organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­fluoro­benzo­yl)-P,P-bis­­(pyrrolidin-1-yl)phosphinic amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman, Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 3 August 2011; accepted 16 August 2011; online 27 August 2011)

The phosphoryl and carbonyl groups in the title compound, C15H20F2N3O2P, are anti with respect to each other (but the P- and C-groups are separated by another atom) and the P atom is in a tetra­hedral coordination environment. Two C atoms in one of the pyrrolidinyl fragments are disordered over two sets of sites with occupancies of 0.746 (8) and 0.254 (8). The environments of the pyrrolidinyl N atoms show a slight deviation from planarity and none of the three N atoms is involved in any hydrogen bond as an acceptor. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds form inversion dimers.

Related literature

For hydrogen-bond patterns in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]); Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For hydrogen-bond strength, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For a related structure, see: Pourayoubi et al. (2010[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.]). For bond lengths, angles and torsion angles, see: Tarahhomi et al. (2011[Tarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201-210.]). For graph-set motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related phospho­ric triamide, see: Sabbaghi et al. (2010[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20F2N3O2P

  • Mr = 343.31

  • Monoclinic, P 21 /n

  • a = 10.286 (3) Å

  • b = 14.873 (4) Å

  • c = 10.917 (3) Å

  • β = 99.296 (3)°

  • V = 1648.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.952

  • 13279 measured reflections

  • 3776 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.05

  • 3776 reflections

  • 230 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 (1) 1.90 (1) 2.757 (2) 175 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The patterns of hydrogen bonds and their strengths on phosphoric triamides containing a C(O)NHP(O) skeleton have been discussed (Toghraee et al., 2011; Pourayoubi et al., 2011). The structure determination of the title compound, C15H20F2N3O2P (Fig. 1), was performed as a continuation of work on this family of compounds in our laboratory.

The carbon atoms C13 and C14 in one of the pyrrolidinyl fragments are disordered over two sets of sites with occupancies of 0.746 (8) and 0.254 (8). The PO and CO groups are in anti positions with respect to each other. The P atom is in a distorted tetrahedral environment as has been noted for other phosphoric triamides (Sabbaghi et al., 2010). The nitrogen atoms show sp2 character, the average bond angles at the two tertiary N atoms being 117.8 and 118.7°, respectively. The PO, CO and P—N bond lengths, P—N—C bond angles and O—P—N—C torsion angles are within the expected values (Tarahhomi et al., 2011).

The PO group and the N—H unit are syn with respect to one another. In the crystal, pairs of intermolecular N—H···O(P) hydrogen bonds (Table 1) form hydrogen-bonded dimers as R22(8) graph-set rings (Bernstein et al., 1995).

Related literature top

For patterns of hydrogen bonds in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011); Pourayoubi et al. (2011) and in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011). For hydrogen-bond strength, see: Pourayoubi et al. (2011). For a related structure, see: Pourayoubi et al. (2010). For bond lengths, angles and torsion angles, see: Tarahhomi et al. (2011). For graph-set motifs, see Bernstein et al. (1995). For related phosphoric triamides, see: Sabbaghi et al. (2010).

Experimental top

2,6—F2C6H3C(O)NHP(O)Cl2 was prepared according to the literature method reported by Pourayoubi et al. (2010).

To a solution of 2,6—F2C6H3C(O)NHP(O)Cl2 (0.4 g, 1.46 mmol) in dry chloroform (30 ml), a solution of pyrrolidine (0.415 g, 5.84 mmol) in dry chloroform (10 ml) was added at 0 °C. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from a mixture of CH3OH/DMF (4:1) at room temperature. Single crystals of the title compound were obtained from this solution at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically by Fourier full matrix least squares on F2. Hydrogen atom H1A was located from a Fourier difference map and allowed to refine with a N—H distance of 0.87 (1) Å and Uiso(H) = 1.2Ueq(N). All other hydrogen atoms were placed in geometrically idealized positions with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2) and with Uiso(H) = 1.2Ueq(C). Carbon atoms C13 and C14 were disordered over two positions with approximate partial occupancies of 0.746 (8) and 0.254 (8). Hydrogen atoms on C12 and C15 were also treated using the above two parts model.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot of title compound with labeling. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
N-(2,6-Difluorobenzoyl)-P,P-bis(pyrrolidin-1-yl)phosphinic amide top
Crystal data top
C15H20F2N3O2PF(000) = 720
Mr = 343.31Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7152 reflections
a = 10.286 (3) Åθ = 2.5–27.9°
b = 14.873 (4) ŵ = 0.20 mm1
c = 10.917 (3) ÅT = 100 K
β = 99.296 (3)°Block, colourless
V = 1648.3 (7) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3776 independent reflections
Radiation source: fine-focus sealed tube2953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.925, Tmax = 0.952k = 1914
13279 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.0825P]
where P = (Fo2 + 2Fc2)/3
3776 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.39 e Å3
7 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H20F2N3O2PV = 1648.3 (7) Å3
Mr = 343.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.286 (3) ŵ = 0.20 mm1
b = 14.873 (4) ÅT = 100 K
c = 10.917 (3) Å0.40 × 0.30 × 0.25 mm
β = 99.296 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3776 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2953 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.952Rint = 0.043
13279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0477 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
3776 reflectionsΔρmin = 0.41 e Å3
230 parameters
Special details top

Experimental. IR (KBr, ν, cm-1): 3062 (NH), 2846, 1684, 1622, 1465, 1442, 1284, 1218, 1181, 1092, 1008, 876, 800, 768, 708, 586.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.58132 (4)0.60634 (4)0.14444 (5)0.02623 (15)
F10.06841 (11)0.66217 (8)0.14052 (12)0.0357 (3)
F20.33806 (10)0.40553 (8)0.20332 (11)0.0333 (3)
O10.34013 (13)0.65942 (10)0.26101 (14)0.0340 (4)
O20.65277 (12)0.54022 (11)0.07877 (12)0.0322 (4)
N10.42250 (14)0.57290 (13)0.12010 (15)0.0283 (4)
H1A0.402 (2)0.5349 (12)0.0604 (16)0.034*
N20.64224 (15)0.60885 (11)0.29142 (15)0.0260 (4)
N30.57871 (16)0.71092 (14)0.10109 (18)0.0396 (5)
C10.08224 (17)0.57212 (14)0.15613 (17)0.0249 (4)
C20.02954 (17)0.52080 (14)0.15101 (18)0.0282 (4)
H2A0.11440.54780.13860.034*
C30.01492 (18)0.42859 (15)0.16440 (19)0.0304 (5)
H3A0.09080.39190.16210.036*
C40.10900 (19)0.38887 (14)0.18117 (18)0.0284 (4)
H4A0.11900.32560.19040.034*
C50.21675 (17)0.44419 (14)0.18402 (17)0.0260 (4)
C60.20909 (16)0.53694 (13)0.17294 (16)0.0225 (4)
C70.32904 (17)0.59659 (14)0.18895 (17)0.0249 (4)
C80.6309 (2)0.68401 (14)0.3773 (2)0.0328 (5)
H8A0.55480.72290.34520.039*
H8B0.71200.72090.39000.039*
C90.6109 (3)0.63821 (17)0.4964 (2)0.0440 (6)
H9A0.51670.62440.49620.053*
H9B0.64380.67610.56950.053*
C100.6916 (3)0.55236 (17)0.4966 (2)0.0450 (6)
H10A0.66030.50570.54970.054*
H10B0.78620.56410.52650.054*
C110.6688 (2)0.52362 (14)0.36086 (18)0.0334 (5)
H11A0.74770.49340.33910.040*
H11B0.59260.48230.34310.040*
C120.7037 (2)0.75855 (18)0.0940 (3)0.0512 (7)
H12A0.73110.79530.16930.061*0.746 (8)
H12B0.77480.71520.08570.061*0.746 (8)
H12C0.76800.72050.05970.061*0.254 (8)
H12D0.74470.78400.17480.061*0.254 (8)
C130.6757 (6)0.8164 (5)0.0173 (6)0.0601 (19)0.746 (8)
H13A0.68710.78290.09330.072*0.746 (8)
H13B0.73350.87000.00940.072*0.746 (8)
C140.5338 (4)0.8424 (3)0.0195 (4)0.0520 (13)0.746 (8)
H14A0.49330.86460.10240.062*0.746 (8)
H14B0.52520.88900.04340.062*0.746 (8)
C13A0.6387 (15)0.8325 (12)0.0017 (13)0.043 (4)0.254 (8)
H13C0.60620.88190.04950.051*0.254 (8)
H13D0.70610.85770.04380.051*0.254 (8)
C14A0.5278 (10)0.7968 (8)0.0887 (9)0.048 (3)0.254 (8)
H14C0.55590.75430.14920.057*0.254 (8)
H14D0.47040.84430.13180.057*0.254 (8)
C150.4701 (2)0.7512 (2)0.0127 (3)0.0557 (8)
H15A0.39100.76130.05180.067*0.746 (8)
H15B0.44620.71310.06200.067*0.746 (8)
H15C0.41950.79360.05650.067*0.254 (8)
H15D0.40950.70340.02500.067*0.254 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0153 (2)0.0358 (3)0.0272 (3)0.00273 (19)0.00216 (18)0.0048 (2)
F10.0267 (6)0.0268 (7)0.0548 (8)0.0024 (5)0.0109 (5)0.0006 (6)
F20.0230 (5)0.0356 (7)0.0407 (7)0.0057 (5)0.0034 (5)0.0040 (5)
O10.0278 (7)0.0339 (9)0.0410 (8)0.0075 (6)0.0079 (6)0.0103 (7)
O20.0182 (6)0.0502 (10)0.0279 (7)0.0018 (6)0.0030 (5)0.0034 (7)
N10.0187 (7)0.0436 (11)0.0230 (8)0.0054 (7)0.0046 (6)0.0037 (8)
N20.0261 (8)0.0215 (9)0.0284 (8)0.0003 (6)0.0019 (6)0.0007 (7)
N30.0218 (8)0.0465 (12)0.0508 (12)0.0006 (8)0.0067 (7)0.0229 (10)
C10.0244 (8)0.0237 (10)0.0277 (9)0.0011 (7)0.0079 (7)0.0022 (8)
C20.0179 (8)0.0351 (12)0.0325 (10)0.0003 (8)0.0067 (7)0.0042 (9)
C30.0251 (9)0.0355 (12)0.0318 (10)0.0099 (8)0.0083 (8)0.0042 (9)
C40.0305 (9)0.0264 (11)0.0291 (10)0.0035 (8)0.0074 (8)0.0001 (8)
C50.0215 (8)0.0323 (11)0.0242 (9)0.0032 (8)0.0035 (7)0.0001 (8)
C60.0180 (8)0.0289 (11)0.0213 (9)0.0024 (7)0.0055 (7)0.0018 (8)
C70.0189 (8)0.0306 (11)0.0250 (9)0.0026 (7)0.0027 (7)0.0014 (8)
C80.0306 (10)0.0233 (11)0.0408 (12)0.0019 (8)0.0047 (8)0.0049 (9)
C90.0621 (15)0.0340 (13)0.0371 (12)0.0038 (11)0.0115 (11)0.0074 (10)
C100.0674 (16)0.0360 (14)0.0287 (11)0.0082 (12)0.0009 (11)0.0024 (10)
C110.0458 (12)0.0254 (11)0.0272 (10)0.0066 (9)0.0004 (9)0.0005 (9)
C120.0343 (11)0.0389 (15)0.085 (2)0.0063 (10)0.0237 (12)0.0122 (14)
C130.091 (4)0.038 (3)0.064 (3)0.025 (3)0.052 (3)0.008 (2)
C140.081 (3)0.040 (2)0.036 (2)0.0016 (19)0.0119 (19)0.0143 (18)
C13A0.048 (8)0.046 (9)0.035 (7)0.004 (6)0.010 (6)0.013 (6)
C14A0.072 (7)0.037 (6)0.032 (6)0.001 (5)0.004 (5)0.007 (5)
C150.0462 (13)0.068 (2)0.0523 (16)0.0092 (13)0.0052 (12)0.0353 (14)
Geometric parameters (Å, º) top
P1—O21.4803 (16)C9—H9B0.9900
P1—N31.625 (2)C10—C111.524 (3)
P1—N21.6261 (17)C10—H10A0.9900
P1—N11.6872 (16)C10—H10B0.9900
F1—C11.355 (2)C11—H11A0.9900
F2—C51.359 (2)C11—H11B0.9900
O1—C71.215 (2)C12—C131.479 (7)
N1—C71.359 (2)C12—C13A1.566 (14)
N1—H1A0.863 (9)C12—H12A0.9900
N2—C81.476 (3)C12—H12B0.9900
N2—C111.480 (3)C12—H12C0.9891
N3—C151.480 (3)C12—H12D0.9903
N3—C121.481 (3)C13—C141.507 (7)
C1—C21.374 (3)C13—H13A0.9900
C1—C61.390 (2)C13—H13B0.9900
C2—C31.385 (3)C14—C151.571 (4)
C2—H2A0.9500C14—H14A0.9900
C3—C41.390 (3)C14—H14B0.9900
C3—H3A0.9500C13A—C14A1.481 (15)
C4—C51.377 (3)C13A—H13C0.9900
C4—H4A0.9500C13A—H13D0.9900
C5—C61.386 (3)C14A—C151.500 (9)
C6—C71.507 (2)C14A—H14C0.9900
C8—C91.512 (3)C14A—H14D0.9900
C8—H8A0.9900C15—H15A0.9900
C8—H8B0.9900C15—H15B0.9900
C9—C101.523 (3)C15—H15C0.9892
C9—H9A0.9900C15—H15D0.9898
O2—P1—N3118.75 (10)C13—C12—N3105.4 (3)
O2—P1—N2110.54 (8)N3—C12—C13A94.9 (6)
N3—P1—N2104.53 (10)C13—C12—H12A110.7
O2—P1—N1105.77 (9)N3—C12—H12A110.7
N3—P1—N1105.44 (9)C13A—C12—H12A100.4
N2—P1—N1111.79 (8)C13—C12—H12B110.7
C7—N1—P1126.16 (14)N3—C12—H12B110.7
C7—N1—H1A118.4 (15)C13A—C12—H12B130.1
P1—N1—H1A115.3 (15)H12A—C12—H12B108.8
C8—N2—C11110.53 (16)C13—C12—H12C94.3
C8—N2—P1125.92 (13)N3—C12—H12C112.7
C11—N2—P1119.72 (13)C13A—C12—H12C113.6
C15—N3—C12110.05 (19)H12A—C12—H12C120.9
C15—N3—P1123.53 (17)C13—C12—H12D120.5
C12—N3—P1119.96 (15)N3—C12—H12D112.6
F1—C1—C2118.29 (16)C13A—C12—H12D112.4
F1—C1—C6117.78 (16)H12B—C12—H12D96.8
C2—C1—C6123.90 (19)H12C—C12—H12D110.0
C1—C2—C3118.04 (17)C12—C13—C14102.8 (4)
C1—C2—H2A121.0C12—C13—H13A111.2
C3—C2—H2A121.0C14—C13—H13A111.2
C2—C3—C4121.09 (18)C12—C13—H13B111.2
C2—C3—H3A119.5C14—C13—H13B111.2
C4—C3—H3A119.5H13A—C13—H13B109.1
C5—C4—C3117.83 (19)C13—C14—C15102.3 (4)
C5—C4—H4A121.1C13—C14—H14A111.3
C3—C4—H4A121.1C15—C14—H14A111.3
F2—C5—C4117.79 (18)C13—C14—H14B111.3
F2—C5—C6118.20 (16)C15—C14—H14B111.3
C4—C5—C6123.97 (17)H14A—C14—H14B109.2
C5—C6—C1115.16 (16)C14A—C13A—C12112.3 (12)
C5—C6—C7122.82 (16)C14A—C13A—H13C109.1
C1—C6—C7121.82 (18)C12—C13A—H13C109.1
O1—C7—N1123.83 (17)C14A—C13A—H13D109.1
O1—C7—C6121.16 (17)C12—C13A—H13D109.1
N1—C7—C6114.99 (17)H13C—C13A—H13D107.9
N2—C8—C9103.94 (17)C13A—C14A—C1591.4 (9)
N2—C8—H8A111.0C13A—C14A—H14C113.4
C9—C8—H8A111.0C15—C14A—H14C113.4
N2—C8—H8B111.0C13A—C14A—H14D113.4
C9—C8—H8B111.0C15—C14A—H14D113.4
H8A—C8—H8B109.0H14C—C14A—H14D110.7
C8—C9—C10103.24 (19)N3—C15—C14A108.5 (4)
C8—C9—H9A111.1N3—C15—C14101.4 (2)
C10—C9—H9A111.1N3—C15—H15A111.5
C8—C9—H9B111.1C14A—C15—H15A134.5
C10—C9—H9B111.1C14—C15—H15A111.5
H9A—C9—H9B109.1N3—C15—H15B111.5
C9—C10—C11103.61 (18)C14A—C15—H15B74.1
C9—C10—H10A111.0C14—C15—H15B111.5
C11—C10—H10A111.0H15A—C15—H15B109.3
C9—C10—H10B111.0N3—C15—H15C110.1
C11—C10—H10B111.0C14A—C15—H15C111.7
H10A—C10—H10B109.0C14—C15—H15C80.1
N2—C11—C10104.16 (17)H15B—C15—H15C133.1
N2—C11—H11A110.9N3—C15—H15D109.8
C10—C11—H11A110.9C14A—C15—H15D108.4
N2—C11—H11B110.9C14—C15—H15D141.7
C10—C11—H11B110.9H15A—C15—H15D77.4
H11A—C11—H11B108.9H15C—C15—H15D108.3
O2—P1—N1—C7160.11 (17)P1—N1—C7—C6162.13 (14)
N3—P1—N1—C773.26 (19)C5—C6—C7—O1126.8 (2)
N2—P1—N1—C739.7 (2)C1—C6—C7—O147.8 (3)
O2—P1—N2—C8157.70 (16)C5—C6—C7—N151.5 (2)
N3—P1—N2—C828.81 (18)C1—C6—C7—N1133.96 (19)
N1—P1—N2—C884.76 (18)C11—N2—C8—C916.4 (2)
O2—P1—N2—C1146.49 (17)P1—N2—C8—C9141.28 (16)
N3—P1—N2—C11175.38 (15)N2—C8—C9—C1033.4 (2)
N1—P1—N2—C1171.05 (17)C8—C9—C10—C1138.2 (2)
O2—P1—N3—C1595.4 (2)C8—N2—C11—C107.4 (2)
N2—P1—N3—C15140.9 (2)P1—N2—C11—C10166.62 (15)
N1—P1—N3—C1522.9 (2)C9—C10—C11—N228.0 (2)
O2—P1—N3—C1253.6 (2)C15—N3—C12—C1311.0 (4)
N2—P1—N3—C1270.2 (2)P1—N3—C12—C13141.7 (3)
N1—P1—N3—C12171.80 (19)C15—N3—C12—C13A5.5 (7)
F1—C1—C2—C3178.66 (18)P1—N3—C12—C13A158.3 (6)
C6—C1—C2—C30.5 (3)N3—C12—C13—C1433.6 (5)
C1—C2—C3—C40.7 (3)C13A—C12—C13—C1425 (2)
C2—C3—C4—C50.0 (3)C12—C13—C14—C1542.7 (5)
C3—C4—C5—F2178.50 (17)C13—C12—C13A—C14A89 (3)
C3—C4—C5—C60.9 (3)N3—C12—C13A—C14A35.5 (12)
F2—C5—C6—C1178.62 (16)C12—C13A—C14A—C1547.7 (13)
C4—C5—C6—C11.1 (3)C12—N3—C15—C14A23.9 (6)
F2—C5—C6—C73.8 (3)P1—N3—C15—C14A127.7 (5)
C4—C5—C6—C7173.80 (18)C12—N3—C15—C1415.1 (3)
F1—C1—C6—C5177.82 (17)P1—N3—C15—C14166.7 (2)
C2—C1—C6—C50.3 (3)C13A—C14A—C15—N340.9 (10)
F1—C1—C6—C77.3 (3)C13A—C14A—C15—C1444.1 (8)
C2—C1—C6—C7174.62 (18)C13—C14—C15—N335.1 (4)
P1—N1—C7—O116.1 (3)C13—C14—C15—C14A70.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (1)1.90 (1)2.757 (2)175 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H20F2N3O2P
Mr343.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.286 (3), 14.873 (4), 10.917 (3)
β (°) 99.296 (3)
V3)1648.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.925, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
13279, 3776, 2953
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.05
No. of reflections3776
No. of parameters230
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.863 (9)1.896 (10)2.757 (2)175 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds