organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­phenyl-1,1′-(butane-1,4-di­yl)di­thio­urea

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 4 August 2011; accepted 15 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, C18H22N4S2, contains one half-mol­ecule, the complete mol­ecule being generated by crystallographic inversion symmetry. The crystal structure features two inter­molecular N—H⋯S hydrogen-bonding inter­actions, the first generating an infinite chain along the b axis and the second an infinite chain along the a axis, together forming an inter­locking structure.

Related literature

Thio­urea derivatives are conspicuous for their biological activity as they form strong hydrogen-bonding inter­actions and coordinate to metal ions, see: Wittkopp & Schreiner (2003[Wittkopp, A. & Schreiner, P. R. (2003). Chem. Eur. J. 9, 407-414.]); Li et al. (2008[Li, X., Deng, H., Luo, S. & Cheng, J. (2008). Eur. J. Org. Chem. pp. 4350-4356.]). For appliactions of thio­urea, see Abdallah et al. (2006[Abdallah, R., Breuzard, J. A. J., Bonnet, M. C. & Lemaire, M. (2006). J. Mol. Catal. A Chem. 249, 218-222.]); Karamé et al. (2003[Karamé, I., Tommasino, M. L. & Lemaire, M. (2003). J. Mol. Catal. A Chem. 196, 137-143.]); Nan et al. (2000[Nan, Y., Miao, H. & Yang, Z. (2000). Org. Lett. 2, 297-299.]); Breuzard et al. (2000[Breuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223-232.]); Tommasino et al., (2000[Tommasino, M. L., Thomazeau, C., Touchard, F. & Lemaire, M. (2000). Tetrahedron Asymmetry, 11, 4835-4841.]); Reinoso García et al. (2004[Reinoso García, M. M., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299-11306.]); Leung et al. (2008[Leung, A. N., Degenhardt, D. A. & Bühlmann, P. (2008). Tetrahedron, 64, 2530-2536.]). For synthesis of the title compound, see: Lee et al. (1985[Lee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. & Chung, S. I. (1985). J. Biol. Chem. 260, 14689-14694.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N4S2

  • Mr = 358.52

  • Monoclinic, P 21 /c

  • a = 9.6795 (3) Å

  • b = 7.8677 (3) Å

  • c = 12.3213 (4) Å

  • β = 105.816 (2)°

  • V = 902.81 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.46 × 0.45 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9210 measured reflections

  • 2192 independent reflections

  • 1710 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.06

  • 2192 reflections

  • 117 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.855 (18) 2.508 (18) 3.3465 (13) 167.1 (15)
N2—H2N⋯S1ii 0.806 (15) 2.713 (16) 3.3755 (14) 140.7 (13)
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). APEX2, SAINT and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiourea derivatives are conspicuous for their biological activity as they form strong hydrogen bonding interactions and coordinate metal ions (Wittkopp & Schreiner, 2003; Li et al., 2008). In recent years the use of thiourea groups as potential catalytic ligands has been extensively studied in reactions such as hydroformylation (Abdallah et al., 2006), hydrosilylation (Karamé et al., 2003), asymmetric reduction (Nan et al., 2000), cyclization (Breuzard et al., 2000) and hydrogenation (Tommasino et al., 2000). Other applications include their use as synthetic cation-anion ionophores (Reinoso García et al., 2004; Leung et al., 2008).

Here we report the crystal structure of the title compound (Lee et al., 1985) (Fig. 1). The structure shows two distinct intermolecular hydrogen bonding interactions. The first occurs between between N1–H1 and S1 2.508 (18) Å, that creates an infinite chain of molecules along the b axis. The second occurs between N2–H2 and S1 2.713 (16) Å, that generates an infinite chain along the a axis. Due to these interactions an interlocking molecular structure is formed (Fig. 2).

Related literature top

Thiourea derivatives are conspicuous for their biological activity as they form strong hydrogen-bonding interactions and coordinate metal ions, see: Wittkopp & Schreiner (2003); Li et al. (2008). For appliactions of thiourea, see Abdallah et al. (2006); Karamé et al. (2003); Nan et al. (2000); Breuzard et al. (2000); Tommasino et al., (2000); Reinoso García et al. (2004); Leung et al. (2008). For synthesis of the title compound, see: Lee et al. (1985).

Experimental top

A solution of phenyl isothiocyanate (6.75 g, 50 mmol) in diethyl ether (15 ml) was added dropwise at 15°C to a vigorously stirred solution of anhydrous butane-1,4-diamine (8.81 g, 100 mmol) in isopropyl alcohol (100 ml) over a period of 30 min.The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). The reaction mixture was maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl up to pH 2.6. The solvents were evaporated under vacuum, the residue was suspended in hot water for 30 min and the resulting precipitate was filtered off. The product was washed with ice cold water and dried. The yield was 2.36 g (35%).

Crystals suitable for single-crystal X-ray diffraction were grown in methanol: methylene chloride (1:2) at room temperature. M.p. = 458 K.

1H NMR (CDCl3, 400 MHz) d (p.p.m.): 7.64 (br.s., 2H, NH—CS), 7.40- 7.46 (m, 4H, H-arom), 7.29–7.33 (t, 2H, H-arom), 7.19–7.21 (d, 4H, H-arom), 6.18 (br.s., 2H, –NH—CH2), 3.65 (m, 4H, –CH2–CH2), 1.61 (m, 4H, –CH2–CH2).

13C NMR (CDCl3, 400 MHz): 26.12, 44.75, 125.45, 127.55, 130.34, 180.92

IR. (ν, cm-1) 3155, 3005, 2933, 1591, 1518, 1492, 1294, 1254, 1178,1071.

Refinement top

With the exception of those involved in hydrogen bonding, all hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for CH2. Hydrogen atoms involved in hydrogen bonding were located in the difference map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. The H atoms have been omitted for clarity. Displacement ellipsoids are drawn at 40% probability. The 1,1'-(butane-1,4-diyl)bis(3-phenylthiourea) has inversion symmetry [symmetry code: (i): 1 - x, -y, 1-z].
[Figure 2] Fig. 2. The hydrogen bonding interactions of the title compound as viewed down the a axis. All H atoms except those involved in hydrogen bonding interactions have been omitted for clarity.
3-phenyl-1-{4-[(phenylcarbamothioyl)amino]butyl}thiourea top
Crystal data top
C18H22N4S2F(000) = 380
Mr = 358.52Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3394 reflections
a = 9.6795 (3) Åθ = 3.1–28.2°
b = 7.8677 (3) ŵ = 0.30 mm1
c = 12.3213 (4) ÅT = 173 K
β = 105.816 (2)°Plate, colourless
V = 902.81 (5) Å30.46 × 0.45 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
ϕ and ω scansh = 1212
9210 measured reflectionsk = 1010
2192 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.0075P]
where P = (Fo2 + 2Fc2)/3
2192 reflections(Δ/σ)max = 0.005
117 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H22N4S2V = 902.81 (5) Å3
Mr = 358.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6795 (3) ŵ = 0.30 mm1
b = 7.8677 (3) ÅT = 173 K
c = 12.3213 (4) Å0.46 × 0.45 × 0.13 mm
β = 105.816 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1710 reflections with I > 2σ(I)
9210 measured reflectionsRint = 0.042
2192 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
2192 reflectionsΔρmin = 0.23 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23226 (14)0.10682 (19)0.10971 (12)0.0250 (3)
C20.17043 (15)0.0394 (2)0.19000 (13)0.0314 (4)
H20.22230.03920.24450.038*
C30.03242 (16)0.0880 (2)0.18976 (14)0.0383 (4)
H30.00920.04490.24570.046*
C40.04488 (16)0.1990 (2)0.10837 (15)0.0393 (4)
H40.13870.23330.10920.047*
C50.01453 (16)0.2598 (2)0.02594 (14)0.0366 (4)
H50.03970.33260.03150.044*
C60.15346 (15)0.2145 (2)0.02723 (12)0.0296 (3)
H60.19470.25780.02890.036*
C70.49385 (14)0.05136 (17)0.19228 (11)0.0223 (3)
C80.60322 (15)0.0926 (2)0.39648 (12)0.0286 (3)
H8A0.66450.00720.39380.034*
H8B0.66310.19610.40270.034*
C90.54395 (17)0.0793 (2)0.49881 (12)0.0316 (3)
H9A0.48330.18010.50040.038*
H9B0.62530.08210.56800.038*
N10.37258 (12)0.05795 (17)0.10580 (10)0.0265 (3)
N20.48550 (13)0.10013 (17)0.29351 (10)0.0261 (3)
S10.65024 (4)0.01605 (5)0.16882 (3)0.02773 (13)
H1N0.3820 (18)0.045 (2)0.0393 (15)0.036 (5)*
H2N0.4173 (16)0.158 (2)0.2950 (13)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (7)0.0312 (8)0.0236 (7)0.0032 (6)0.0058 (5)0.0059 (6)
C20.0244 (7)0.0448 (9)0.0253 (8)0.0052 (6)0.0073 (6)0.0008 (6)
C30.0274 (8)0.0553 (11)0.0354 (9)0.0102 (7)0.0140 (7)0.0074 (8)
C40.0216 (7)0.0464 (10)0.0506 (10)0.0014 (7)0.0110 (7)0.0127 (8)
C50.0254 (8)0.0352 (9)0.0450 (10)0.0020 (6)0.0024 (7)0.0003 (7)
C60.0260 (7)0.0321 (8)0.0301 (8)0.0030 (6)0.0062 (6)0.0008 (6)
C70.0219 (7)0.0238 (7)0.0225 (7)0.0013 (5)0.0083 (5)0.0036 (5)
C80.0223 (7)0.0392 (8)0.0230 (7)0.0017 (6)0.0041 (6)0.0015 (6)
C90.0311 (8)0.0392 (9)0.0234 (7)0.0028 (7)0.0057 (6)0.0023 (6)
N10.0221 (6)0.0406 (7)0.0181 (6)0.0017 (5)0.0076 (5)0.0001 (5)
N20.0204 (6)0.0368 (7)0.0215 (6)0.0068 (5)0.0064 (5)0.0008 (5)
S10.0215 (2)0.0385 (2)0.0256 (2)0.00221 (15)0.01058 (15)0.00035 (15)
Geometric parameters (Å, º) top
C1—C61.382 (2)C7—N21.3283 (17)
C1—C21.393 (2)C7—N11.3543 (18)
C1—N11.4250 (17)C7—S11.7014 (14)
C2—C31.389 (2)C8—N21.4572 (18)
C2—H20.9500C8—C91.5246 (19)
C3—C41.385 (2)C8—H8A0.9900
C3—H30.9500C8—H8B0.9900
C4—C51.382 (2)C9—C9i1.516 (3)
C4—H40.9500C9—H9A0.9900
C5—C61.387 (2)C9—H9B0.9900
C5—H50.9500N1—H1N0.855 (18)
C6—H60.9500N2—H2N0.806 (15)
C6—C1—C2119.85 (13)N1—C7—S1119.92 (10)
C6—C1—N1118.73 (12)N2—C8—C9109.98 (11)
C2—C1—N1121.28 (13)N2—C8—H8A109.7
C3—C2—C1119.53 (15)C9—C8—H8A109.7
C3—C2—H2120.2N2—C8—H8B109.7
C1—C2—H2120.2C9—C8—H8B109.7
C4—C3—C2120.30 (15)H8A—C8—H8B108.2
C4—C3—H3119.9C9i—C9—C8114.35 (16)
C2—C3—H3119.9C9i—C9—H9A108.7
C5—C4—C3119.97 (14)C8—C9—H9A108.7
C5—C4—H4120.0C9i—C9—H9B108.7
C3—C4—H4120.0C8—C9—H9B108.7
C4—C5—C6119.93 (15)H9A—C9—H9B107.6
C4—C5—H5120.0C7—N1—C1127.84 (12)
C6—C5—H5120.0C7—N1—H1N117.0 (12)
C1—C6—C5120.33 (14)C1—N1—H1N114.6 (12)
C1—C6—H6119.8C7—N2—C8124.94 (12)
C5—C6—H6119.8C7—N2—H2N116.4 (11)
N2—C7—N1117.79 (12)C8—N2—H2N117.0 (11)
N2—C7—S1122.29 (11)
C6—C1—C2—C33.2 (2)N2—C8—C9—C9i62.1 (2)
N1—C1—C2—C3178.86 (14)N2—C7—N1—C12.1 (2)
C1—C2—C3—C41.8 (2)S1—C7—N1—C1178.44 (12)
C2—C3—C4—C51.0 (3)C6—C1—N1—C7135.44 (15)
C3—C4—C5—C62.3 (3)C2—C1—N1—C748.9 (2)
C2—C1—C6—C51.9 (2)N1—C7—N2—C8176.58 (13)
N1—C1—C6—C5177.63 (14)S1—C7—N2—C84.0 (2)
C4—C5—C6—C10.9 (2)C9—C8—N2—C7154.26 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1ii0.855 (18)2.508 (18)3.3465 (13)167.1 (15)
N2—H2N···S1iii0.806 (15)2.713 (16)3.3755 (14)140.7 (13)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22N4S2
Mr358.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.6795 (3), 7.8677 (3), 12.3213 (4)
β (°) 105.816 (2)
V3)902.81 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.46 × 0.45 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9210, 2192, 1710
Rint0.042
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.06
No. of reflections2192
No. of parameters117
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.855 (18)2.508 (18)3.3465 (13)167.1 (15)
N2—H2N···S1ii0.806 (15)2.713 (16)3.3755 (14)140.7 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors wish to thank Dr Manuel Fernandes from the Chemistry Department of the University of the Witwatersrand for his assistance with the data collection and c*change for financial support.

References

First citationAbdallah, R., Breuzard, J. A. J., Bonnet, M. C. & Lemaire, M. (2006). J. Mol. Catal. A Chem. 249, 218–222.  CrossRef CAS Google Scholar
First citationBreuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223–232.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaramé, I., Tommasino, M. L. & Lemaire, M. (2003). J. Mol. Catal. A Chem. 196, 137–143.  Google Scholar
First citationLee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. & Chung, S. I. (1985). J. Biol. Chem. 260, 14689–14694.  CAS PubMed Google Scholar
First citationLeung, A. N., Degenhardt, D. A. & Bühlmann, P. (2008). Tetrahedron, 64, 2530–2536.  Web of Science CrossRef CAS Google Scholar
First citationLi, X., Deng, H., Luo, S. & Cheng, J. (2008). Eur. J. Org. Chem. pp. 4350–4356.  CrossRef Google Scholar
First citationNan, Y., Miao, H. & Yang, Z. (2000). Org. Lett. 2, 297–299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReinoso García, M. M., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. & Wojciechowska, D. (2004). Tetrahedron, 60, 11299–11306.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTommasino, M. L., Thomazeau, C., Touchard, F. & Lemaire, M. (2000). Tetrahedron Asymmetry, 11, 4835–4841.  CrossRef CAS Google Scholar
First citationWittkopp, A. & Schreiner, P. R. (2003). Chem. Eur. J. 9, 407–414.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds