organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N′′-(2-chloro­acet­yl)-N,N′-di­methyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 2 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title mol­ecule, C18H23ClN3O2P, the P atom is bonded in a distorted tetra­hedral environment. The P=O and N—H groups are syn with respect to each other. The angles at the tertiary N atoms confirm their sp2 character. In the crystal, pairs of inter­molecular P=O⋯H—N hydrogen bonds form centrosymmetric dimers.

Related literature

For background to compounds having a C(=O)NHP(=O) skeleton, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]); Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23ClN3O2P

  • Mr = 379.81

  • Triclinic, [P \overline 1]

  • a = 9.5891 (8) Å

  • b = 9.9259 (7) Å

  • c = 10.2543 (8) Å

  • α = 89.509 (6)°

  • β = 74.945 (7)°

  • γ = 79.921 (6)°

  • V = 927.27 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.983, Tmax = 1.000

  • 5838 measured reflections

  • 3253 independent reflections

  • 2594 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.06

  • 3253 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.773 (18) 2.037 (19) 2.795 (2) 167.1 (19)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of the title compound was performed as part of a project in our laboratory on the synthesis of new phosphoramidates with formula RC(O)NHP(O)[NR'R"]2 (Toghraee et al., 2011). The molecular structure of the title compound is shown in Fig. 1. The P1—N2 and P1—N3 bonds are shorter than the P1—N1 bond. The sp2 character of the tertiary N atoms is indicated by the angles around N2 and N3. The C1—N1—P1 angle is the most distorted from the expected 120° (in terms of sp2 hybridization). The PO bond length is standard for this type of phosphoramidate compounds (Pourayoubi et al., 2011). The hydrogen atom of the C(O)NHP(O) group is involved in an intermolecular –PO···H—N– hydrogen bond (Table 1). Pair of this type of hydrogen bond forms centrosymmetric dimer which is the usual H-bond pattern for compounds with the general formula RC(O)NHP(O)[NR'R"]2, where R' and R" ≠ H, in the case of syn orientation of PO versus N—H (Toghraee et al., 2011).

Related literature top

For background to compounds having a C(O)NHP(O) skeleton, see: Toghraee et al. (2011); Pourayoubi et al. (2011).

Experimental top

Synthesis of CH2ClC(O)NHP(O)Cl2: The reaction of phosphorus pentachloride (20 mmol) and 2-chloroacetamide (20 mmol) in dry benzene (40 ml) at 353 K (3 h) and then the treatment of formic acid 85% (20 mmol) at room temperature leads to the formation of CH2ClC(O)NHP(O)Cl2 as solid product.

Synthesis of title compound: To a solution of (3.47 mmol) CH2ClC(O)NHP(O)Cl2 in CHCl3 (25 ml), a solution of N-methylbenzylamine (13.88 mmol) in CHCl3 (5 ml) was added dropwise at 273 K. After 6 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in chloroform and n-heptane after slow evaporation at room temperature. IR (KBr, cm-1): 3116, 2920, 1728, 1494, 1341, 1193, 1011, 949, 867, 800, 743, 695.

Refinement top

All carbon bound H atoms were placed in calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms. The N bound H atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
N,N'-Dibenzyl-N''-(2-chloroacetyl)-N,N'- dimethylphosphoric triamide top
Crystal data top
C18H23ClN3O2PZ = 2
Mr = 379.81F(000) = 400
Triclinic, P1Dx = 1.360 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5891 (8) ÅCell parameters from 3547 reflections
b = 9.9259 (7) Åθ = 3.1–27.6°
c = 10.2543 (8) ŵ = 0.31 mm1
α = 89.509 (6)°T = 120 K
β = 74.945 (7)°Plate, colorless
γ = 79.921 (6)°0.40 × 0.40 × 0.20 mm
V = 927.27 (12) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3253 independent reflections
Radiation source: Enhance (Mo) X-ray Source2594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1110
Tmin = 0.983, Tmax = 1.000l = 1211
5838 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0312P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H23ClN3O2Pγ = 79.921 (6)°
Mr = 379.81V = 927.27 (12) Å3
Triclinic, P1Z = 2
a = 9.5891 (8) ÅMo Kα radiation
b = 9.9259 (7) ŵ = 0.31 mm1
c = 10.2543 (8) ÅT = 120 K
α = 89.509 (6)°0.40 × 0.40 × 0.20 mm
β = 74.945 (7)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2594 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 1.000Rint = 0.016
5838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
3253 reflectionsΔρmin = 0.37 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35277 (5)0.03423 (5)0.36846 (5)0.02726 (14)
P10.73295 (5)0.38427 (4)0.38957 (5)0.01865 (13)
O10.68787 (12)0.51744 (12)0.46676 (12)0.0219 (3)
O20.64902 (13)0.10825 (13)0.30353 (13)0.0287 (3)
N10.58216 (17)0.31087 (16)0.42742 (16)0.0201 (4)
N20.78048 (15)0.38421 (15)0.22483 (14)0.0219 (3)
N30.87044 (15)0.29050 (14)0.43213 (15)0.0216 (3)
C10.55954 (19)0.18865 (18)0.38376 (18)0.0205 (4)
C20.40604 (18)0.16286 (18)0.45401 (18)0.0217 (4)
H2A0.33470.24910.45950.026*
H2B0.40350.13500.54740.026*
C30.9309 (2)0.3970 (2)0.15080 (19)0.0318 (5)
H3A0.95520.35170.06110.048*
H3B0.99990.35360.20090.048*
H3C0.93780.49410.14100.048*
C40.6704 (2)0.42144 (19)0.14777 (19)0.0275 (5)
H4A0.57180.42060.20870.033*
H4B0.68790.35080.07500.033*
C50.67105 (19)0.55997 (18)0.08528 (18)0.0220 (4)
C60.6768 (2)0.5718 (2)0.05137 (19)0.0279 (4)
H6A0.68270.49250.10520.033*
C70.6740 (2)0.6988 (2)0.1093 (2)0.0298 (5)
H7A0.67780.70570.20260.036*
C80.6658 (2)0.8148 (2)0.0331 (2)0.0292 (5)
H8A0.66390.90140.07350.035*
C90.6604 (2)0.80430 (19)0.1031 (2)0.0292 (5)
H9A0.65510.88380.15640.035*
C100.6627 (2)0.67757 (19)0.16120 (19)0.0256 (4)
H10A0.65850.67110.25460.031*
C110.9385 (2)0.15360 (18)0.37333 (19)0.0292 (5)
H11A1.04460.14900.33880.044*
H11B0.89720.13420.29900.044*
H11C0.91930.08580.44270.044*
C120.9306 (2)0.33736 (19)0.53760 (19)0.0259 (4)
H12A0.88880.43550.55960.031*
H12B1.03810.32950.50130.031*
C130.90090 (19)0.25971 (17)0.66624 (18)0.0224 (4)
C140.7603 (2)0.23941 (18)0.73019 (19)0.0250 (4)
H14A0.68220.27050.69010.030*
C150.7324 (2)0.1745 (2)0.85159 (19)0.0296 (5)
H15A0.63530.16210.89460.035*
C160.8448 (2)0.12755 (19)0.9108 (2)0.0318 (5)
H16A0.82540.08290.99430.038*
C170.9843 (2)0.1458 (2)0.8484 (2)0.0369 (5)
H17A1.06210.11330.88840.044*
C181.0130 (2)0.2115 (2)0.7269 (2)0.0316 (5)
H18A1.11030.22370.68460.038*
H1N0.512 (2)0.359 (2)0.4672 (18)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (3)0.0242 (3)0.0337 (3)0.0101 (2)0.0129 (2)0.0023 (2)
P10.0146 (2)0.0162 (2)0.0238 (3)0.00197 (18)0.00340 (19)0.00312 (19)
O10.0177 (6)0.0183 (7)0.0288 (7)0.0027 (5)0.0051 (5)0.0008 (5)
O20.0228 (7)0.0233 (7)0.0354 (8)0.0023 (6)0.0007 (6)0.0064 (6)
N10.0138 (8)0.0174 (8)0.0251 (9)0.0002 (7)0.0001 (7)0.0008 (7)
N20.0179 (8)0.0227 (8)0.0231 (9)0.0024 (6)0.0027 (7)0.0048 (7)
N30.0183 (8)0.0197 (8)0.0257 (9)0.0001 (6)0.0065 (7)0.0025 (7)
C10.0223 (10)0.0184 (9)0.0220 (10)0.0026 (8)0.0089 (8)0.0037 (8)
C20.0212 (9)0.0183 (9)0.0262 (10)0.0055 (8)0.0058 (8)0.0006 (8)
C30.0243 (10)0.0355 (12)0.0280 (11)0.0028 (9)0.0045 (9)0.0054 (9)
C40.0355 (11)0.0262 (11)0.0250 (11)0.0104 (9)0.0123 (9)0.0041 (8)
C50.0189 (9)0.0246 (10)0.0247 (10)0.0065 (8)0.0079 (8)0.0055 (8)
C60.0298 (11)0.0282 (11)0.0286 (11)0.0089 (9)0.0105 (9)0.0022 (9)
C70.0293 (11)0.0388 (12)0.0250 (11)0.0118 (9)0.0102 (9)0.0123 (9)
C80.0244 (10)0.0255 (11)0.0408 (12)0.0080 (8)0.0122 (9)0.0145 (9)
C90.0256 (10)0.0230 (10)0.0394 (12)0.0051 (8)0.0089 (9)0.0007 (9)
C100.0265 (10)0.0292 (11)0.0228 (10)0.0071 (8)0.0083 (8)0.0046 (8)
C110.0225 (10)0.0228 (10)0.0387 (12)0.0046 (8)0.0074 (9)0.0007 (9)
C120.0184 (9)0.0256 (10)0.0366 (12)0.0074 (8)0.0099 (9)0.0056 (9)
C130.0228 (9)0.0163 (9)0.0299 (11)0.0035 (8)0.0100 (8)0.0027 (8)
C140.0232 (10)0.0232 (10)0.0320 (11)0.0049 (8)0.0125 (9)0.0010 (9)
C150.0289 (11)0.0309 (11)0.0315 (12)0.0121 (9)0.0079 (9)0.0009 (9)
C160.0416 (12)0.0290 (11)0.0285 (11)0.0089 (9)0.0140 (10)0.0039 (9)
C170.0339 (12)0.0396 (13)0.0404 (13)0.0013 (10)0.0205 (10)0.0046 (10)
C180.0217 (10)0.0382 (12)0.0363 (12)0.0041 (9)0.0109 (9)0.0037 (10)
Geometric parameters (Å, º) top
Cl1—C21.7723 (17)C7—C81.376 (3)
P1—O11.4836 (12)C7—H7A0.9500
P1—N31.6302 (14)C8—C91.388 (3)
P1—N21.6313 (15)C8—H8A0.9500
P1—N11.6866 (15)C9—C101.387 (3)
O2—C11.206 (2)C9—H9A0.9500
N1—C11.368 (2)C10—H10A0.9500
N1—H1N0.773 (18)C11—H11A0.9800
N2—C31.472 (2)C11—H11B0.9800
N2—C41.472 (2)C11—H11C0.9800
N3—C111.461 (2)C12—C131.510 (2)
N3—C121.465 (2)C12—H12A0.9900
C1—C21.526 (2)C12—H12B0.9900
C2—H2A0.9900C13—C141.386 (2)
C2—H2B0.9900C13—C181.390 (3)
C3—H3A0.9800C14—C151.382 (2)
C3—H3B0.9800C14—H14A0.9500
C3—H3C0.9800C15—C161.381 (3)
C4—C51.512 (2)C15—H15A0.9500
C4—H4A0.9900C16—C171.367 (3)
C4—H4B0.9900C16—H16A0.9500
C5—C101.388 (2)C17—C181.387 (3)
C5—C61.393 (2)C17—H17A0.9500
C6—C71.388 (3)C18—H18A0.9500
C6—H6A0.9500
O1—P1—N3110.79 (7)C8—C7—C6120.72 (18)
O1—P1—N2118.78 (7)C8—C7—H7A119.6
N3—P1—N2105.79 (8)C6—C7—H7A119.6
O1—P1—N1105.09 (7)C7—C8—C9119.47 (17)
N3—P1—N1111.96 (8)C7—C8—H8A120.3
N2—P1—N1104.33 (8)C9—C8—H8A120.3
C1—N1—P1130.67 (14)C10—C9—C8119.86 (18)
C1—N1—H1N114.7 (14)C10—C9—H9A120.1
P1—N1—H1N113.9 (14)C8—C9—H9A120.1
C3—N2—C4114.46 (15)C9—C10—C5121.12 (18)
C3—N2—P1120.68 (13)C9—C10—H10A119.4
C4—N2—P1121.30 (12)C5—C10—H10A119.4
C11—N3—C12115.28 (14)N3—C11—H11A109.5
C11—N3—P1123.34 (12)N3—C11—H11B109.5
C12—N3—P1121.34 (12)H11A—C11—H11B109.5
O2—C1—N1125.44 (16)N3—C11—H11C109.5
O2—C1—C2123.36 (15)H11A—C11—H11C109.5
N1—C1—C2111.16 (15)H11B—C11—H11C109.5
C1—C2—Cl1112.44 (12)N3—C12—C13114.54 (14)
C1—C2—H2A109.1N3—C12—H12A108.6
Cl1—C2—H2A109.1C13—C12—H12A108.6
C1—C2—H2B109.1N3—C12—H12B108.6
Cl1—C2—H2B109.1C13—C12—H12B108.6
H2A—C2—H2B107.8H12A—C12—H12B107.6
N2—C3—H3A109.5C14—C13—C18118.12 (18)
N2—C3—H3B109.5C14—C13—C12121.04 (16)
H3A—C3—H3B109.5C18—C13—C12120.79 (16)
N2—C3—H3C109.5C15—C14—C13120.82 (17)
H3A—C3—H3C109.5C15—C14—H14A119.6
H3B—C3—H3C109.5C13—C14—H14A119.6
N2—C4—C5114.34 (14)C16—C15—C14120.40 (18)
N2—C4—H4A108.7C16—C15—H15A119.8
C5—C4—H4A108.7C14—C15—H15A119.8
N2—C4—H4B108.7C17—C16—C15119.44 (19)
C5—C4—H4B108.7C17—C16—H16A120.3
H4A—C4—H4B107.6C15—C16—H16A120.3
C10—C5—C6118.48 (16)C16—C17—C18120.46 (18)
C10—C5—C4121.77 (16)C16—C17—H17A119.8
C6—C5—C4119.73 (17)C18—C17—H17A119.8
C7—C6—C5120.34 (18)C17—C18—C13120.75 (18)
C7—C6—H6A119.8C17—C18—H18A119.6
C5—C6—H6A119.8C13—C18—H18A119.6
O1—P1—N1—C1178.95 (16)N2—C4—C5—C6129.08 (17)
N3—P1—N1—C160.70 (18)C10—C5—C6—C70.1 (3)
N2—P1—N1—C153.24 (18)C4—C5—C6—C7178.50 (17)
O1—P1—N2—C383.81 (15)C5—C6—C7—C80.1 (3)
N3—P1—N2—C341.38 (15)C6—C7—C8—C90.0 (3)
N1—P1—N2—C3159.63 (13)C7—C8—C9—C100.3 (3)
O1—P1—N2—C473.72 (15)C8—C9—C10—C50.3 (3)
N3—P1—N2—C4161.09 (13)C6—C5—C10—C90.1 (3)
N1—P1—N2—C442.84 (15)C4—C5—C10—C9178.68 (17)
O1—P1—N3—C11179.82 (13)C11—N3—C12—C1367.5 (2)
N2—P1—N3—C1150.20 (15)P1—N3—C12—C13110.20 (16)
N1—P1—N3—C1162.85 (15)N3—C12—C13—C1450.5 (2)
O1—P1—N3—C122.28 (15)N3—C12—C13—C18132.22 (18)
N2—P1—N3—C12132.27 (13)C18—C13—C14—C150.8 (3)
N1—P1—N3—C12114.68 (13)C12—C13—C14—C15176.61 (16)
P1—N1—C1—O21.4 (3)C13—C14—C15—C160.6 (3)
P1—N1—C1—C2176.42 (13)C14—C15—C16—C170.0 (3)
O2—C1—C2—Cl119.1 (2)C15—C16—C17—C180.3 (3)
N1—C1—C2—Cl1162.99 (12)C16—C17—C18—C130.1 (3)
C3—N2—C4—C551.7 (2)C14—C13—C18—C170.4 (3)
P1—N2—C4—C5107.18 (16)C12—C13—C18—C17176.96 (18)
N2—C4—C5—C1052.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.773 (18)2.037 (19)2.795 (2)167.1 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H23ClN3O2P
Mr379.81
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.5891 (8), 9.9259 (7), 10.2543 (8)
α, β, γ (°)89.509 (6), 74.945 (7), 79.921 (6)
V3)927.27 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.983, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5838, 3253, 2594
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections3253
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.773 (18)2.037 (19)2.795 (2)167.1 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds