metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(1-imino­eth­yl)-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2O,N4]copper(II)

aDepartment of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 27 July 2011; accepted 31 July 2011; online 6 August 2011)

In the title complex, [Cu(C12H12N3O)2], the CuII ion is tetra­coordinated by two N atoms and two O atoms from two bis-chelating 4-(1-imino­eth­yl)-3-methyl-1-phenyl-1H-pyrazol-5-olate ligands in a square-planar geometry. The two N atoms and two O atoms around the CuII atom are trans to each other, as the CuII atom lies on an inversion centre. The six-membered ring composed of the Cu, an O, an N and three C atoms of the ligand and the pyrazole ring is nearly planar, the largest deviation being 0.037 (4) Å for an N atom. In the crystal, weak inter­molecular C—H⋯N hydrogen-bonding inter­actions link the mol­ecules into chains along the c axis.

Related literature

For our ongoing studies on pyrazolone derivatives, see: Zhu, Shi et al. (2010[Zhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010). Acta Cryst. E66, o1583.]); Zhu, Wei et al. (2010[Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010). Acta Cryst. E66, m904.]). For related structures, see: Parsons et al. (2004[Parsons, S., Emeleus, L., Tasker, P. & Wood, P. (2004). Private communication (refcode XAJREG). CCDC, Cambridge, England.]); Shi et al. (2005[Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320-m2321.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H12N3O)2]

  • Mr = 492.03

  • Monoclinic, P 21 /n

  • a = 6.391 (6) Å

  • b = 9.010 (8) Å

  • c = 18.772 (17) Å

  • β = 98.701 (17)°

  • V = 1068.5 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 113 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008)[Rigaku/MSC (2008). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.] Tmin = 0.902, Tmax = 0.902

  • 8871 measured reflections

  • 1888 independent reflections

  • 1636 reflections with I > 2σ(I)

  • Rint = 0.130

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.136

  • S = 1.08

  • 1888 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −1.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1i 0.95 2.61 3.366 (6) 137
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

As a part of our onging studies on pyrazolone derivatives as potential ligands (Zhu, Shi et al., 2010; Zhu, Wei et al., 2010) we report the structure of the title complex in this article.

In the title complex (Fig. 1.), the central CuII ion is tetracoordinated by two N atoms and two O atoms from two bis-chelating 4-(2-methyl iminomethyl)-3-methyl- 1- phenyl-1H-pyrazol-5(4H)-onato ligands in a square-planar geometry. The two N atoms and two O atoms around the CuII atom are trans to each other, as the CuII atom lies on an inversion centre. The six membered chelate ring (Cu1/O1/N3/C1/C2/C5) / and the pyrazol ring are nearly coplannar with the largest deviation 0.037 (4)Å for N2 atom. In the crystal structure, weak intermolecular hydrogen bonding interactions (C11—H11···N1) link molecules into one-dimensional chains (Fig. 2).

Related literature top

For oour ongoing studies on pyrazolone derivatives, see: Zhu, Shi et al. (2010); Zhu, Wei et al. (2010). For related structures: Parsons et al. (2004); Shi et al. (2005).

Experimental top

The title compound was synthesized by dropping a copper acetate (15 mmol) ethanolic solution into an ethanolic solution of 4-[(3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4–ylidene)(methyl) methylamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(30 mmol) and stirring for about 7 h at room temperature. The dark green blocks which were obtained were dried in air. The product was recrystallized from N,N-dimethylformamide which afforded crystals suitable for X–ray analysis.

Refinement top

The H atoms were geometrically positioned and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95 or 0.98 Å for the aryl or methyl H atoms, respectively, and Uiso(H) = 1.2 Ueq(N/C-aryl) or 1.5Ueq(C-methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: i: -x + 1/2, -y + 1/2, -z + 1/2).
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular hydrogen bonding interactions (C—H···N) as dashed lines.
Bis[4-(1-iminoethyl)-3-methyl-1-phenyl-1H-pyrazol-5-olato- κ2O,N4]copper(II) top
Crystal data top
[Cu(C12H12N3O)2]F(000) = 510
Mr = 492.03Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3203 reflections
a = 6.391 (6) Åθ = 2.2–27.9°
b = 9.010 (8) ŵ = 1.06 mm1
c = 18.772 (17) ÅT = 113 K
β = 98.701 (17)°Block, dark green
V = 1068.5 (16) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn724 CCD
diffractometer
1888 independent reflections
Radiation source: rotating anode1636 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.130
Detector resolution: 14.22 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1010
Tmin = 0.902, Tmax = 0.902l = 2221
8871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.043P)2 + 2.9195P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 1.64 e Å3
Crystal data top
[Cu(C12H12N3O)2]V = 1068.5 (16) Å3
Mr = 492.03Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.391 (6) ŵ = 1.06 mm1
b = 9.010 (8) ÅT = 113 K
c = 18.772 (17) Å0.10 × 0.10 × 0.10 mm
β = 98.701 (17)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
1888 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
1636 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.902Rint = 0.130
8871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
1888 reflectionsΔρmin = 1.64 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.00000.00000.0168 (2)
O10.8267 (5)0.0256 (3)0.07637 (14)0.0180 (6)
N10.5337 (5)0.1293 (4)0.11912 (17)0.0175 (8)
N20.3649 (5)0.2250 (4)0.09578 (18)0.0181 (8)
N30.8317 (5)0.1373 (4)0.06383 (17)0.0174 (8)
H30.87880.15210.10490.018 (11)*
C10.6638 (6)0.1120 (4)0.0678 (2)0.0149 (8)
C20.5770 (6)0.2036 (4)0.0094 (2)0.0147 (8)
C30.3932 (6)0.2692 (4)0.0303 (2)0.0172 (9)
C40.2369 (7)0.3782 (5)0.0080 (2)0.0226 (9)
H4A0.12790.40000.02200.034*
H4B0.17040.33560.05400.034*
H4C0.31050.47010.01710.034*
C50.6613 (7)0.2121 (4)0.0571 (2)0.0186 (9)
C60.5517 (7)0.3040 (5)0.1183 (2)0.0248 (10)
H6A0.62660.29430.15990.037*
H6B0.55130.40830.10350.037*
H6C0.40560.26940.13140.037*
C70.5388 (7)0.0532 (4)0.1862 (2)0.0171 (9)
C80.3507 (7)0.0359 (5)0.2136 (2)0.0217 (9)
H80.22360.07880.18960.026*
C90.3505 (7)0.0449 (5)0.2766 (2)0.0242 (10)
H90.22190.05860.29530.029*
C100.5372 (7)0.1061 (5)0.3124 (2)0.0239 (10)
H100.53540.16210.35520.029*
C110.7253 (7)0.0854 (5)0.2858 (2)0.0220 (9)
H110.85290.12650.31050.026*
C120.7277 (7)0.0043 (4)0.2227 (2)0.0182 (9)
H120.85700.01170.20460.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0155 (4)0.0184 (4)0.0171 (4)0.0023 (3)0.0047 (3)0.0003 (3)
O10.0137 (14)0.0223 (15)0.0186 (14)0.0057 (12)0.0044 (11)0.0013 (12)
N10.0137 (17)0.0185 (18)0.0205 (17)0.0046 (14)0.0034 (14)0.0012 (14)
N20.0151 (17)0.0160 (17)0.0240 (18)0.0013 (14)0.0057 (14)0.0006 (14)
N30.0184 (18)0.0208 (18)0.0140 (16)0.0009 (15)0.0055 (14)0.0024 (14)
C10.0136 (19)0.015 (2)0.0166 (18)0.0032 (16)0.0036 (16)0.0009 (15)
C20.015 (2)0.0124 (19)0.0170 (19)0.0017 (16)0.0030 (16)0.0006 (16)
C30.017 (2)0.0125 (19)0.022 (2)0.0026 (16)0.0029 (17)0.0026 (16)
C40.020 (2)0.020 (2)0.027 (2)0.0031 (18)0.0017 (19)0.0018 (18)
C50.021 (2)0.016 (2)0.018 (2)0.0043 (17)0.0006 (17)0.0016 (17)
C60.030 (3)0.024 (2)0.020 (2)0.004 (2)0.0029 (19)0.0001 (18)
C70.023 (2)0.015 (2)0.0138 (18)0.0005 (17)0.0044 (17)0.0034 (16)
C80.016 (2)0.027 (2)0.023 (2)0.0053 (18)0.0069 (18)0.0012 (18)
C90.019 (2)0.031 (2)0.025 (2)0.0016 (19)0.0104 (18)0.0015 (19)
C100.026 (2)0.028 (2)0.020 (2)0.004 (2)0.0087 (19)0.0007 (18)
C110.020 (2)0.026 (2)0.019 (2)0.0035 (19)0.0014 (17)0.0021 (18)
C120.015 (2)0.019 (2)0.022 (2)0.0018 (17)0.0058 (17)0.0016 (17)
Geometric parameters (Å, º) top
Cu1—N3i1.932 (4)C4—H4C0.9800
Cu1—N31.932 (4)C5—C61.502 (6)
Cu1—O11.953 (3)C6—H6A0.9800
Cu1—O1i1.953 (3)C6—H6B0.9800
O1—C11.290 (5)C6—H6C0.9800
N1—C11.373 (5)C7—C81.385 (6)
N1—N21.399 (5)C7—C121.395 (6)
N1—C71.430 (5)C8—C91.389 (6)
N2—C31.330 (5)C8—H80.9500
N3—C51.303 (5)C9—C101.392 (6)
N3—H30.8800C9—H90.9500
C1—C21.418 (5)C10—C111.383 (6)
C2—C31.422 (6)C10—H100.9500
C2—C51.435 (6)C11—C121.395 (6)
C3—C41.505 (6)C11—H110.9500
C4—H4A0.9800C12—H120.9500
C4—H4B0.9800
N3i—Cu1—N3180.0 (2)H4B—C4—H4C109.5
N3i—Cu1—O186.83 (14)N3—C5—C2119.1 (4)
N3—Cu1—O193.17 (14)N3—C5—C6120.7 (4)
N3i—Cu1—O1i93.17 (14)C2—C5—C6120.1 (4)
N3—Cu1—O1i86.83 (14)C5—C6—H6A109.5
O1—Cu1—O1i180.00 (14)C5—C6—H6B109.5
C1—O1—Cu1121.1 (2)H6A—C6—H6B109.5
C1—N1—N2111.8 (3)C5—C6—H6C109.5
C1—N1—C7128.9 (3)H6A—C6—H6C109.5
N2—N1—C7119.0 (3)H6B—C6—H6C109.5
C3—N2—N1105.5 (3)C8—C7—C12120.7 (4)
C5—N3—Cu1131.7 (3)C8—C7—N1118.4 (4)
C5—N3—H3114.1C12—C7—N1120.9 (4)
Cu1—N3—H3114.1C7—C8—C9119.2 (4)
O1—C1—N1123.0 (3)C7—C8—H8120.4
O1—C1—C2131.4 (4)C9—C8—H8120.4
N1—C1—C2105.6 (3)C8—C9—C10120.5 (4)
C1—C2—C3105.8 (3)C8—C9—H9119.7
C1—C2—C5123.3 (4)C10—C9—H9119.7
C3—C2—C5130.8 (4)C11—C10—C9120.0 (4)
N2—C3—C2111.4 (4)C11—C10—H10120.0
N2—C3—C4117.7 (4)C9—C10—H10120.0
C2—C3—C4131.0 (4)C10—C11—C12120.0 (4)
C3—C4—H4A109.5C10—C11—H11120.0
C3—C4—H4B109.5C12—C11—H11120.0
H4A—C4—H4B109.5C11—C12—C7119.5 (4)
C3—C4—H4C109.5C11—C12—H12120.3
H4A—C4—H4C109.5C7—C12—H12120.3
N3i—Cu1—O1—C1178.9 (3)C1—C2—C3—C4178.8 (4)
N3—Cu1—O1—C11.1 (3)C5—C2—C3—C45.6 (7)
C1—N1—N2—C31.2 (4)Cu1—N3—C5—C23.6 (6)
C7—N1—N2—C3175.0 (3)Cu1—N3—C5—C6175.4 (3)
O1—Cu1—N3—C52.5 (4)C1—C2—C5—N33.1 (6)
O1i—Cu1—N3—C5177.5 (4)C3—C2—C5—N3178.0 (4)
Cu1—O1—C1—N1177.7 (3)C1—C2—C5—C6175.9 (4)
Cu1—O1—C1—C21.4 (6)C3—C2—C5—C60.9 (7)
N2—N1—C1—O1178.0 (3)C1—N1—C7—C8151.2 (4)
C7—N1—C1—O14.9 (6)N2—N1—C7—C821.4 (5)
N2—N1—C1—C21.3 (4)C1—N1—C7—C1227.8 (6)
C7—N1—C1—C2174.4 (4)N2—N1—C7—C12159.6 (4)
O1—C1—C2—C3178.3 (4)C12—C7—C8—C92.6 (6)
N1—C1—C2—C31.0 (4)N1—C7—C8—C9176.4 (4)
O1—C1—C2—C52.3 (7)C7—C8—C9—C100.9 (7)
N1—C1—C2—C5177.0 (4)C8—C9—C10—C110.6 (7)
N1—N2—C3—C20.5 (4)C9—C10—C11—C120.5 (6)
N1—N2—C3—C4178.2 (3)C10—C11—C12—C71.1 (6)
C1—C2—C3—N20.3 (5)C8—C7—C12—C112.7 (6)
C5—C2—C3—N2175.9 (4)N1—C7—C12—C11176.3 (4)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.472.670 (5)94
C4—H4B···N3ii0.982.793.419 (6)123
C9—H9···N2iii0.952.943.596 (6)128
C11—H11···N1iv0.952.613.366 (6)137
C11—H11···N2iv0.952.683.599 (6)163
C12—H12···O10.952.392.923 (5)115
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H12N3O)2]
Mr492.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)6.391 (6), 9.010 (8), 18.772 (17)
β (°) 98.701 (17)
V3)1068.5 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.902, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
8871, 1888, 1636
Rint0.130
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.136, 1.08
No. of reflections1888
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 1.64

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.613.366 (6)136.6
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Spark Program Foundation of the Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009).

References

First citationParsons, S., Emeleus, L., Tasker, P. & Wood, P. (2004). Private communication (refcode XAJREG). CCDC, Cambridge, England.  Google Scholar
First citationRigaku/MSC (2008). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320–m2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010). Acta Cryst. E66, o1583.  CrossRef IUCr Journals Google Scholar
First citationZhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010). Acta Cryst. E66, m904.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds