metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{6,6′-dieth­­oxy-2,2′-[ethane-1,2-diyl­bis­(nitrilo­methanylyl­­idene)]diphen­olato}zinc

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China, and bHuzhou No. 11 Middle School, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 3 August 2011; accepted 4 August 2011; online 11 August 2011)

The mononuclear zinc title complex, [Zn(C20H22N2O4)(H2O)], was obtained by the reaction of 3-eth­oxy­salicyl­aldehyde, ethane-1,2-diamine, and zinc acetate in methanol. The Zn atom is five-coordinated by two phenolate O and two imine N atoms of the tetradentate Schiff base ligand and by one water O atom, forming a square-pyramidal geometry. In the crystal, pairs of mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds, forming dimers.

Related literature

For Schiff base complexes reported by our group, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar zinc complexes, see: Meyer & Roesky (2007[Meyer, N. & Roesky, P. W. (2007). Z. Anorg. Allg. Chem. 633, 2292-2295.]); Chu et al. (2008[Chu, Z., Huang, W., Wang, L. & Gou, S. (2008). Polyhedron, 27, 1079-1092.]); Szlyk et al. (2005[Szlyk, E., Wojtczak, A., Surdykowski, A. & Gozdzikiewicz, M. (2005). Inorg. Chim. Acta, 358, 467-475.]); Reglinski et al. (2002[Reglinski, J., Morris, S. & Stevenson, D. E. (2002). Polyhedron, 21, 2175-2182.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C20H22N2O4)(H2O)]

  • Mr = 437.78

  • Monoclinic, P 21 /c

  • a = 13.545 (3) Å

  • b = 11.550 (2) Å

  • c = 14.327 (3) Å

  • β = 115.656 (3)°

  • V = 2020.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.762, Tmax = 0.788

  • 10161 measured reflections

  • 3724 independent reflections

  • 2607 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 1.01

  • 3724 reflections

  • 261 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9737 (19)
Zn1—O2 1.9990 (18)
Zn1—O5 2.040 (2)
Zn1—N2 2.075 (2)
Zn1—N1 2.080 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 (1) 2.41 (2) 3.128 (3) 143 (3)
O5—H5A⋯O1i 0.85 (1) 2.03 (2) 2.781 (3) 147 (3)
O5—H5B⋯O4i 0.84 (1) 2.42 (2) 3.104 (3) 139 (3)
O5—H5B⋯O2i 0.84 (1) 1.96 (2) 2.722 (2) 149 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear zinc(II) complex, Fig. 1. The Zn atom in the complex is five-coordinated by two phenolate O and two imine N atoms of the Schiff base ligand, and by one water O atom, forming a square pyramidal geometry. The Zn atom deviates from the least squares plane defined by the four basal donor atoms by 0.449 (2) Å. The Zn–O and Zn–N bond lengths (Table 1) are typical and are comparable with those observed in other similar zinc(II) complexes (Meyer & Roesky, 2007; Chu et al., 2008; Szlyk et al., 2005; Reglinski et al., 2002).

In the crystal structure, adjacent two molecules are linked via intermolecular O—H···O hydrogen bonds, to form a dimer (Table 1, Fig. 2).

Related literature top

For Schiff base complexes reported by our group, see: Wang (2009); Wang & Ye (2011). For similar zinc(II) complexes, see: Meyer & Roesky (2007); Chu et al. (2008); Szlyk et al. (2005); Reglinski et al. (2002).

Experimental top

3-Ethoxysalicylaldehyde (1.0 mmol, 0.166 g) and ethane-1,2-diamine (0.5 mmol, 0.030 g) were dissolved in MeOH (30 ml), to the mixture was added with stirring an aqueous solution (5 ml) of zinc acetate dihydrate (0.5 mmol, 0.110 g). The final mixture was stirred at room temperature for 10 min to give a clear colorless solution. After keeping the solution in air for a week, colorless block-shaped crystals were formed at the bottom of the vessel.

Refinement top

The water H atoms were located from a difference Fourier map and refined isotropically, with O—H and H···H distances restrained to 0.85 (1) and 1.37 (2) Å. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not related to the hydrogen bonding are omitted.
Aqua{6,6'-diethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato}zinc top
Crystal data top
[Zn(C20H22N2O4)(H2O)]F(000) = 912
Mr = 437.78Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1989 reflections
a = 13.545 (3) Åθ = 2.3–24.9°
b = 11.550 (2) ŵ = 1.25 mm1
c = 14.327 (3) ÅT = 298 K
β = 115.656 (3)°Block, colorless
V = 2020.4 (7) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3724 independent reflections
Radiation source: fine-focus sealed tube2607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.762, Tmax = 0.788k = 913
10161 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2 + 0.0614P]
where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C20H22N2O4)(H2O)]V = 2020.4 (7) Å3
Mr = 437.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.545 (3) ŵ = 1.25 mm1
b = 11.550 (2) ÅT = 298 K
c = 14.327 (3) Å0.23 × 0.20 × 0.20 mm
β = 115.656 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3724 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2607 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.788Rint = 0.045
10161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
3724 reflectionsΔρmin = 0.28 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.49151 (3)0.37501 (3)0.10550 (2)0.03753 (13)
N10.3923 (2)0.2318 (2)0.08934 (18)0.0452 (6)
N20.5943 (2)0.2758 (2)0.23068 (18)0.0443 (6)
O10.35950 (15)0.47362 (17)0.05034 (14)0.0437 (5)
O20.59290 (15)0.50826 (15)0.16851 (13)0.0408 (5)
O30.22138 (17)0.63806 (19)0.04018 (17)0.0591 (6)
O40.70129 (17)0.70006 (18)0.19471 (16)0.0554 (6)
O50.52911 (16)0.34179 (17)0.01527 (15)0.0418 (5)
C10.2173 (3)0.3281 (3)0.0021 (2)0.0491 (8)
C20.2562 (2)0.4425 (3)0.0042 (2)0.0401 (7)
C30.1772 (3)0.5299 (3)0.0450 (2)0.0507 (8)
C40.0662 (3)0.5050 (4)0.0929 (3)0.0706 (11)
H40.01570.56400.12360.085*
C50.0303 (3)0.3914 (4)0.0949 (3)0.0858 (14)
H50.04400.37420.12870.103*
C60.1032 (3)0.3068 (4)0.0480 (3)0.0694 (11)
H60.07780.23190.04850.083*
C70.2873 (3)0.2305 (3)0.0488 (2)0.0492 (8)
H70.25370.16060.04960.059*
C80.4581 (3)0.1297 (3)0.1400 (2)0.0559 (9)
H8A0.49300.09870.09880.067*
H8B0.41210.06990.14810.067*
C90.5436 (3)0.1685 (3)0.2447 (2)0.0560 (9)
H9A0.50970.18230.29110.067*
H9B0.59890.10890.27480.067*
C100.6950 (3)0.2982 (3)0.2888 (2)0.0508 (9)
H100.73540.24130.33570.061*
C110.7511 (2)0.4034 (3)0.2882 (2)0.0463 (8)
C120.6982 (2)0.5033 (3)0.2313 (2)0.0390 (7)
C130.7612 (2)0.6054 (3)0.2452 (2)0.0477 (8)
C140.8727 (3)0.6055 (3)0.3066 (3)0.0651 (10)
H140.91340.67220.31220.078*
C150.9243 (3)0.5060 (4)0.3601 (3)0.0777 (12)
H150.99950.50650.40120.093*
C160.8658 (3)0.4077 (4)0.3528 (3)0.0674 (11)
H160.90120.34250.39060.081*
C170.1503 (3)0.7298 (3)0.0960 (3)0.0694 (11)
H17A0.09750.74500.06850.083*
H17B0.11070.70910.16850.083*
C180.2193 (4)0.8354 (3)0.0848 (3)0.0903 (14)
H18A0.25980.85380.01280.135*
H18B0.17280.89950.11990.135*
H18C0.26930.82050.11470.135*
C190.7526 (3)0.8113 (3)0.2181 (3)0.0670 (11)
H19A0.80310.81930.18690.080*
H19B0.79310.82090.29240.080*
C200.6637 (4)0.8998 (3)0.1749 (3)0.0911 (14)
H20A0.62470.88980.10130.137*
H20B0.69520.97590.18970.137*
H20C0.61400.89060.20600.137*
H5B0.4751 (16)0.367 (3)0.0680 (17)0.080*
H5A0.5844 (15)0.379 (3)0.013 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0370 (2)0.0343 (2)0.0395 (2)0.00106 (17)0.01491 (15)0.00468 (17)
N10.0494 (17)0.0389 (15)0.0484 (15)0.0003 (13)0.0222 (13)0.0062 (13)
N20.0522 (17)0.0392 (15)0.0417 (14)0.0046 (13)0.0205 (13)0.0086 (12)
O10.0320 (12)0.0407 (12)0.0528 (12)0.0006 (10)0.0130 (10)0.0009 (10)
O20.0332 (11)0.0366 (11)0.0417 (11)0.0014 (9)0.0061 (9)0.0019 (10)
O30.0442 (13)0.0526 (15)0.0689 (15)0.0142 (12)0.0137 (11)0.0076 (13)
O40.0525 (14)0.0398 (13)0.0657 (14)0.0078 (12)0.0180 (12)0.0060 (12)
O50.0433 (12)0.0382 (12)0.0430 (12)0.0033 (10)0.0177 (10)0.0028 (10)
C10.043 (2)0.057 (2)0.0493 (19)0.0085 (18)0.0224 (16)0.0040 (17)
C20.0330 (17)0.052 (2)0.0360 (16)0.0010 (16)0.0156 (14)0.0049 (15)
C30.0376 (19)0.061 (2)0.0492 (18)0.0028 (18)0.0148 (15)0.0022 (18)
C40.037 (2)0.087 (3)0.076 (2)0.011 (2)0.0127 (18)0.003 (2)
C50.037 (2)0.104 (4)0.099 (3)0.014 (3)0.013 (2)0.008 (3)
C60.044 (2)0.080 (3)0.080 (3)0.015 (2)0.024 (2)0.005 (2)
C70.054 (2)0.044 (2)0.0536 (19)0.0126 (18)0.0268 (17)0.0030 (17)
C80.072 (2)0.0368 (19)0.067 (2)0.0026 (19)0.038 (2)0.0096 (18)
C90.076 (2)0.0406 (19)0.052 (2)0.0062 (19)0.0281 (19)0.0165 (17)
C100.055 (2)0.052 (2)0.0407 (18)0.0193 (18)0.0168 (17)0.0111 (16)
C110.0351 (17)0.058 (2)0.0403 (17)0.0097 (16)0.0109 (14)0.0052 (16)
C120.0360 (18)0.0469 (19)0.0335 (15)0.0027 (15)0.0144 (14)0.0043 (14)
C130.0387 (18)0.058 (2)0.0406 (17)0.0026 (17)0.0121 (15)0.0064 (16)
C140.043 (2)0.085 (3)0.059 (2)0.015 (2)0.0145 (18)0.003 (2)
C150.030 (2)0.115 (4)0.068 (2)0.003 (2)0.0026 (18)0.013 (3)
C160.039 (2)0.085 (3)0.064 (2)0.011 (2)0.0084 (18)0.021 (2)
C170.067 (2)0.075 (3)0.064 (2)0.033 (2)0.027 (2)0.018 (2)
C180.102 (3)0.063 (3)0.121 (4)0.026 (3)0.063 (3)0.035 (3)
C190.082 (3)0.053 (2)0.072 (2)0.027 (2)0.039 (2)0.014 (2)
C200.127 (4)0.043 (2)0.118 (3)0.006 (3)0.067 (3)0.006 (2)
Geometric parameters (Å, º) top
Zn1—O11.9737 (19)C8—C91.513 (4)
Zn1—O21.9990 (18)C8—H8A0.9700
Zn1—O52.040 (2)C8—H8B0.9700
Zn1—N22.075 (2)C9—H9A0.9700
Zn1—N12.080 (2)C9—H9B0.9700
N1—C71.282 (4)C10—C111.435 (4)
N1—C81.467 (4)C10—H100.9300
N2—C101.279 (4)C11—C121.416 (4)
N2—C91.473 (4)C11—C161.424 (4)
O1—C21.312 (3)C12—C131.418 (4)
O2—C121.317 (3)C13—C141.381 (4)
O3—C31.374 (4)C14—C151.391 (5)
O3—C171.423 (4)C14—H140.9300
O4—C131.367 (3)C15—C161.362 (5)
O4—C191.429 (3)C15—H150.9300
O5—H5B0.843 (10)C16—H160.9300
O5—H5A0.850 (10)C17—C181.502 (5)
C1—C61.417 (4)C17—H17A0.9700
C1—C21.418 (4)C17—H17B0.9700
C1—C71.438 (4)C18—H18A0.9600
C2—C31.417 (4)C18—H18B0.9600
C3—C41.386 (4)C18—H18C0.9600
C4—C51.396 (5)C19—C201.494 (5)
C4—H40.9300C19—H19A0.9700
C5—C61.343 (5)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
O1—Zn1—O293.60 (8)N2—C9—H9A110.0
O1—Zn1—O5106.53 (8)C8—C9—H9A110.0
O2—Zn1—O598.79 (8)N2—C9—H9B110.0
O1—Zn1—N2144.82 (9)C8—C9—H9B110.0
O2—Zn1—N287.82 (9)H9A—C9—H9B108.4
O5—Zn1—N2107.97 (9)N2—C10—C11125.8 (3)
O1—Zn1—N189.13 (9)N2—C10—H10117.1
O2—Zn1—N1161.26 (8)C11—C10—H10117.1
O5—Zn1—N198.18 (9)C12—C11—C16118.9 (3)
N2—Zn1—N179.43 (10)C12—C11—C10123.8 (3)
C7—N1—C8122.1 (3)C16—C11—C10117.2 (3)
C7—N1—Zn1126.6 (2)O2—C12—C11123.9 (3)
C8—N1—Zn1111.09 (19)O2—C12—C13117.9 (3)
C10—N2—C9120.7 (3)C11—C12—C13118.2 (3)
C10—N2—Zn1125.3 (2)O4—C13—C14124.8 (3)
C9—N2—Zn1113.86 (19)O4—C13—C12114.1 (3)
C2—O1—Zn1128.84 (19)C14—C13—C12121.1 (3)
C12—O2—Zn1127.15 (18)C13—C14—C15120.0 (3)
C3—O3—C17118.4 (3)C13—C14—H14120.0
C13—O4—C19118.5 (2)C15—C14—H14120.0
Zn1—O5—H5B105 (2)C16—C15—C14120.7 (3)
Zn1—O5—H5A114 (2)C16—C15—H15119.7
H5B—O5—H5A106 (2)C14—C15—H15119.7
C6—C1—C2119.1 (3)C15—C16—C11120.9 (3)
C6—C1—C7117.1 (3)C15—C16—H16119.5
C2—C1—C7123.8 (3)C11—C16—H16119.5
O1—C2—C3117.8 (3)O3—C17—C18107.8 (3)
O1—C2—C1124.8 (3)O3—C17—H17A110.1
C3—C2—C1117.4 (3)C18—C17—H17A110.1
O3—C3—C4124.7 (3)O3—C17—H17B110.1
O3—C3—C2113.8 (3)C18—C17—H17B110.1
C4—C3—C2121.5 (3)H17A—C17—H17B108.4
C3—C4—C5120.0 (4)C17—C18—H18A109.5
C3—C4—H4120.0C17—C18—H18B109.5
C5—C4—H4120.0H18A—C18—H18B109.5
C6—C5—C4119.9 (3)C17—C18—H18C109.5
C6—C5—H5120.0H18A—C18—H18C109.5
C4—C5—H5120.0H18B—C18—H18C109.5
C5—C6—C1122.1 (4)O4—C19—C20107.1 (3)
C5—C6—H6118.9O4—C19—H19A110.3
C1—C6—H6118.9C20—C19—H19A110.3
N1—C7—C1125.5 (3)O4—C19—H19B110.3
N1—C7—H7117.3C20—C19—H19B110.3
C1—C7—H7117.3H19A—C19—H19B108.5
N1—C8—C9107.0 (2)C19—C20—H20A109.5
N1—C8—H8A110.3C19—C20—H20B109.5
C9—C8—H8A110.3H20A—C20—H20B109.5
N1—C8—H8B110.3C19—C20—H20C109.5
C9—C8—H8B110.3H20A—C20—H20C109.5
H8A—C8—H8B108.6H20B—C20—H20C109.5
N2—C9—C8108.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.85 (1)2.41 (2)3.128 (3)143 (3)
O5—H5A···O1i0.85 (1)2.03 (2)2.781 (3)147 (3)
O5—H5B···O4i0.84 (1)2.42 (2)3.104 (3)139 (3)
O5—H5B···O2i0.84 (1)1.96 (2)2.722 (2)149 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C20H22N2O4)(H2O)]
Mr437.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.545 (3), 11.550 (2), 14.327 (3)
β (°) 115.656 (3)
V3)2020.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.762, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
10161, 3724, 2607
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.01
No. of reflections3724
No. of parameters261
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9737 (19)Zn1—N22.075 (2)
Zn1—O21.9990 (18)Zn1—N12.080 (2)
Zn1—O52.040 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.850 (10)2.41 (2)3.128 (3)143 (3)
O5—H5A···O1i0.850 (10)2.03 (2)2.781 (3)147 (3)
O5—H5B···O4i0.843 (10)2.42 (2)3.104 (3)139 (3)
O5—H5B···O2i0.843 (10)1.964 (19)2.722 (2)149 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, Z., Huang, W., Wang, L. & Gou, S. (2008). Polyhedron, 27, 1079–1092.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeyer, N. & Roesky, P. W. (2007). Z. Anorg. Allg. Chem. 633, 2292–2295.  CrossRef CAS Google Scholar
First citationReglinski, J., Morris, S. & Stevenson, D. E. (2002). Polyhedron, 21, 2175–2182.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzlyk, E., Wojtczak, A., Surdykowski, A. & Gozdzikiewicz, M. (2005). Inorg. Chim. Acta, 358, 467–475.  CAS Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds