organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2317-o2318

N′-[(1E,2E)-1-(2-Phenyl­hydrazin-1-yl­­idene)-1-(phenyl­sulfon­yl)propan-2-yl­­idene]benzohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 August 2011; accepted 7 August 2011; online 11 August 2011)

The configuration about each C=N bond in the title compound, C22H20N4O3S, is E. While to a first approximation the phenyl­hydrazin-1-yl­idene and benzohydrazide residues are coplanar, in part due to the presence of an intra­molecular N—H⋯N hydrogen bond, significant twists are evident in the orientations of the hydrazine [N—N—C—C torsion angle = −170.74 (11)°] and benzoyl benzene [N—C—C—C = −21.72 (18)°] rings. The sulfonyl benzene ring occupies a position almost normal to the rest of the mol­ecule [C—S—C—N = −92.28 (10)°]. Centrosymmetric aggregates mediated by pairs of hydrazide–sulfonyl N—H⋯O hydrogen bonds are the predominant packing motif in the crystal. These are connected into linear supra­molecular chains via C—H⋯O inter­actions which are, in turn, linked into layers in the ac plane via C—H⋯π inter­actions. Connections between layers along the b-axis direction are of the ππ type and occur between centrosymmetrically related hydrazine-bound benzene rings [centroid–centroid separation = 3.7425 (9) Å].

Related literature

For background to the biological activity of bis-hydrazones, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-4997.]); Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N4O3S

  • Mr = 420.48

  • Triclinic, [P \overline 1]

  • a = 8.1609 (3) Å

  • b = 9.6632 (5) Å

  • c = 14.1261 (7) Å

  • α = 92.027 (4)°

  • β = 102.822 (4)°

  • γ = 111.984 (4)°

  • V = 998.55 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.72 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.825, Tmax = 1.000

  • 6674 measured reflections

  • 3942 independent reflections

  • 3658 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.04

  • 3942 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1—C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3 0.901 (19) 1.860 (18) 2.5584 (15) 132.8 (16)
N4—H4⋯O1i 0.856 (18) 2.089 (19) 2.8946 (14) 156.4 (16)
C2—H2a⋯O3ii 0.95 2.38 3.0977 (16) 132
C20—H20⋯Cg1iii 0.95 2.72 3.4980 (15) 140
C15—H15a⋯Cg2iii 0.98 2.79 3.4052 (15) 121
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was characterized in relation to on-going studies of bis-hydrazone derivatives which have been investigated for biological activity (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2010). The molecular structure of (I), Fig. 1, shows an E configuration about each of the CN bonds [C7N1 = 1.3130 (16) Å and C14N3 = 1.2936 (17) Å]. The presence of an intramolecular N—H···N hydrogen bond closes a S(6) ring, {···HNNCCN}, and provides stabilization to the approximately co-planar arrangement between the phenylhydrazin-1-ylidene and benzohydrazide residues. This co-planarity does not extend to the hydrazine-benzene ring [the N1—N2—C8—C9 torsion angle is -170.74 (11) Å] nor to the benzoyl-benzene [N4—C16—C17—C18 = -21.72 (18) °] ring as significant twists are evident. Nevertheless, to a first approximation the phenylhydrazin-1-ylidene and benzohydrazide residues are co-planar and the sulfonyl-benzene occupies a position almost perpendicular to this plane as seen in the value of the C1—S1—C7—N1 torsion angle of -92.28 (10) °.

In the crystal packing, N—H···O hydrogen bonding between hydrazide-H and a sulfonyl-O leads to the formation of centrosymmetric aggregates via a 14-membered {···HNNC2SO}2 synthon, Table 1. These are connected into a linear supramolecular chain via C—H···O interactions, Table 1 and Fig. 2. The chains are connected into layers in the ac plane via C—H···π interactions, Table 1. Layers are connected along the b direction via ππ interactions occurring between centrosymmetrically related hydrazine-bound benzene rings [3.7425 (9) Å for symmetry operation: -x, -y, -z].

Related literature top

For background to the biological activity of bis-hydrazones, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2010).

Experimental top

The title compound was prepared by the literature procedure (Abdel-Aziz et al., 2010) and yellow prisms were isolated from its solution in EtOH/DMF (v/v = 5/1) by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by N—H···O hydrogen bonds (blue dashed lines), leading to centrosymmetric aggregates, and C—H···O interactions, shown as orange lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The N—H···O, C—H···O, C—H···π and ππ interactions are shown as blue, orange, purple and pink dashed lines, respectively.
N'-[(1E,2E)-1-(2-phenylhydrazin-1-ylidene)- 1-(phenylsulfonyl)propan-2-ylidene]benzohydrazide top
Crystal data top
C22H20N4O3SZ = 2
Mr = 420.48F(000) = 440
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 8.1609 (3) ÅCell parameters from 4430 reflections
b = 9.6632 (5) Åθ = 3.2–74.2°
c = 14.1261 (7) ŵ = 1.72 mm1
α = 92.027 (4)°T = 100 K
β = 102.822 (4)°Prism, yellow
γ = 111.984 (4)°0.30 × 0.25 × 0.05 mm
V = 998.55 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3942 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3658 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.2°
ω scansh = 108
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1211
Tmin = 0.825, Tmax = 1.000l = 1715
6674 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.3295P]
where P = (Fo2 + 2Fc2)/3
3942 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C22H20N4O3Sγ = 111.984 (4)°
Mr = 420.48V = 998.55 (8) Å3
Triclinic, P1Z = 2
a = 8.1609 (3) ÅCu Kα radiation
b = 9.6632 (5) ŵ = 1.72 mm1
c = 14.1261 (7) ÅT = 100 K
α = 92.027 (4)°0.30 × 0.25 × 0.05 mm
β = 102.822 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3942 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3658 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.017
6674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
3942 reflectionsΔρmin = 0.42 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50233 (4)0.56979 (3)0.25827 (2)0.01376 (10)
O10.58750 (13)0.66428 (10)0.35165 (7)0.0188 (2)
O20.38284 (12)0.61117 (10)0.18465 (7)0.0184 (2)
O30.10801 (14)0.07033 (11)0.38899 (7)0.0272 (2)
N10.24156 (14)0.31176 (12)0.20702 (8)0.0156 (2)
N20.12879 (15)0.17365 (12)0.20937 (8)0.0162 (2)
H20.146 (2)0.134 (2)0.2655 (14)0.031 (5)*
N30.31255 (14)0.20873 (12)0.38694 (8)0.0157 (2)
N40.34253 (15)0.14291 (12)0.46998 (8)0.0155 (2)
H40.393 (2)0.196 (2)0.5262 (13)0.024 (4)*
C10.67600 (17)0.55617 (14)0.20755 (9)0.0142 (2)
C20.85772 (17)0.62654 (14)0.25910 (9)0.0172 (3)
H2A0.89060.68260.32180.021*
C30.99099 (18)0.61328 (15)0.21697 (10)0.0202 (3)
H31.11620.66080.25120.024*
C40.94206 (18)0.53115 (16)0.12537 (10)0.0204 (3)
H4A1.03370.52170.09750.025*
C50.75863 (18)0.46236 (15)0.07400 (9)0.0190 (3)
H50.72580.40710.01100.023*
C60.62441 (17)0.47453 (14)0.11483 (9)0.0162 (3)
H60.49930.42810.08030.019*
C70.38026 (17)0.38545 (14)0.28212 (9)0.0147 (2)
C80.02363 (17)0.09899 (14)0.12996 (9)0.0157 (3)
C90.15086 (18)0.03770 (14)0.14394 (9)0.0183 (3)
H90.13130.07730.20410.022*
C100.30598 (19)0.11519 (15)0.06928 (10)0.0210 (3)
H100.39320.20840.07830.025*
C110.33482 (19)0.05745 (16)0.01863 (10)0.0224 (3)
H110.44180.11050.06950.027*
C120.2058 (2)0.07881 (16)0.03178 (10)0.0228 (3)
H120.22520.11800.09210.027*
C130.04996 (18)0.15771 (15)0.04185 (10)0.0188 (3)
H130.03770.25040.03250.023*
C140.43798 (17)0.33214 (14)0.37516 (9)0.0147 (2)
C150.62412 (17)0.40633 (14)0.44494 (9)0.0173 (3)
H15A0.66340.32900.47280.026*
H15B0.61870.47180.49780.026*
H15C0.71140.46650.40980.026*
C160.21874 (18)0.00233 (14)0.46522 (9)0.0171 (3)
C170.23417 (18)0.07141 (14)0.55775 (9)0.0166 (3)
C180.39363 (19)0.02070 (15)0.63346 (10)0.0190 (3)
H180.49770.06350.62830.023*
C190.4000 (2)0.09350 (16)0.71628 (10)0.0236 (3)
H190.50900.05980.76760.028*
C200.2473 (2)0.21564 (16)0.72444 (10)0.0247 (3)
H200.25160.26430.78160.030*
C210.0886 (2)0.26655 (16)0.64928 (11)0.0231 (3)
H210.01540.35030.65490.028*
C220.08182 (18)0.19513 (15)0.56582 (10)0.0195 (3)
H220.02670.23050.51410.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01522 (16)0.01194 (15)0.01440 (16)0.00461 (12)0.00554 (11)0.00199 (11)
O10.0231 (5)0.0151 (4)0.0175 (4)0.0056 (4)0.0075 (4)0.0008 (3)
O20.0183 (4)0.0180 (4)0.0211 (5)0.0086 (4)0.0063 (4)0.0066 (4)
O30.0318 (6)0.0185 (5)0.0178 (5)0.0002 (4)0.0017 (4)0.0018 (4)
N10.0164 (5)0.0142 (5)0.0161 (5)0.0047 (4)0.0061 (4)0.0012 (4)
N20.0176 (5)0.0140 (5)0.0140 (5)0.0028 (4)0.0039 (4)0.0020 (4)
N30.0182 (5)0.0158 (5)0.0136 (5)0.0067 (4)0.0049 (4)0.0036 (4)
N40.0185 (5)0.0142 (5)0.0114 (5)0.0044 (4)0.0027 (4)0.0020 (4)
C10.0167 (6)0.0124 (6)0.0147 (6)0.0053 (5)0.0063 (5)0.0048 (5)
C20.0182 (6)0.0151 (6)0.0153 (6)0.0035 (5)0.0039 (5)0.0014 (5)
C30.0145 (6)0.0206 (6)0.0229 (7)0.0037 (5)0.0046 (5)0.0046 (5)
C40.0203 (6)0.0234 (7)0.0215 (7)0.0097 (5)0.0103 (5)0.0069 (5)
C50.0228 (7)0.0206 (7)0.0141 (6)0.0082 (5)0.0060 (5)0.0026 (5)
C60.0162 (6)0.0163 (6)0.0150 (6)0.0054 (5)0.0031 (5)0.0036 (5)
C70.0154 (6)0.0131 (6)0.0155 (6)0.0044 (5)0.0060 (5)0.0018 (5)
C80.0168 (6)0.0146 (6)0.0147 (6)0.0057 (5)0.0036 (5)0.0002 (5)
C90.0212 (6)0.0170 (6)0.0153 (6)0.0059 (5)0.0042 (5)0.0035 (5)
C100.0198 (6)0.0173 (6)0.0208 (7)0.0021 (5)0.0045 (5)0.0016 (5)
C110.0214 (7)0.0211 (7)0.0179 (6)0.0042 (5)0.0005 (5)0.0003 (5)
C120.0270 (7)0.0222 (7)0.0169 (6)0.0084 (6)0.0029 (5)0.0047 (5)
C130.0215 (6)0.0157 (6)0.0176 (6)0.0050 (5)0.0060 (5)0.0031 (5)
C140.0162 (6)0.0144 (6)0.0147 (6)0.0065 (5)0.0054 (5)0.0007 (5)
C150.0170 (6)0.0169 (6)0.0175 (6)0.0060 (5)0.0046 (5)0.0014 (5)
C160.0187 (6)0.0147 (6)0.0168 (6)0.0054 (5)0.0046 (5)0.0016 (5)
C170.0212 (6)0.0147 (6)0.0169 (6)0.0091 (5)0.0068 (5)0.0029 (5)
C180.0227 (7)0.0171 (6)0.0180 (6)0.0085 (5)0.0058 (5)0.0024 (5)
C190.0311 (7)0.0259 (7)0.0167 (6)0.0155 (6)0.0038 (5)0.0034 (5)
C200.0389 (8)0.0258 (7)0.0202 (7)0.0203 (6)0.0143 (6)0.0102 (6)
C210.0283 (7)0.0202 (7)0.0297 (7)0.0128 (6)0.0175 (6)0.0102 (6)
C220.0206 (6)0.0179 (6)0.0230 (7)0.0090 (5)0.0087 (5)0.0046 (5)
Geometric parameters (Å, º) top
S1—O21.4365 (9)C8—C91.3945 (18)
S1—O11.4456 (9)C9—C101.3847 (18)
S1—C11.7672 (13)C9—H90.9500
S1—C71.7725 (13)C10—C111.3880 (19)
O3—C161.2172 (16)C10—H100.9500
N1—C71.3130 (16)C11—C121.394 (2)
N1—N21.3139 (15)C11—H110.9500
N2—C81.4062 (16)C12—C131.3826 (19)
N2—H20.901 (19)C12—H120.9500
N3—C141.2936 (17)C13—H130.9500
N3—N41.3720 (15)C14—C151.5044 (17)
N4—C161.3771 (16)C15—H15A0.9800
N4—H40.856 (18)C15—H15B0.9800
C1—C21.3866 (18)C15—H15C0.9800
C1—C61.3960 (18)C16—C171.4905 (17)
C2—C31.3927 (19)C17—C181.3947 (18)
C2—H2A0.9500C17—C221.3956 (18)
C3—C41.3872 (19)C18—C191.3875 (19)
C3—H30.9500C18—H180.9500
C4—C51.3957 (19)C19—C201.390 (2)
C4—H4A0.9500C19—H190.9500
C5—C61.3849 (18)C20—C211.386 (2)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—C221.3881 (19)
C7—C141.4729 (17)C21—H210.9500
C8—C131.3928 (18)C22—H220.9500
O2—S1—O1118.61 (6)C9—C10—H10119.8
O2—S1—C1107.72 (6)C11—C10—H10119.8
O1—S1—C1108.38 (6)C10—C11—C12119.60 (12)
O2—S1—C7108.78 (6)C10—C11—H11120.2
O1—S1—C7107.22 (6)C12—C11—H11120.2
C1—S1—C7105.38 (6)C13—C12—C11120.86 (12)
C7—N1—N2121.00 (11)C13—C12—H12119.6
N1—N2—C8120.16 (11)C11—C12—H12119.6
N1—N2—H2117.7 (11)C12—C13—C8118.89 (12)
C8—N2—H2121.8 (11)C12—C13—H13120.6
C14—N3—N4119.70 (11)C8—C13—H13120.6
N3—N4—C16114.32 (10)N3—C14—C7111.66 (11)
N3—N4—H4120.7 (12)N3—C14—C15123.98 (11)
C16—N4—H4118.2 (12)C7—C14—C15124.24 (11)
C2—C1—C6121.75 (12)C14—C15—H15A109.5
C2—C1—S1120.14 (10)C14—C15—H15B109.5
C6—C1—S1118.11 (9)H15A—C15—H15B109.5
C1—C2—C3118.60 (12)C14—C15—H15C109.5
C1—C2—H2A120.7H15A—C15—H15C109.5
C3—C2—H2A120.7H15B—C15—H15C109.5
C4—C3—C2120.42 (12)O3—C16—N4121.44 (12)
C4—C3—H3119.8O3—C16—C17122.71 (12)
C2—C3—H3119.8N4—C16—C17115.81 (11)
C3—C4—C5120.25 (12)C18—C17—C22119.76 (12)
C3—C4—H4A119.9C18—C17—C16122.99 (12)
C5—C4—H4A119.9C22—C17—C16117.22 (12)
C6—C5—C4120.05 (12)C19—C18—C17119.85 (13)
C6—C5—H5120.0C19—C18—H18120.1
C4—C5—H5120.0C17—C18—H18120.1
C5—C6—C1118.92 (12)C18—C19—C20120.18 (13)
C5—C6—H6120.5C18—C19—H19119.9
C1—C6—H6120.5C20—C19—H19119.9
N1—C7—C14128.30 (11)C21—C20—C19120.14 (13)
N1—C7—S1110.37 (9)C21—C20—H20119.9
C14—C7—S1121.33 (9)C19—C20—H20119.9
C13—C8—C9120.90 (12)C20—C21—C22120.00 (13)
C13—C8—N2122.56 (11)C20—C21—H21120.0
C9—C8—N2116.54 (11)C22—C21—H21120.0
C10—C9—C8119.36 (12)C21—C22—C17120.06 (13)
C10—C9—H9120.3C21—C22—H22120.0
C8—C9—H9120.3C17—C22—H22120.0
C9—C10—C11120.39 (12)
C7—N1—N2—C8177.15 (11)N2—C8—C9—C10178.61 (12)
C14—N3—N4—C16166.62 (11)C8—C9—C10—C110.1 (2)
O2—S1—C1—C2131.46 (10)C9—C10—C11—C120.5 (2)
O1—S1—C1—C21.97 (12)C10—C11—C12—C130.4 (2)
C7—S1—C1—C2112.54 (11)C11—C12—C13—C80.1 (2)
O2—S1—C1—C647.94 (11)C9—C8—C13—C120.6 (2)
O1—S1—C1—C6177.43 (9)N2—C8—C13—C12178.46 (12)
C7—S1—C1—C668.06 (11)N4—N3—C14—C7179.77 (10)
C6—C1—C2—C30.71 (19)N4—N3—C14—C153.87 (18)
S1—C1—C2—C3179.92 (10)N1—C7—C14—N313.99 (19)
C1—C2—C3—C40.0 (2)S1—C7—C14—N3166.60 (9)
C2—C3—C4—C50.7 (2)N1—C7—C14—C15162.36 (12)
C3—C4—C5—C60.7 (2)S1—C7—C14—C1517.05 (17)
C4—C5—C6—C10.05 (19)N3—N4—C16—O38.74 (18)
C2—C1—C6—C50.75 (19)N3—N4—C16—C17173.41 (10)
S1—C1—C6—C5179.86 (10)O3—C16—C17—C18156.10 (13)
N2—N1—C7—C142.3 (2)N4—C16—C17—C1821.72 (18)
N2—N1—C7—S1178.25 (9)O3—C16—C17—C2221.95 (19)
O2—S1—C7—N122.99 (11)N4—C16—C17—C22160.23 (12)
O1—S1—C7—N1152.40 (9)C22—C17—C18—C190.04 (19)
C1—S1—C7—N192.28 (10)C16—C17—C18—C19177.96 (12)
O2—S1—C7—C14157.51 (10)C17—C18—C19—C200.7 (2)
O1—S1—C7—C1428.10 (11)C18—C19—C20—C210.9 (2)
C1—S1—C7—C1487.22 (11)C19—C20—C21—C220.3 (2)
N1—N2—C8—C138.35 (19)C20—C21—C22—C170.4 (2)
N1—N2—C8—C9170.74 (11)C18—C17—C22—C210.54 (19)
C13—C8—C9—C100.5 (2)C16—C17—C22—C21178.65 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1—C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.901 (19)1.860 (18)2.5584 (15)132.8 (16)
N4—H4···O1i0.856 (18)2.089 (19)2.8946 (14)156.4 (16)
C2—H2a···O3ii0.952.383.0977 (16)132
C20—H20···Cg1iii0.952.723.4980 (15)140
C15—H15a···Cg2iii0.982.793.4052 (15)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N4O3S
Mr420.48
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1609 (3), 9.6632 (5), 14.1261 (7)
α, β, γ (°)92.027 (4), 102.822 (4), 111.984 (4)
V3)998.55 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.72
Crystal size (mm)0.30 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6674, 3942, 3658
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.04
No. of reflections3942
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.42

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1—C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.901 (19)1.860 (18)2.5584 (15)132.8 (16)
N4—H4···O1i0.856 (18)2.089 (19)2.8946 (14)156.4 (16)
C2—H2a···O3ii0.952.383.0977 (16)132
C20—H20···Cg1iii0.952.723.4980 (15)140
C15—H15a···Cg2iii0.982.793.4052 (15)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: hatem_741@yahoo.com.

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–4997.  Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2317-o2318
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds