metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(2-hy­dr­oxy-2-methyl­prop­yl)imino­meth­yl]-4-nitro­phenolato}nickel(II) di­methyl­formamide monosolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 25 July 2011; accepted 2 August 2011; online 6 August 2011)

In the title compound, [Ni(C11H13N2O4)2]·C3H7NO, the NiII ion is octa­hedrally coordinated in an N2O4 environment by two identical Schiff base ligands. The Ni—O bond lengths range from 2.004 (2) to 2.106 (2) Å, while the Ni—N bond lengths are 2.038 (2) and 2.0465 (19) Å. The cis bond angles range from 78.64 (8) to 97.30 (8)°, with the former being due to the small bite of the amino­alcohol ligand, while the trans bond angles range from 167.86 (8) to 171.23 (8)°. One of the alcohol H atoms forms a hydrogen bond with the dimethyl­formamide (DMF) solvent mol­ecule, while the other links mol­ecules into chains along the b axis through inter­molecular O—H⋯O hydrogen bonds. There are bifurcated C—H⋯O inter­actions involving one of the nitro groups between parallel stacks of mol­ecules in the b-axis direction.

Related literature

For similar nickel Schiff base complexes, see: Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2739-m2740.]); Butcher et al. (1981[Butcher, R. J., O'Connor, C. J. & Sinn, E. (1981). Inorg. Chem. 20, 3486-3493.], 2009[Butcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193-m1194.]); Gultneh et al. (1998[Gultneh, Y., Khan, R. A., Ahvazi, B. & Butcher, R. J. (1998). Polyhedron, 17, 3351-3360.]); Mustafaa et al. (2009[Mustafaa, I. M., Hapipaha, M. A., Abdullab, M. A. & Warda, T. R. (2009). Polyhedron, 28, 3993-3998.]); Zhang et al. (2010[Zhang, D., Weng, L. & Jin, G.-X. (2010). J. Organomet. Chem. 695, 643-647.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H13N2O4)2]·C3H7NO

  • Mr = 606.27

  • Monoclinic, P 21 /n

  • a = 11.42279 (16) Å

  • b = 11.42936 (18) Å

  • c = 21.4903 (3) Å

  • β = 99.1120 (14)°

  • V = 2770.26 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.54 mm−1

  • T = 295 K

  • 0.44 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.650, Tmax = 1.000

  • 13929 measured reflections

  • 5826 independent reflections

  • 4514 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.174

  • S = 1.05

  • 5826 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O1S 0.82 1.94 2.734 (5) 163
O2B—H2B⋯O1Bi 0.82 1.81 2.619 (3) 166
C9A—H9AA⋯O1Ai 0.96 2.59 3.422 (4) 146
C11A—H11B⋯O3Bii 0.97 2.50 3.394 (4) 153
C5B—H5BA⋯O4Aiii 0.93 2.57 3.418 (4) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title complex two uninegative tridentate ligands, 5-nitro salicylaldehydene-2,2-dimethyl ethylimine-1-ol, coordinate to the nickel atom producing N2O4 in a slightly distorted octahedral coordination environment. The distortion can be justified by the bond angles formed by the coordinating atoms to the metal: N(1 A)—Ni—O(2 A) = 168.90 (8)°, N(1 A)—Ni—O(1B) = 98.60 (8)°, N(1 A)—Ni—O(2B) = 93.54 (8)°, N(1 A)—Ni—N(1B) = 171.23 (8)°, O(1B)—Ni—O(2B) = 167.86° and O(1 A)—Ni—O(2 A) = 168.90 (8)°. The Ni—O bond lengths are slightly shorter than the Ni—N bond lengths [Ni—N(1 A) = 2.038 (2) Å, Ni—N(1B) = 2.0465 (19) Å, Ni—O(2B) = 2.101 (2) Å, Ni—O(2 A) = 2.106 (2) Å] as is usually found in such complexes (Ali et al. 2006; Butcher et al. 1981, 2009; Gultneh et al. 1998; Mustafaa et al. 2009; Zhang et al. 2010).

One of the alcohol H atoms forms a hydrogen bond with the dimethylformamide solvate molecule while the other links the molecules into chains along the b axis through intermolecular O—H···O hydrogen bonds. There are bifurcated C—H···O interactions between parallel stacks of molecules in the b direction involving one of the nitro groups.

Related literature top

For similar nickel Schiff base complexes, see: Ali et al. (2006); Butcher et al. (1981, 2009); Gultneh et al. (1998); Mustafaa et al. (2009); Zhang et al. (2010).

Experimental top

The complex, C25H33N5NiO9, was synthesized by adding a 20 mL solution of nickel nitrate hexahydrate (0.61 gram, 2.63 mmol) to another 20 ml of methanol solution containing 1.25 gram (5.26 mmol) of the ligand, 5-nitrosalicylaldehydene-2,2-dimethyl ethylimine-1-ol. Three drops of triethylamine was added followed by continuous stirring overnight at 40°C. The solution was then filtered, evaporated under vacuum, and washed with ethanol to yield 95% of a dark greenish yellow solid. About 0.20 mg of the sample was dissolved in DMF/MeOH (1:3) then layered with diethyl ether to give dark-yellow–green crystals.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.97 Å and O—H distances of 0.82. Isotropic thermal parameters were Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C25H33N5NiO9, showing atom labeling. Atomic displacement parameters are at the 30% level. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing for C25H33N5NiO9 viewed down the a axis. Hydrogen bonds are shown by dashed lines.
Bis{2-[(2-hydroxy-2-methylpropyl)iminomethyl]-4-nitrophenolato}nickel(II) dimethylformamide monosolvate top
Crystal data top
[Ni(C11H13N2O4)2]·C3H7NOF(000) = 1272
Mr = 606.27Dx = 1.454 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6836 reflections
a = 11.42279 (16) Åθ = 4.4–77.3°
b = 11.42936 (18) ŵ = 1.54 mm1
c = 21.4903 (3) ÅT = 295 K
β = 99.1120 (14)°Needle, pale-green
V = 2770.26 (7) Å30.44 × 0.21 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5826 independent reflections
Radiation source: Enhance (Cu) X-ray Source4514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.5081 pixels mm-1θmax = 77.5°, θmin = 4.4°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1413
Tmin = 0.650, Tmax = 1.000l = 2617
13929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.116P)2 + 0.4736P]
where P = (Fo2 + 2Fc2)/3
5826 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C11H13N2O4)2]·C3H7NOV = 2770.26 (7) Å3
Mr = 606.27Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.42279 (16) ŵ = 1.54 mm1
b = 11.42936 (18) ÅT = 295 K
c = 21.4903 (3) Å0.44 × 0.21 × 0.18 mm
β = 99.1120 (14)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5826 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4514 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 1.000Rint = 0.026
13929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
5826 reflectionsΔρmin = 0.53 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.28214 (3)0.69956 (4)0.739938 (17)0.04163 (16)
O1A0.13279 (18)0.7923 (2)0.73843 (9)0.0627 (6)
O2A0.43631 (19)0.5964 (2)0.75995 (9)0.0672 (6)
H2A0.48510.59470.73580.081*
O3A0.2832 (2)0.8371 (3)0.88948 (13)0.0905 (8)
O4A0.1546 (3)0.7581 (5)0.95965 (12)0.1320 (15)
O1B0.38319 (17)0.84650 (17)0.74068 (8)0.0505 (4)
O2B0.1755 (2)0.5507 (2)0.71838 (10)0.0850 (8)
H2B0.16760.48310.72970.102*
O3B0.7678 (3)1.0122 (4)0.58611 (14)0.1350 (16)
O4B0.6486 (2)0.9308 (3)0.51235 (11)0.0932 (9)
O1S0.6253 (5)0.6221 (4)0.6974 (3)0.190 (3)
N1A0.29366 (18)0.67706 (18)0.83479 (9)0.0418 (4)
N2A0.1859 (2)0.7931 (3)0.90622 (13)0.0739 (8)
N1B0.26685 (17)0.69504 (17)0.64379 (9)0.0395 (4)
N2B0.6746 (2)0.9632 (3)0.56688 (13)0.0737 (8)
N1S0.6828 (3)0.6268 (4)0.60657 (18)0.0901 (10)
C1A0.0612 (2)0.7858 (2)0.77807 (11)0.0433 (5)
C2A0.0573 (2)0.8288 (3)0.76076 (13)0.0530 (6)
H2AA0.08030.85820.72030.064*
C3A0.1370 (2)0.8284 (3)0.80106 (13)0.0536 (6)
H3AA0.21340.85660.78830.064*
C4A0.1031 (2)0.7851 (3)0.86214 (13)0.0524 (6)
C5A0.0081 (2)0.7403 (3)0.88111 (11)0.0485 (6)
H5AA0.02820.71080.92170.058*
C6A0.0916 (2)0.7383 (2)0.84022 (11)0.0421 (5)
C7A0.2064 (2)0.6891 (2)0.86487 (11)0.0444 (5)
H7AA0.21770.66380.90650.053*
C8A0.4050 (2)0.6210 (2)0.86711 (11)0.0473 (5)
C9A0.3801 (3)0.4930 (3)0.88058 (18)0.0779 (9)
H9AA0.34470.45530.84230.117*
H9AB0.32680.48890.91090.117*
H9AC0.45300.45440.89710.117*
C10A0.4563 (3)0.6847 (3)0.92732 (16)0.0710 (9)
H10A0.47330.76430.91760.107*
H10B0.52800.64670.94640.107*
H10C0.39990.68350.95600.107*
C11A0.4935 (3)0.6308 (4)0.82125 (15)0.0748 (10)
H11A0.52150.71070.82010.090*
H11B0.56120.58060.83480.090*
C1B0.4490 (2)0.8726 (2)0.69862 (10)0.0405 (5)
C2B0.5510 (2)0.9442 (2)0.71580 (12)0.0494 (6)
H2BA0.56860.97120.75700.059*
C3B0.6240 (2)0.9745 (3)0.67371 (13)0.0532 (6)
H3BA0.69141.01960.68650.064*
C4B0.5961 (2)0.9370 (3)0.61158 (12)0.0512 (6)
C5B0.4966 (2)0.8706 (2)0.59204 (11)0.0466 (5)
H5BA0.47780.84930.54990.056*
C6B0.4235 (2)0.8348 (2)0.63480 (11)0.0410 (5)
C7B0.3283 (2)0.7547 (2)0.61084 (10)0.0418 (5)
H7BA0.31060.74630.56730.050*
C8B0.1836 (2)0.6052 (2)0.61156 (11)0.0485 (6)
C9B0.2573 (4)0.5016 (3)0.5970 (2)0.0877 (12)
H9BA0.30690.52440.56700.132*
H9BB0.20580.43920.57980.132*
H9BC0.30590.47540.63500.132*
C10B0.1066 (3)0.6519 (3)0.55286 (14)0.0693 (9)
H10D0.06210.71790.56380.104*
H10E0.05310.59180.53480.104*
H10F0.15600.67550.52280.104*
C11B0.1044 (3)0.5691 (3)0.65874 (14)0.0709 (9)
H11C0.04640.62980.66200.085*
H11D0.06240.49770.64480.085*
C1S0.6898 (11)0.6407 (7)0.6647 (5)0.207 (5)
H1SA0.76140.67210.68420.248*
C2S0.7801 (10)0.6597 (10)0.5804 (6)0.282 (7)
H2SA0.82990.70960.60930.423*
H2SB0.75460.70110.54180.423*
H2SC0.82380.59130.57200.423*
C3S0.5866 (8)0.5788 (7)0.5676 (5)0.245 (6)
H3SA0.51950.57670.58950.368*
H3SB0.60560.50080.55610.368*
H3SC0.56790.62580.53030.368*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0460 (2)0.0483 (3)0.0325 (2)0.00103 (17)0.01224 (16)0.00310 (16)
O1A0.0568 (11)0.0894 (15)0.0464 (10)0.0168 (10)0.0217 (8)0.0294 (10)
O2A0.0693 (12)0.0940 (15)0.0410 (9)0.0308 (11)0.0169 (9)0.0006 (10)
O3A0.0570 (13)0.139 (2)0.0816 (17)0.0211 (14)0.0310 (12)0.0058 (16)
O4A0.095 (2)0.260 (4)0.0514 (15)0.061 (3)0.0409 (13)0.037 (2)
O1B0.0590 (10)0.0576 (10)0.0398 (8)0.0098 (8)0.0226 (8)0.0105 (8)
O2B0.1166 (19)0.0817 (16)0.0496 (11)0.0528 (15)0.0091 (12)0.0236 (11)
O3B0.0959 (19)0.233 (4)0.0830 (18)0.101 (3)0.0347 (15)0.025 (2)
O4B0.0895 (17)0.144 (3)0.0539 (13)0.0486 (17)0.0356 (12)0.0146 (14)
O1S0.217 (5)0.130 (4)0.268 (7)0.044 (4)0.176 (5)0.052 (4)
N1A0.0447 (10)0.0480 (10)0.0334 (9)0.0018 (8)0.0082 (8)0.0002 (8)
N2A0.0567 (14)0.114 (2)0.0565 (15)0.0125 (14)0.0244 (12)0.0019 (15)
N1B0.0418 (9)0.0437 (10)0.0341 (9)0.0043 (8)0.0095 (7)0.0010 (7)
N2B0.0626 (14)0.105 (2)0.0576 (15)0.0316 (15)0.0224 (12)0.0003 (15)
N1S0.0749 (19)0.105 (3)0.089 (2)0.0207 (18)0.0082 (17)0.022 (2)
C1A0.0443 (12)0.0489 (12)0.0383 (11)0.0007 (10)0.0118 (9)0.0044 (10)
C2A0.0508 (14)0.0653 (16)0.0437 (13)0.0049 (12)0.0097 (11)0.0116 (12)
C3A0.0461 (13)0.0664 (16)0.0489 (14)0.0071 (12)0.0095 (11)0.0011 (12)
C4A0.0492 (13)0.0673 (16)0.0432 (13)0.0007 (12)0.0153 (11)0.0008 (12)
C5A0.0517 (13)0.0632 (15)0.0327 (11)0.0004 (12)0.0128 (10)0.0020 (11)
C6A0.0447 (11)0.0484 (12)0.0343 (11)0.0022 (10)0.0100 (9)0.0007 (9)
C7A0.0499 (12)0.0564 (14)0.0275 (10)0.0011 (10)0.0081 (9)0.0035 (9)
C8A0.0473 (12)0.0552 (14)0.0381 (11)0.0074 (11)0.0030 (9)0.0033 (10)
C9A0.087 (2)0.0625 (19)0.081 (2)0.0095 (17)0.0050 (18)0.0098 (17)
C10A0.0604 (17)0.091 (2)0.0569 (17)0.0084 (16)0.0045 (14)0.0163 (16)
C11A0.0565 (16)0.113 (3)0.0553 (16)0.0244 (18)0.0109 (13)0.0081 (18)
C1B0.0423 (11)0.0430 (11)0.0384 (11)0.0006 (9)0.0129 (9)0.0035 (9)
C2B0.0524 (13)0.0549 (14)0.0418 (12)0.0059 (11)0.0106 (10)0.0100 (11)
C3B0.0491 (13)0.0584 (15)0.0534 (14)0.0153 (11)0.0116 (11)0.0055 (12)
C4B0.0480 (13)0.0610 (15)0.0473 (13)0.0086 (11)0.0159 (11)0.0004 (11)
C5B0.0475 (12)0.0569 (14)0.0371 (11)0.0038 (11)0.0123 (9)0.0009 (10)
C6B0.0412 (11)0.0451 (11)0.0386 (11)0.0018 (9)0.0116 (9)0.0001 (9)
C7B0.0450 (11)0.0512 (13)0.0307 (10)0.0042 (10)0.0107 (8)0.0003 (9)
C8B0.0529 (13)0.0521 (13)0.0403 (12)0.0125 (11)0.0068 (10)0.0004 (10)
C9B0.092 (3)0.0579 (19)0.112 (3)0.0058 (18)0.014 (2)0.024 (2)
C10B0.0609 (17)0.095 (2)0.0488 (15)0.0250 (16)0.0020 (13)0.0124 (16)
C11B0.0742 (19)0.089 (2)0.0488 (15)0.0383 (17)0.0064 (14)0.0091 (15)
C1S0.334 (13)0.135 (6)0.194 (8)0.114 (8)0.173 (9)0.055 (6)
C2S0.200 (10)0.238 (12)0.45 (2)0.030 (9)0.191 (12)0.004 (12)
C3S0.198 (8)0.150 (7)0.334 (13)0.077 (6)0.126 (9)0.084 (8)
Geometric parameters (Å, º) top
Ni—O1A2.004 (2)C8A—C9A1.526 (4)
Ni—O1B2.0365 (19)C9A—H9AA0.9600
Ni—N1A2.038 (2)C9A—H9AB0.9600
Ni—N1B2.0465 (19)C9A—H9AC0.9600
Ni—O2B2.101 (2)C10A—H10A0.9600
Ni—O2A2.106 (2)C10A—H10B0.9600
O1A—C1A1.273 (3)C10A—H10C0.9600
O2A—C11A1.429 (4)C11A—H11A0.9700
O2A—H2A0.8200C11A—H11B0.9700
O3A—N2A1.222 (4)C1B—C6B1.423 (3)
O4A—N2A1.215 (4)C1B—C2B1.423 (3)
O1B—C1B1.298 (3)C2B—C3B1.369 (4)
O2B—C11B1.420 (4)C2B—H2BA0.9300
O2B—H2B0.8200C3B—C4B1.391 (4)
O3B—N2B1.216 (3)C3B—H3BA0.9300
O4B—N2B1.220 (3)C4B—C5B1.375 (4)
O1S—C1S1.115 (8)C5B—C6B1.397 (3)
N1A—C7A1.278 (3)C5B—H5BA0.9300
N1A—C8A1.494 (3)C6B—C7B1.452 (3)
N2A—C4A1.443 (4)C7B—H7BA0.9300
N1B—C7B1.272 (3)C8B—C9B1.514 (5)
N1B—C8B1.493 (3)C8B—C10B1.516 (4)
N2B—C4B1.446 (3)C8B—C11B1.519 (4)
N1S—C1S1.250 (9)C9B—H9BA0.9600
N1S—C2S1.375 (10)C9B—H9BB0.9600
N1S—C3S1.385 (8)C9B—H9BC0.9600
C1A—C6A1.433 (3)C10B—H10D0.9600
C1A—C2A1.433 (4)C10B—H10E0.9600
C2A—C3A1.352 (4)C10B—H10F0.9600
C2A—H2AA0.9300C11B—H11C0.9700
C3A—C4A1.399 (4)C11B—H11D0.9700
C3A—H3AA0.9300C1S—H1SA0.9300
C4A—C5A1.371 (4)C2S—H2SA0.9600
C5A—C6A1.396 (3)C2S—H2SB0.9600
C5A—H5AA0.9300C2S—H2SC0.9600
C6A—C7A1.448 (3)C3S—H3SA0.9600
C7A—H7AA0.9300C3S—H3SB0.9600
C8A—C10A1.519 (4)C3S—H3SC0.9600
C8A—C11A1.523 (4)
O1A—Ni—O1B92.52 (9)C8A—C10A—H10B109.5
O1A—Ni—N1A90.16 (8)H10A—C10A—H10B109.5
O1B—Ni—N1A98.60 (8)C8A—C10A—H10C109.5
O1A—Ni—N1B93.48 (8)H10A—C10A—H10C109.5
O1B—Ni—N1B89.22 (7)H10B—C10A—H10C109.5
N1A—Ni—N1B171.23 (8)O2A—C11A—C8A108.8 (3)
O1A—Ni—O2B87.84 (11)O2A—C11A—H11A109.9
O1B—Ni—O2B167.86 (8)C8A—C11A—H11A109.9
N1A—Ni—O2B93.54 (8)O2A—C11A—H11B109.9
N1B—Ni—O2B78.64 (8)C8A—C11A—H11B109.9
O1A—Ni—O2A168.90 (8)H11A—C11A—H11B108.3
O1B—Ni—O2A90.31 (9)O1B—C1B—C6B123.3 (2)
N1A—Ni—O2A78.79 (8)O1B—C1B—C2B119.5 (2)
N1B—Ni—O2A97.30 (8)C6B—C1B—C2B117.3 (2)
O2B—Ni—O2A91.64 (11)C3B—C2B—C1B122.3 (2)
C1A—O1A—Ni126.42 (16)C3B—C2B—H2BA118.9
C11A—O2A—Ni106.24 (17)C1B—C2B—H2BA118.9
C11A—O2A—H2A109.5C2B—C3B—C4B119.0 (2)
Ni—O2A—H2A120.9C2B—C3B—H3BA120.5
C1B—O1B—Ni125.03 (15)C4B—C3B—H3BA120.5
C11B—O2B—Ni107.94 (18)C5B—C4B—C3B121.1 (2)
C11B—O2B—H2B109.5C5B—C4B—N2B118.7 (2)
Ni—O2B—H2B141.8C3B—C4B—N2B120.1 (2)
C7A—N1A—C8A119.1 (2)C4B—C5B—C6B120.8 (2)
C7A—N1A—Ni124.07 (17)C4B—C5B—H5BA119.6
C8A—N1A—Ni115.76 (15)C6B—C5B—H5BA119.6
O4A—N2A—O3A122.1 (3)C5B—C6B—C1B119.5 (2)
O4A—N2A—C4A118.3 (3)C5B—C6B—C7B116.3 (2)
O3A—N2A—C4A119.5 (3)C1B—C6B—C7B124.1 (2)
C7B—N1B—C8B118.5 (2)N1B—C7B—C6B126.1 (2)
C7B—N1B—Ni125.61 (17)N1B—C7B—H7BA116.9
C8B—N1B—Ni115.59 (14)C6B—C7B—H7BA116.9
O3B—N2B—O4B122.2 (3)N1B—C8B—C9B107.4 (2)
O3B—N2B—C4B118.1 (3)N1B—C8B—C10B112.8 (2)
O4B—N2B—C4B119.6 (2)C9B—C8B—C10B111.8 (3)
C1S—N1S—C2S116.5 (9)N1B—C8B—C11B106.3 (2)
C1S—N1S—C3S125.0 (9)C9B—C8B—C11B109.5 (3)
C2S—N1S—C3S118.5 (8)C10B—C8B—C11B108.9 (2)
O1A—C1A—C6A124.0 (2)C8B—C9B—H9BA109.5
O1A—C1A—C2A119.1 (2)C8B—C9B—H9BB109.5
C6A—C1A—C2A116.8 (2)H9BA—C9B—H9BB109.5
C3A—C2A—C1A122.4 (2)C8B—C9B—H9BC109.5
C3A—C2A—H2AA118.8H9BA—C9B—H9BC109.5
C1A—C2A—H2AA118.8H9BB—C9B—H9BC109.5
C2A—C3A—C4A119.2 (2)C8B—C10B—H10D109.5
C2A—C3A—H3AA120.4C8B—C10B—H10E109.5
C4A—C3A—H3AA120.4H10D—C10B—H10E109.5
C5A—C4A—C3A121.1 (2)C8B—C10B—H10F109.5
C5A—C4A—N2A120.1 (2)H10D—C10B—H10F109.5
C3A—C4A—N2A118.8 (3)H10E—C10B—H10F109.5
C4A—C5A—C6A120.8 (2)O2B—C11B—C8B109.1 (2)
C4A—C5A—H5AA119.6O2B—C11B—H11C109.9
C6A—C5A—H5AA119.6C8B—C11B—H11C109.9
C5A—C6A—C1A119.5 (2)O2B—C11B—H11D109.9
C5A—C6A—C7A116.5 (2)C8B—C11B—H11D109.9
C1A—C6A—C7A124.1 (2)H11C—C11B—H11D108.3
N1A—C7A—C6A126.2 (2)O1S—C1S—N1S131.3 (14)
N1A—C7A—H7AA116.9O1S—C1S—H1SA114.3
C6A—C7A—H7AA116.9N1S—C1S—H1SA114.3
N1A—C8A—C10A112.0 (2)N1S—C2S—H2SA109.5
N1A—C8A—C11A105.7 (2)N1S—C2S—H2SB109.5
C10A—C8A—C11A108.1 (3)H2SA—C2S—H2SB109.5
N1A—C8A—C9A109.2 (2)N1S—C2S—H2SC109.5
C10A—C8A—C9A110.9 (3)H2SA—C2S—H2SC109.5
C11A—C8A—C9A110.9 (3)H2SB—C2S—H2SC109.5
C8A—C9A—H9AA109.5N1S—C3S—H3SA109.5
C8A—C9A—H9AB109.5N1S—C3S—H3SB109.5
H9AA—C9A—H9AB109.5H3SA—C3S—H3SB109.5
C8A—C9A—H9AC109.5N1S—C3S—H3SC109.5
H9AA—C9A—H9AC109.5H3SA—C3S—H3SC109.5
H9AB—C9A—H9AC109.5H3SB—C3S—H3SC109.5
C8A—C10A—H10A109.5
O1B—Ni—O1A—C1A123.2 (2)C2A—C1A—C6A—C5A2.6 (4)
N1A—Ni—O1A—C1A24.5 (2)O1A—C1A—C6A—C7A1.7 (4)
N1B—Ni—O1A—C1A147.5 (2)C2A—C1A—C6A—C7A178.7 (2)
O2B—Ni—O1A—C1A69.0 (2)C8A—N1A—C7A—C6A178.2 (2)
O2A—Ni—O1A—C1A18.5 (7)Ni—N1A—C7A—C6A10.8 (4)
O1A—Ni—O2A—C11A40.2 (6)C5A—C6A—C7A—N1A178.5 (3)
O1B—Ni—O2A—C11A64.6 (2)C1A—C6A—C7A—N1A2.8 (4)
N1A—Ni—O2A—C11A34.1 (2)C7A—N1A—C8A—C10A57.3 (3)
N1B—Ni—O2A—C11A153.9 (2)Ni—N1A—C8A—C10A134.3 (2)
O2B—Ni—O2A—C11A127.3 (2)C7A—N1A—C8A—C11A174.7 (3)
O1A—Ni—O1B—C1B121.5 (2)Ni—N1A—C8A—C11A16.9 (3)
N1A—Ni—O1B—C1B148.0 (2)C7A—N1A—C8A—C9A66.0 (3)
N1B—Ni—O1B—C1B28.0 (2)Ni—N1A—C8A—C9A102.5 (2)
O2B—Ni—O1B—C1B30.0 (6)Ni—O2A—C11A—C8A53.9 (3)
O2A—Ni—O1B—C1B69.3 (2)N1A—C8A—C11A—O2A46.3 (3)
O1A—Ni—O2B—C11B62.1 (2)C10A—C8A—C11A—O2A166.4 (3)
O1B—Ni—O2B—C11B29.9 (6)C9A—C8A—C11A—O2A71.9 (3)
N1A—Ni—O2B—C11B152.1 (2)Ni—O1B—C1B—C6B28.5 (3)
N1B—Ni—O2B—C11B31.9 (2)Ni—O1B—C1B—C2B152.63 (19)
O2A—Ni—O2B—C11B129.0 (2)O1B—C1B—C2B—C3B179.8 (3)
O1A—Ni—N1A—C7A19.7 (2)C6B—C1B—C2B—C3B1.3 (4)
O1B—Ni—N1A—C7A112.2 (2)C1B—C2B—C3B—C4B1.8 (4)
O2B—Ni—N1A—C7A68.2 (2)C2B—C3B—C4B—C5B0.2 (4)
O2A—Ni—N1A—C7A159.2 (2)C2B—C3B—C4B—N2B177.1 (3)
O1A—Ni—N1A—C8A172.58 (18)O3B—N2B—C4B—C5B173.0 (4)
O1B—Ni—N1A—C8A80.00 (18)O4B—N2B—C4B—C5B3.4 (5)
O2B—Ni—N1A—C8A99.57 (18)O3B—N2B—C4B—C3B4.3 (5)
O2A—Ni—N1A—C8A8.60 (17)O4B—N2B—C4B—C3B179.3 (3)
O1A—Ni—N1B—C7B105.4 (2)C3B—C4B—C5B—C6B2.7 (4)
O1B—Ni—N1B—C7B12.9 (2)N2B—C4B—C5B—C6B174.6 (3)
O2B—Ni—N1B—C7B167.5 (2)C4B—C5B—C6B—C1B3.2 (4)
O2A—Ni—N1B—C7B77.3 (2)C4B—C5B—C6B—C7B173.6 (2)
O1A—Ni—N1B—C8B80.53 (18)O1B—C1B—C6B—C5B177.6 (2)
O1B—Ni—N1B—C8B173.01 (17)C2B—C1B—C6B—C5B1.3 (3)
O2B—Ni—N1B—C8B6.57 (18)O1B—C1B—C6B—C7B5.9 (4)
O2A—Ni—N1B—C8B96.78 (18)C2B—C1B—C6B—C7B175.3 (2)
Ni—O1A—C1A—C6A19.7 (4)C8B—N1B—C7B—C6B171.9 (2)
Ni—O1A—C1A—C2A160.7 (2)Ni—N1B—C7B—C6B2.0 (4)
O1A—C1A—C2A—C3A177.8 (3)C5B—C6B—C7B—N1B165.8 (2)
C6A—C1A—C2A—C3A1.8 (4)C1B—C6B—C7B—N1B10.8 (4)
C1A—C2A—C3A—C4A0.4 (5)C7B—N1B—C8B—C9B75.3 (3)
C2A—C3A—C4A—C5A1.9 (5)Ni—N1B—C8B—C9B99.2 (3)
C2A—C3A—C4A—N2A175.4 (3)C7B—N1B—C8B—C10B48.3 (3)
O4A—N2A—C4A—C5A0.8 (5)Ni—N1B—C8B—C10B137.2 (2)
O3A—N2A—C4A—C5A177.3 (3)C7B—N1B—C8B—C11B167.5 (2)
O4A—N2A—C4A—C3A178.1 (4)Ni—N1B—C8B—C11B18.0 (3)
O3A—N2A—C4A—C3A0.1 (5)Ni—O2B—C11B—C8B51.5 (3)
C3A—C4A—C5A—C6A1.0 (4)N1B—C8B—C11B—O2B45.2 (4)
N2A—C4A—C5A—C6A176.2 (3)C9B—C8B—C11B—O2B70.6 (3)
C4A—C5A—C6A—C1A1.2 (4)C10B—C8B—C11B—O2B166.9 (3)
C4A—C5A—C6A—C7A180.0 (3)C2S—N1S—C1S—O1S179.8 (8)
O1A—C1A—C6A—C5A177.0 (3)C3S—N1S—C1S—O1S1.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1S0.821.942.734 (5)163
O2B—H2B···O1Bi0.821.812.619 (3)166
C9A—H9AA···O1Ai0.962.593.422 (4)146
C11A—H11B···O3Bii0.972.503.394 (4)153
C5B—H5BA···O4Aiii0.932.573.418 (4)151
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C11H13N2O4)2]·C3H7NO
Mr606.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.42279 (16), 11.42936 (18), 21.4903 (3)
β (°) 99.1120 (14)
V3)2770.26 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.54
Crystal size (mm)0.44 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.650, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13929, 5826, 4514
Rint0.026
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.05
No. of reflections5826
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1S0.821.942.734 (5)162.8
O2B—H2B···O1Bi0.821.812.619 (3)166.3
C9A—H9AA···O1Ai0.962.593.422 (4)145.6
C11A—H11B···O3Bii0.972.503.394 (4)152.7
C5B—H5BA···O4Aiii0.932.573.418 (4)151.2
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. KA wishes to acknowledge the Howard University Graduate School of Arts & Sciences for the award of a Teaching Assistanceship as well as a GANN Fellowship.

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2739–m2740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193–m1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., O'Connor, C. J. & Sinn, E. (1981). Inorg. Chem. 20, 3486–3493.  CSD CrossRef CAS Web of Science Google Scholar
First citationGultneh, Y., Khan, R. A., Ahvazi, B. & Butcher, R. J. (1998). Polyhedron, 17, 3351–3360.  Web of Science CrossRef Google Scholar
First citationMustafaa, I. M., Hapipaha, M. A., Abdullab, M. A. & Warda, T. R. (2009). Polyhedron, 28, 3993–3998.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D., Weng, L. & Jin, G.-X. (2010). J. Organomet. Chem. 695, 643–647.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds