolute structure: Flack (1983), 1052 Friedel pairs
239 parametersAbsolute structure parameter: 0.09 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.02848 (15)0.21930 (11)0.13952 (2)0.0144 (2)
O11.0319 (4)0.2594 (3)0.10191 (4)0.0190 (6)
O20.9231 (4)0.3876 (2)0.15288 (5)0.0159 (5)
O31.2652 (4)0.1671 (2)0.15233 (5)0.0168 (6)
N10.8109 (5)0.0886 (3)0.14460 (7)0.0122 (6)
H10.664 (2)0.118 (3)0.1438 (7)0.018*
C11.2275 (6)0.3148 (4)0.08300 (8)0.0138 (8)
C21.4066 (6)0.4158 (4)0.09534 (8)0.0175 (8)
H2A1.40620.44770.11750.021*
C31.5882 (6)0.4694 (4)0.07423 (8)0.0193 (9)
H3B1.71510.53780.08220.023*
C41.5863 (7)0.4244 (4)0.04181 (9)0.0237 (9)
H4A1.70920.46350.02750.028*
C51.4054 (6)0.3227 (4)0.03045 (8)0.0239 (9)
H5A1.40440.29090.00820.029*
C61.2250 (6)0.2665 (4)0.05106 (7)0.0186 (8)
H6A1.10100.19540.04320.022*
C70.8931 (6)0.4166 (4)0.18657 (8)0.0147 (8)
C81.0704 (7)0.5046 (4)0.20239 (8)0.0232 (9)
H8A1.21410.53780.19130.028*
C91.0358 (7)0.5446 (4)0.23511 (8)0.0270 (9)
H9A1.15750.60450.24650.032*
C100.8268 (7)0.4975 (4)0.25076 (9)0.0277 (10)
H10A0.80300.52500.27300.033*
C110.6510 (7)0.4101 (4)0.23415 (8)0.0220 (9)
H11A0.50620.37770.24510.026*
C120.6827 (6)0.3689 (4)0.20180 (8)0.0170 (8)
H12A0.56110.30900.19040.020*
C130.6168 (7)0.1630 (4)0.18811 (7)0.0273 (10)
H13A0.49180.23740.19660.041*
H13B0.57150.04930.19300.041*
H13C0.77400.18820.19830.041*
C140.6370 (6)0.1851 (4)0.15156 (7)0.0213 (9)
H14A0.48140.15150.14130.026*
H14B0.66280.30280.14670.026*
C150.8451 (6)0.0856 (4)0.13654 (7)0.0130 (7)
H15A1.00050.12260.14690.016*
C160.8667 (6)0.1162 (4)0.10011 (8)0.0131 (8)
C171.0577 (6)0.2086 (4)0.08788 (7)0.0175 (8)
H17A1.17670.25120.10240.021*
C181.0790 (6)0.2405 (4)0.05478 (8)0.0211 (9)
H18A1.20990.30550.04680.025*
C190.9076 (6)0.1766 (4)0.03360 (8)0.0213 (9)
H19A0.92210.19650.01090.026*
C200.7162 (7)0.0845 (4)0.04518 (8)0.0211 (9)
H20A0.59810.04130.03060.025*
C210.6966 (6)0.0549 (4)0.07836 (8)0.0178 (9)
H21A0.56400.00860.08630.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0134 (4)0.0160 (4)0.0139 (5)0.0003 (4)0.0006 (4)0.0004 (4)
O10.0146 (12)0.0300 (15)0.0122 (11)0.0012 (13)0.0002 (10)0.0020 (10)
O20.0200 (13)0.0115 (12)0.0163 (12)0.0000 (11)0.0005 (11)0.0006 (10)
O30.0136 (12)0.0178 (13)0.0191 (13)0.0002 (11)0.0008 (10)0.0001 (11)
N10.0132 (14)0.0114 (15)0.0119 (16)0.0030 (13)0.0001 (14)0.0015 (13)
C10.0098 (18)0.013 (2)0.018 (2)0.0016 (16)0.0051 (14)0.0038 (16)
C20.0175 (19)0.0173 (18)0.018 (2)0.0038 (17)0.0013 (16)0.0023 (16)
C30.0152 (19)0.0126 (19)0.030 (2)0.0028 (17)0.0017 (17)0.0017 (17)
C40.020 (2)0.022 (2)0.029 (2)0.0019 (18)0.0120 (18)0.0046 (19)
C50.028 (2)0.031 (2)0.0119 (19)0.0009 (19)0.0064 (16)0.0006 (17)
C60.0222 (19)0.018 (2)0.0157 (19)0.0053 (18)0.0017 (16)0.0002 (16)
C70.0164 (19)0.0115 (18)0.0162 (19)0.0029 (17)0.0031 (16)0.0003 (16)
C80.019 (2)0.0183 (19)0.032 (2)0.0011 (19)0.0001 (19)0.0022 (17)
C90.027 (2)0.025 (2)0.029 (2)0.000 (2)0.009 (2)0.0110 (18)
C100.036 (3)0.030 (2)0.017 (2)0.010 (2)0.007 (2)0.0079 (19)
C110.024 (2)0.027 (2)0.015 (2)0.003 (2)0.0002 (17)0.0016 (18)
C120.0167 (19)0.016 (2)0.019 (2)0.0012 (17)0.0067 (16)0.0012 (16)
C130.037 (2)0.025 (2)0.020 (2)0.0053 (19)0.0051 (18)0.0021 (18)
C140.028 (2)0.0157 (19)0.020 (2)0.0020 (17)0.0016 (16)0.0034 (17)
C150.0115 (16)0.0149 (18)0.0128 (18)0.0017 (15)0.0032 (16)0.0010 (17)
C160.0141 (18)0.0083 (18)0.017 (2)0.0031 (16)0.0005 (15)0.0012 (15)
C170.0180 (18)0.0196 (18)0.0148 (18)0.0021 (19)0.0024 (15)0.0027 (17)
C180.019 (2)0.019 (2)0.025 (2)0.0018 (18)0.0042 (16)0.0069 (17)
C190.033 (2)0.021 (2)0.0102 (18)0.0100 (18)0.0022 (16)0.0018 (16)
C200.029 (2)0.020 (2)0.014 (2)0.0004 (19)0.0041 (18)0.0012 (17)
C210.021 (2)0.016 (2)0.016 (2)0.0027 (17)0.0030 (17)0.0042 (16)
Geometric parameters (Å, º) top
P1—O31.465 (2)C10—C111.380 (5)
P1—O11.582 (2)C10—H10A0.9500
P1—O21.586 (2)C11—C121.384 (4)
P1—N11.613 (3)C11—H11A0.9500
O1—C11.400 (3)C12—H12A0.9500
O2—C71.417 (4)C13—C141.519 (4)
N1—C151.469 (4)C13—H13A0.9800
N1—H10.838 (10)C13—H13B0.9800
C1—C61.372 (4)C13—H13C0.9800
C1—C21.378 (4)C14—C151.530 (4)
C2—C31.392 (4)C14—H14A0.9900
C2—H2A0.9500C14—H14B0.9900
C3—C41.384 (4)C15—C161.525 (4)
C3—H3B0.9500C15—H15A1.0000
C4—C51.374 (4)C16—C171.385 (4)
C4—H4A0.9500C16—C211.386 (4)
C5—C61.382 (4)C17—C181.392 (4)
C5—H5A0.9500C17—H17A0.9500
C6—H6A0.9500C18—C191.384 (4)
C7—C121.370 (4)C18—H18A0.9500
C7—C81.373 (4)C19—C201.376 (5)
C8—C91.398 (4)C19—H19A0.9500
C8—H8A0.9500C20—C211.391 (4)
C9—C101.370 (5)C20—H20A0.9500
C9—H9A0.9500C21—H21A0.9500
O3—P1—O1113.67 (13)C10—C11—H11A119.5
O3—P1—O2116.68 (12)C12—C11—H11A119.5
O1—P1—O299.51 (12)C7—C12—C11118.5 (3)
O3—P1—N1114.72 (13)C7—C12—H12A120.7
O1—P1—N1105.78 (13)C11—C12—H12A120.7
O2—P1—N1104.81 (13)C14—C13—H13A109.5
C1—O1—P1128.3 (2)C14—C13—H13B109.5
C7—O2—P1121.73 (19)H13A—C13—H13B109.5
C15—N1—P1120.9 (2)C14—C13—H13C109.5
C15—N1—H1113 (2)H13A—C13—H13C109.5
P1—N1—H1121 (2)H13B—C13—H13C109.5
C6—C1—C2122.1 (3)C13—C14—C15113.1 (3)
C6—C1—O1115.6 (3)C13—C14—H14A109.0
C2—C1—O1122.3 (3)C15—C14—H14A109.0
C1—C2—C3117.9 (3)C13—C14—H14B109.0
C1—C2—H2A121.1C15—C14—H14B109.0
C3—C2—H2A121.1H14A—C14—H14B107.8
C4—C3—C2120.9 (3)N1—C15—C16113.0 (3)
C4—C3—H3B119.6N1—C15—C14109.0 (3)
C2—C3—H3B119.6C16—C15—C14111.6 (3)
C5—C4—C3119.6 (3)N1—C15—H15A107.7
C5—C4—H4A120.2C16—C15—H15A107.7
C3—C4—H4A120.2C14—C15—H15A107.7
C4—C5—C6120.5 (3)C17—C16—C21118.0 (3)
C4—C5—H5A119.7C17—C16—C15120.3 (3)
C6—C5—H5A119.7C21—C16—C15121.6 (3)
C1—C6—C5119.1 (3)C16—C17—C18121.4 (3)
C1—C6—H6A120.5C16—C17—H17A119.3
C5—C6—H6A120.5C18—C17—H17A119.3
C12—C7—C8121.9 (3)C19—C18—C17119.3 (3)
C12—C7—O2119.9 (3)C19—C18—H18A120.3
C8—C7—O2118.0 (3)C17—C18—H18A120.3
C7—C8—C9118.8 (4)C20—C19—C18120.4 (3)
C7—C8—H8A120.6C20—C19—H19A119.8
C9—C8—H8A120.6C18—C19—H19A119.8
C10—C9—C8120.1 (4)C19—C20—C21119.6 (3)
C10—C9—H9A120.0C19—C20—H20A120.2
C8—C9—H9A120.0C21—C20—H20A120.2
C9—C10—C11119.7 (3)C16—C21—C20121.3 (3)
C9—C10—H10A120.1C16—C21—H21A119.3
C11—C10—H10A120.1C20—C21—H21A119.3
C10—C11—C12120.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.84 (1)2.25 (1)3.077 (3)167 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H22NO3P
Mr367.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)5.4853 (3), 8.1450 (11), 41.162 (4)
V3)1839.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.981, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4914, 3000, 2404
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.089, 1.07
No. of reflections3000
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.42
Absolute structureFlack (1983), 1052 Friedel pairs
Absolute structure parameter0.09 (14)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.838 (10)2.254 (12)3.077 (3)167 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Support of this investigation by Islamic Azad University, Zanjan Branch, and Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Eshtiagh-Hosseini, H., Zargaran, P. & Divjakovic, V. (2010). Acta Cryst. E66, o204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds