organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N1,N3-Bis(pyridin-3-ylmeth­yl)isophthalamide dihydrate

aSchool of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008, People's Republic of China
*Correspondence e-mail: dongxiaoyingzi@163.com

(Received 25 July 2011; accepted 7 August 2011; online 17 August 2011)

The complete organic molecule in the title dihydrate, C20H22N4O4, is generated by crystallographic twofold symmetry, with two C atoms lying on the rotation axis. The symmetry unique pyridine ring forms a dihedral angle of 83.16 (8)° with the central benzene ring. In the crystal, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds connect the components into a two-dimensional network lying parallel to (101).

Related literature

For information on amide derivatives used in the construction of metal-organic frameworks, see: Luo et al. (2007[Luo, F., Zheng, J. M. & Batten, S. R. (2007). Chem. Commun. 36, 3744-3746.], 2009[Luo, F., Che, Y. X. & Zheng, J. M. (2009). Micropor. Mesopor. Mater. A117, 486-489.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O2·2H2O

  • Mr = 382.42

  • Monoclinic, C 2/c

  • a = 23.0097 (8) Å

  • b = 7.0040 (2) Å

  • c = 12.4483 (4) Å

  • β = 107.493 (2)°

  • V = 1913.39 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADADS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.986

  • 7105 measured reflections

  • 1687 independent reflections

  • 1350 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.02

  • 1687 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.05 2.859 (2) 156
O2—H2W⋯O1ii 0.95 (3) 1.94 (3) 2.875 (2) 169 (3)
O2—H1W⋯N2 0.95 (3) 1.90 (3) 2.849 (2) 178 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Amides are useful to construct long ligands for building porous metal-organic frameworks (Luo et al., 2007;2009). We synthesized the title compound in the hope of using it as a ligand for constructing metal-organic frameworks. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The molecule lies on a twofold rotation axis. The symmetry unique pyridine ring forms a dihedral angle of 83.16 (8)° with the central benzene ring. In the crystal, intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds connect the components of the structure into a two-dimensional network parallel to (101) (Fig. 2).

Related literature top

For information on amide derivatives used in the construction of metal-organic frameworks, see: Luo et al. (2007, 2009).

Experimental top

Thionyl chloride (10 mL, 99.0%) and isophthalic acid (10 mmol) in a round bottomflask was refluxed for 2 h. After the reaction was complete, dichloromethane (30 mL), triethylamine (4.2 mL) and pyridin-3-ylmethanamine (20 mmol) were added to the solution, and stired for 2 h in an ice bath. The mixture was refluxed for 3 hr. The solvent was evaporated in vacuo and the residue was washed with water. The title compound was dissolved in N,N-dimethylformamide and single crystals were obtained by slow evaporation.

Refinement top

H atoms bonded to C and N atoms were placed in calculated positions with C—H = 0.93 - 0.95Å, N—H = 0.86Å and included using a riding-model approximation with Uiso(H) = 1.2Ueq(C,N). H atoms bonded to O atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level (symmetry code; (A) -x+1, y, -z+1/2). Only the symmetry unique water molecule is shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
N1,N3-Bis(pyridin-3-ylmethyl)isophthalamide dihydrate top
Crystal data top
C20H18N4O2·2H2OF(000) = 808
Mr = 382.42Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2484 reflections
a = 23.0097 (8) Åθ = 3.1–27.3°
b = 7.0040 (2) ŵ = 0.10 mm1
c = 12.4483 (4) ÅT = 296 K
β = 107.493 (2)°Block, colorless
V = 1913.39 (11) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1687 independent reflections
Radiation source: fine-focus sealed tube1350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADADS; Sheldrick, 1996)
h = 2727
Tmin = 0.981, Tmax = 0.986k = 88
7105 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.8895P]
where P = (Fo2 + 2Fc2)/3
1687 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H18N4O2·2H2OV = 1913.39 (11) Å3
Mr = 382.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.0097 (8) ŵ = 0.10 mm1
b = 7.0040 (2) ÅT = 296 K
c = 12.4483 (4) Å0.20 × 0.20 × 0.15 mm
β = 107.493 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1687 independent reflections
Absorption correction: multi-scan
(SADADS; Sheldrick, 1996)
1350 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.026
7105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
1687 reflectionsΔρmin = 0.14 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26370 (7)0.5013 (2)0.48897 (15)0.0532 (5)
H10.27760.54910.56190.064*
C20.30590 (7)0.4263 (2)0.44286 (13)0.0440 (4)
C30.28433 (8)0.3535 (3)0.33491 (15)0.0614 (5)
H30.31120.30060.30040.074*
C40.22323 (9)0.3594 (3)0.27895 (16)0.0706 (6)
H40.20810.30950.20670.085*
C50.18480 (8)0.4404 (3)0.33149 (19)0.0681 (6)
H50.14350.44690.29240.082*
C60.37282 (7)0.4242 (3)0.50748 (13)0.0500 (4)
H6A0.37920.49380.57740.060*
H6B0.38580.29330.52620.060*
C70.43779 (6)0.4081 (2)0.38248 (13)0.0442 (4)
C80.47085 (6)0.5210 (2)0.31622 (12)0.0402 (4)
C90.50000.4233 (3)0.25000.0402 (5)
H90.50000.29050.25000.048*
C100.47222 (7)0.7191 (3)0.31698 (14)0.0544 (5)
H100.45420.78630.36310.065*
C110.50000.8164 (4)0.25000.0655 (8)
H110.50000.94920.25000.079*
H1W0.1383 (14)0.563 (4)0.494 (2)0.126 (10)*
H2W0.0893 (14)0.482 (5)0.548 (3)0.141 (11)*
N10.40984 (5)0.5090 (2)0.44382 (11)0.0470 (4)
H1A0.41400.63110.44570.056*
N20.20366 (7)0.5099 (2)0.43535 (15)0.0662 (5)
O10.43603 (5)0.23240 (18)0.37774 (11)0.0644 (4)
O20.10649 (7)0.5921 (2)0.52588 (15)0.0810 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (10)0.0520 (10)0.0644 (11)0.0028 (8)0.0316 (8)0.0020 (8)
C20.0488 (8)0.0400 (9)0.0508 (9)0.0032 (7)0.0263 (7)0.0027 (7)
C30.0595 (10)0.0687 (13)0.0624 (11)0.0019 (9)0.0282 (9)0.0078 (9)
C40.0648 (12)0.0808 (15)0.0648 (12)0.0124 (10)0.0173 (10)0.0058 (11)
C50.0477 (10)0.0721 (13)0.0825 (14)0.0080 (9)0.0167 (9)0.0105 (11)
C60.0495 (9)0.0574 (11)0.0509 (9)0.0000 (8)0.0271 (7)0.0031 (8)
C70.0406 (8)0.0453 (10)0.0512 (9)0.0011 (7)0.0205 (7)0.0030 (7)
C80.0335 (7)0.0442 (9)0.0459 (8)0.0006 (6)0.0163 (6)0.0010 (7)
C90.0361 (10)0.0374 (11)0.0496 (12)0.0000.0167 (9)0.000
C100.0614 (10)0.0458 (10)0.0700 (11)0.0029 (8)0.0410 (9)0.0033 (8)
C110.0823 (18)0.0390 (13)0.097 (2)0.0000.0606 (16)0.000
N10.0461 (7)0.0473 (8)0.0568 (8)0.0013 (6)0.0295 (6)0.0014 (6)
N20.0513 (9)0.0639 (10)0.0945 (13)0.0020 (7)0.0388 (8)0.0039 (9)
O10.0800 (9)0.0451 (8)0.0886 (9)0.0000 (6)0.0566 (7)0.0049 (6)
O20.0929 (10)0.0548 (9)0.1232 (13)0.0019 (7)0.0745 (10)0.0074 (8)
Geometric parameters (Å, º) top
C1—N21.343 (2)C7—O11.232 (2)
C1—C21.372 (2)C7—N11.3383 (19)
C1—H10.9300C7—C81.504 (2)
C2—C31.383 (2)C8—C101.388 (2)
C2—C61.508 (2)C8—C91.3892 (17)
C3—C41.369 (3)C9—C8i1.3892 (17)
C3—H30.9300C9—H90.9300
C4—C51.371 (3)C10—C111.374 (2)
C4—H40.9300C10—H100.9300
C5—N21.326 (3)C11—C10i1.374 (2)
C5—H50.9300C11—H110.9300
C6—N11.4534 (18)N1—H1A0.8600
C6—H6A0.9700O2—H1W0.95 (3)
C6—H6B0.9700O2—H2W0.95 (3)
N2—C1—C2124.12 (17)O1—C7—N1122.70 (14)
N2—C1—H1117.9O1—C7—C8120.90 (14)
C2—C1—H1117.9N1—C7—C8116.38 (14)
C1—C2—C3117.08 (15)C10—C8—C9118.85 (14)
C1—C2—C6121.21 (14)C10—C8—C7122.41 (13)
C3—C2—C6121.70 (14)C9—C8—C7118.72 (14)
C4—C3—C2119.80 (17)C8i—C9—C8121.0 (2)
C4—C3—H3120.1C8i—C9—H9119.5
C2—C3—H3120.1C8—C9—H9119.5
C3—C4—C5118.73 (18)C11—C10—C8120.36 (15)
C3—C4—H4120.6C11—C10—H10119.8
C5—C4—H4120.6C8—C10—H10119.8
N2—C5—C4123.23 (17)C10i—C11—C10120.5 (2)
N2—C5—H5118.4C10i—C11—H11119.7
C4—C5—H5118.4C10—C11—H11119.7
N1—C6—C2112.14 (12)C7—N1—C6123.79 (14)
N1—C6—H6A109.2C7—N1—H1A118.1
C2—C6—H6A109.2C6—N1—H1A118.1
N1—C6—H6B109.2C5—N2—C1117.01 (15)
C2—C6—H6B109.2H1W—O2—H2W113 (2)
H6A—C6—H6B107.9
N2—C1—C2—C30.9 (3)N1—C7—C8—C9179.21 (11)
N2—C1—C2—C6179.05 (15)C10—C8—C9—C8i1.20 (11)
C1—C2—C3—C40.4 (3)C7—C8—C9—C8i177.47 (14)
C6—C2—C3—C4179.58 (17)C9—C8—C10—C112.4 (2)
C2—C3—C4—C50.8 (3)C7—C8—C10—C11176.19 (12)
C3—C4—C5—N21.6 (3)C8—C10—C11—C10i1.24 (11)
C1—C2—C6—N1127.37 (16)O1—C7—N1—C62.4 (2)
C3—C2—C6—N152.6 (2)C8—C7—N1—C6176.18 (13)
O1—C7—C8—C10178.05 (16)C2—C6—N1—C795.97 (18)
N1—C7—C8—C100.6 (2)C4—C5—N2—C11.1 (3)
O1—C7—C8—C90.6 (2)C2—C1—N2—C50.2 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.862.052.859 (2)156
O2—H2W···O1iii0.95 (3)1.94 (3)2.875 (2)169 (3)
O2—H1W···N20.95 (3)1.90 (3)2.849 (2)178 (3)
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H18N4O2·2H2O
Mr382.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.0097 (8), 7.0040 (2), 12.4483 (4)
β (°) 107.493 (2)
V3)1913.39 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADADS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7105, 1687, 1350
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.02
No. of reflections1687
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.052.859 (2)156.1
O2—H2W···O1ii0.95 (3)1.94 (3)2.875 (2)169 (3)
O2—H1W···N20.95 (3)1.90 (3)2.849 (2)178 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2009). Micropor. Mesopor. Mater. A117, 486–489.  Google Scholar
First citationLuo, F., Zheng, J. M. & Batten, S. R. (2007). Chem. Commun. 36, 3744–3746.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds