organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Nitro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2011; accepted 19 August 2011; online 27 August 2011)

In the title compound, C8H6N4O2S, the 1,2,4-triazole ring and the nitro group form dihedral angles of 6.26 (13) and 9.5 (3)°, respectively, with the phenyl ring. In the crystal, the mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, generating [010] chains which contain R22 (8) ring motifs. The crystal structure is further stabilized by ππ stacking [centroid–centroid distance = 3.5491 (14) Å] inter­actions.

Related literature

For general background to and the biological activity of 1,2,4-triazole derivatives, see: Shujuan et al. (2004[Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.]); Clemons et al. (2004[Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Johnston (2002[Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.]); Wei et al. (2007[Wei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581-1587.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011[Fun, H.-K., Quah, C. K., Nithinchandra & Kalluraya B. (2011). Acta Cryst. E67, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N4O2S

  • Mr = 222.23

  • Monoclinic, P 21 /c

  • a = 7.8221 (1) Å

  • b = 8.2109 (1) Å

  • c = 14.6757 (3) Å

  • β = 101.302 (1)°

  • V = 924.29 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.35 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.947

  • 8521 measured reflections

  • 1988 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.17

  • 1988 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.84 (3) 2.48 (3) 3.295 (3) 164 (3)
N2—H1N2⋯S1ii 0.80 (3) 2.50 (3) 3.285 (3) 168 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting compounds. Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), whereas vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston, 2002). Similarly substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). Due to the progress that occurs in dealing with the chemistry of 1,2,4-triazoles as well as their biological activity, we synthesized and reported the crystal structure of the title compound.

In the title molecule, Fig. 1, the 1,2,4-triazole ring (N1-N3/C1/C2, maximum deviation of 0.002 (2) Å at atoms N3 and C2) and the nitro group (O1/O2/N4) form dihedral angles of 6.26 (13) and 9.5 (3)°, respectively, with the phenyl ring (C3-C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010, 2011).

In the crystal structure, the molecules are linked via intermolecular N1–H1N1···S1 and N2–H1N2···S1 hydrogen bonds (Table 1), generating R22 (8) ring motifs (Bernstein et al., 1995) and are further linked into one-dimensional chains along [010] via adjacent ring motifs. π-π stacking interactions between the centroids of C3-C8 phenyl ring (Cg1) and N1-N3/C1/C2 triazole ring (Cg2), with Cg1···Cg2iii distance of 3.5491 (14) Å [symmetry code: (iii) 1-X,1-Y,1-Z] are observed.

Related literature top

For general background to and the biological activity of 1,2,4-triazole derivatives, see: Shujuan et al. (2004); Clemons et al. (2004); Johnston (2002); Wei et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011).

Experimental top

A mixture of 2-[(4-nitrophenyl)carbonyl]hydrazinecarbothioamide (0.01 mol) and 10% KOH (10 ml) was refluxed for 3 h. After the mixture was cooled to room temperature, it was then neutralized by the gradual addition of glacial acetic acid. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Yellow blocks of (I) were obtained from ethanol solution by slow evaporation.

Refinement top

Atoms H1N1 and H1N2 were located from the difference Fourier map and refined freely [N–H = 0.80 (3) or 0.84 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-(4-Nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C8H6N4O2SF(000) = 456
Mr = 222.23Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6061 reflections
a = 7.8221 (1) Åθ = 2.7–32.7°
b = 8.2109 (1) ŵ = 0.33 mm1
c = 14.6757 (3) ÅT = 100 K
β = 101.302 (1)°Block, yellow
V = 924.29 (2) Å30.35 × 0.27 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
1988 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.892, Tmax = 0.947k = 1010
8521 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.023P)2 + 1.7764P]
where P = (Fo2 + 2Fc2)/3
1988 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H6N4O2SV = 924.29 (2) Å3
Mr = 222.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8221 (1) ŵ = 0.33 mm1
b = 8.2109 (1) ÅT = 100 K
c = 14.6757 (3) Å0.35 × 0.27 × 0.17 mm
β = 101.302 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1789 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.947Rint = 0.021
8521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.42 e Å3
1988 reflectionsΔρmin = 0.29 e Å3
144 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48563 (8)0.37379 (7)0.18859 (4)0.02226 (18)
O10.0046 (3)0.9832 (3)0.65011 (15)0.0430 (6)
O20.0293 (3)0.7834 (3)0.74650 (13)0.0364 (5)
N10.3673 (3)0.5040 (3)0.33704 (14)0.0184 (4)
N20.3841 (3)0.2469 (3)0.34126 (15)0.0227 (5)
N30.3212 (3)0.2888 (3)0.41922 (14)0.0227 (5)
N40.0471 (3)0.8436 (3)0.67295 (14)0.0265 (5)
C10.4131 (3)0.3742 (3)0.29010 (16)0.0192 (5)
C20.3128 (3)0.4479 (3)0.41483 (16)0.0187 (5)
C30.2506 (3)0.5522 (3)0.48290 (16)0.0186 (5)
C40.2100 (3)0.4814 (3)0.56284 (16)0.0206 (5)
H4A0.22690.36800.57380.025*
C50.1450 (3)0.5774 (3)0.62606 (16)0.0218 (5)
H5A0.11650.53100.68050.026*
C60.1226 (3)0.7419 (3)0.60807 (16)0.0223 (5)
C70.1638 (3)0.8162 (3)0.53043 (17)0.0235 (5)
H7A0.14900.93010.52080.028*
C80.2272 (3)0.7193 (3)0.46708 (16)0.0210 (5)
H8A0.25480.76680.41270.025*
H1N10.384 (4)0.601 (4)0.323 (2)0.026 (8)*
H1N20.400 (4)0.154 (4)0.329 (2)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0335 (3)0.0136 (3)0.0225 (3)0.0009 (2)0.0124 (2)0.0021 (2)
O10.0675 (15)0.0288 (12)0.0374 (11)0.0141 (11)0.0220 (10)0.0025 (9)
O20.0480 (12)0.0404 (13)0.0235 (9)0.0060 (10)0.0140 (8)0.0005 (9)
N10.0223 (10)0.0137 (11)0.0204 (10)0.0009 (8)0.0070 (8)0.0006 (8)
N20.0280 (11)0.0160 (11)0.0271 (11)0.0011 (9)0.0128 (9)0.0006 (9)
N30.0262 (10)0.0192 (11)0.0255 (10)0.0011 (8)0.0118 (8)0.0001 (9)
N40.0292 (11)0.0280 (13)0.0229 (10)0.0014 (9)0.0063 (8)0.0047 (9)
C10.0185 (10)0.0170 (12)0.0222 (11)0.0003 (9)0.0045 (9)0.0029 (10)
C20.0149 (10)0.0207 (13)0.0207 (11)0.0002 (9)0.0040 (8)0.0016 (10)
C30.0146 (10)0.0217 (13)0.0198 (11)0.0000 (9)0.0040 (8)0.0044 (10)
C40.0188 (10)0.0205 (13)0.0220 (11)0.0007 (9)0.0026 (9)0.0014 (10)
C50.0193 (11)0.0287 (14)0.0170 (11)0.0006 (10)0.0030 (9)0.0014 (10)
C60.0197 (11)0.0272 (14)0.0202 (11)0.0015 (10)0.0046 (9)0.0060 (10)
C70.0264 (12)0.0187 (12)0.0258 (12)0.0037 (10)0.0065 (10)0.0002 (10)
C80.0241 (11)0.0199 (13)0.0205 (11)0.0005 (9)0.0079 (9)0.0003 (10)
Geometric parameters (Å, º) top
S1—C11.695 (2)C2—C31.469 (3)
O1—N41.222 (3)C3—C81.398 (3)
O2—N41.220 (3)C3—C41.400 (3)
N1—C11.355 (3)C4—C51.387 (3)
N1—C21.375 (3)C4—H4A0.9500
N1—H1N10.84 (3)C5—C61.380 (4)
N2—C11.332 (3)C5—H5A0.9500
N2—N31.375 (3)C6—C71.385 (3)
N2—H1N20.80 (3)C7—C81.387 (3)
N3—C21.309 (3)C7—H7A0.9500
N4—C61.474 (3)C8—H8A0.9500
C1—N1—C2108.3 (2)C8—C3—C2120.6 (2)
C1—N1—H1N1124 (2)C4—C3—C2119.2 (2)
C2—N1—H1N1127 (2)C5—C4—C3119.8 (2)
C1—N2—N3113.7 (2)C5—C4—H4A120.1
C1—N2—H1N2125 (2)C3—C4—H4A120.1
N3—N2—H1N2122 (2)C6—C5—C4118.5 (2)
C2—N3—N2103.4 (2)C6—C5—H5A120.8
O2—N4—O1123.4 (2)C4—C5—H5A120.8
O2—N4—C6118.1 (2)C5—C6—C7123.2 (2)
O1—N4—C6118.4 (2)C5—C6—N4118.8 (2)
N2—C1—N1103.9 (2)C7—C6—N4118.0 (2)
N2—C1—S1128.14 (19)C6—C7—C8118.1 (2)
N1—C1—S1127.98 (19)C6—C7—H7A121.0
N3—C2—N1110.8 (2)C8—C7—H7A121.0
N3—C2—C3124.6 (2)C7—C8—C3120.3 (2)
N1—C2—C3124.6 (2)C7—C8—H8A119.9
C8—C3—C4120.2 (2)C3—C8—H8A119.9
C1—N2—N3—C20.3 (3)C2—C3—C4—C5177.6 (2)
N3—N2—C1—N10.1 (3)C3—C4—C5—C60.2 (3)
N3—N2—C1—S1178.54 (17)C4—C5—C6—C70.7 (4)
C2—N1—C1—N20.1 (2)C4—C5—C6—N4177.6 (2)
C2—N1—C1—S1178.73 (18)O2—N4—C6—C59.9 (3)
N2—N3—C2—N10.3 (3)O1—N4—C6—C5169.7 (2)
N2—N3—C2—C3179.3 (2)O2—N4—C6—C7171.7 (2)
C1—N1—C2—N30.2 (3)O1—N4—C6—C78.7 (3)
C1—N1—C2—C3179.2 (2)C5—C6—C7—C81.3 (4)
N3—C2—C3—C8172.6 (2)N4—C6—C7—C8177.0 (2)
N1—C2—C3—C86.3 (3)C6—C7—C8—C30.9 (4)
N3—C2—C3—C45.6 (4)C4—C3—C8—C70.0 (3)
N1—C2—C3—C4175.6 (2)C2—C3—C8—C7178.2 (2)
C8—C3—C4—C50.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.84 (3)2.48 (3)3.295 (3)164 (3)
N2—H1N2···S1ii0.80 (3)2.50 (3)3.285 (3)168 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6N4O2S
Mr222.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.8221 (1), 8.2109 (1), 14.6757 (3)
β (°) 101.302 (1)
V3)924.29 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.892, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
8521, 1988, 1789
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.17
No. of reflections1988
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.84 (3)2.48 (3)3.295 (3)164 (3)
N2—H1N2···S1ii0.80 (3)2.50 (3)3.285 (3)168 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra & Kalluraya B. (2011). Acta Cryst. E67, o2416.  Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581–1587.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds