metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Hy­dr­oxy­benzo[h]quinolinium tetra­chlorido(2-methyl­quinolin-8-olato-κ2N,O)stannate(IV) methanol disolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 August 2011; accepted 4 August 2011; online 11 August 2011)

In the disolvated title salt, (C13H10NO)[SnCl4(C10H8NO)]·2CH3OH, the SnIV atom is chelated by the N,O-bidentate 2-methyl­quinolin-8-olate ion and is further coordinated by four chloride ions, showing a distorted octa­hedral SnNOCl4 geometry. In the crystal, the cation and anion are linked to the methanol mol­ecules by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the related compound, solvated 2-methyl-8-hy­droxy­quinolinium tetra­chlorido(quinolin-8-olato)stannate(IV), see: Vafaee et al. (2010[Vafaee, M., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m381-m382.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10NO)[SnCl4(C10H8NO)]·2CH4O

  • Mr = 678.97

  • Triclinic, [P \overline 1]

  • a = 7.5645 (2) Å

  • b = 10.1112 (3) Å

  • c = 17.7837 (5) Å

  • α = 98.105 (3)°

  • β = 95.653 (3)°

  • γ = 97.509 (3)°

  • V = 1325.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.678, Tmax = 0.873

  • 10548 measured reflections

  • 5871 independent reflections

  • 5239 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.11

  • 5871 reflections

  • 340 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 (1) 1.75 (2) 2.570 (3) 164 (5)
O3—H3⋯O1 0.84 (1) 1.94 (2) 2.746 (3) 162 (4)
N2—H1⋯O4 0.89 (1) 2.09 (3) 2.816 (4) 138 (3)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have been attempting to synthesize mixed-chelate tin(IV) compounds; in a recent study, we reacted stannic chloride with 8-hydroxyquinoline and 2-methyl-8-hydroxyquinoline (Vafaee et al., 2010). However, the reaction yielded 2-methyl-8-hydroxyquinolinium tetrachlorido(quinolin-8-olato)stannate as an acetonitrile solvate. The ligand that enages in coordination is the one that is less sterically crowded. A similar synthesis but with 10-hydroxybenzo[h]quinoline and 2-methyl-8-hydroxyquinoline in methanol medium yielded the di-solvated title salt (Scheme I, Fig. 1). Similarly, the less sterically crowded ligand engages in chelation, so that the more crowded ligand is now protonated. The SnIV atom shows octahedral SnNOCl4 coordination. The cation and anion are linked to the methanol molecules by O–H···O and N–H···O hydrogen bonds. One of the solvent molecules functions only as acceptor whereas the other functions both as a donor as well as acceptor.

Related literature top

For the related compound, solvated 2-methyl-8-hydroxyquinolinium tetrachlorido(quinolin-8-olato)stannate, see: Vafaee et al. (2010).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), 10-hydroxybenzo[h]quinoline (0.20 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube and the tube was filled with dry methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days (in approximately yield 80%, m.p. 538 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The ammonium and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their temperature factors were refined.

The final difference Fourier map had a peak as well as a hole in the vicinity ot Sn1.

Omitted from the refinement was the (0 0 2) reflection.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C14H10NO)[SnCl4(C10H8NO)].2CH3OH, at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
10-Hydroxybenzo[h]quinolinium tetrachlorido(2-methylquinolin-8-olato-κ2N,O)stannate(IV) methanol disolvate top
Crystal data top
(C13H10NO)[SnCl4(C10H8NO)]·2CH4OZ = 2
Mr = 678.97F(000) = 680
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5645 (2) ÅCell parameters from 6565 reflections
b = 10.1112 (3) Åθ = 2.3–29.3°
c = 17.7837 (5) ŵ = 1.40 mm1
α = 98.105 (3)°T = 100 K
β = 95.653 (3)°Prism, yellow
γ = 97.509 (3)°0.30 × 0.30 × 0.10 mm
V = 1325.56 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5871 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5239 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1012
Tmin = 0.678, Tmax = 0.873l = 2223
10548 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.5116P]
where P = (Fo2 + 2Fc2)/3
5871 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 1.23 e Å3
4 restraintsΔρmin = 1.14 e Å3
Crystal data top
(C13H10NO)[SnCl4(C10H8NO)]·2CH4Oγ = 97.509 (3)°
Mr = 678.97V = 1325.56 (6) Å3
Triclinic, P1Z = 2
a = 7.5645 (2) ÅMo Kα radiation
b = 10.1112 (3) ŵ = 1.40 mm1
c = 17.7837 (5) ÅT = 100 K
α = 98.105 (3)°0.30 × 0.30 × 0.10 mm
β = 95.653 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5871 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5239 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.873Rint = 0.056
10548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.23 e Å3
5871 reflectionsΔρmin = 1.14 e Å3
340 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.86883 (3)0.09428 (2)0.789295 (13)0.01747 (8)
Cl10.86363 (16)0.14417 (9)0.78823 (6)0.0417 (3)
Cl20.63271 (12)0.06051 (9)0.68485 (5)0.02469 (19)
Cl30.66698 (12)0.09658 (10)0.88638 (5)0.0303 (2)
Cl41.10456 (13)0.09761 (11)0.70839 (5)0.0340 (2)
O10.8665 (3)0.2980 (2)0.78929 (13)0.0164 (5)
O20.3798 (4)0.4948 (3)0.64356 (15)0.0274 (6)
H20.453 (5)0.464 (4)0.672 (2)0.041*
O30.5605 (3)0.4044 (3)0.75020 (15)0.0261 (6)
H30.649 (4)0.363 (4)0.752 (3)0.039*
O40.4163 (4)0.7760 (3)0.73826 (19)0.0459 (8)
H40.507 (5)0.836 (4)0.749 (3)0.069*
N11.0833 (4)0.1902 (3)0.88721 (15)0.0165 (6)
N20.2612 (4)0.6931 (3)0.58555 (18)0.0226 (6)
H10.304 (5)0.673 (4)0.6302 (12)0.027*
C11.0870 (4)0.3279 (3)0.89787 (19)0.0164 (7)
C20.9706 (4)0.3813 (3)0.84513 (19)0.0165 (7)
C30.9725 (5)0.5190 (3)0.8541 (2)0.0210 (7)
H3A0.89640.55640.81970.025*
C41.0860 (5)0.6053 (4)0.9140 (2)0.0240 (8)
H4A1.08430.69990.91910.029*
C51.1982 (5)0.5561 (4)0.9646 (2)0.0229 (7)
H51.27400.61591.00430.028*
C61.2003 (4)0.4154 (3)0.95736 (19)0.0192 (7)
C71.3109 (5)0.3538 (4)1.0069 (2)0.0234 (8)
H71.38810.40781.04840.028*
C81.3067 (5)0.2178 (4)0.9950 (2)0.0254 (8)
H81.38210.17731.02810.031*
C91.1914 (5)0.1355 (4)0.9339 (2)0.0213 (7)
C101.1918 (6)0.0137 (4)0.9208 (2)0.0320 (9)
H10A1.20770.04330.86730.048*
H10B1.07750.05960.93210.048*
H10C1.29070.03600.95430.048*
C110.2292 (4)0.6061 (4)0.5177 (2)0.0189 (7)
C120.2715 (4)0.4711 (4)0.5116 (2)0.0202 (7)
C130.3479 (4)0.4138 (4)0.5739 (2)0.0215 (7)
C140.3861 (5)0.2837 (4)0.5632 (2)0.0245 (8)
H140.43540.24650.60530.029*
C150.3524 (5)0.2065 (4)0.4906 (2)0.0256 (8)
H150.38100.11710.48350.031*
C160.2783 (5)0.2574 (4)0.4289 (2)0.0256 (8)
H160.25630.20320.37980.031*
C170.2354 (4)0.3891 (4)0.4384 (2)0.0214 (7)
C180.1589 (5)0.4437 (4)0.3745 (2)0.0263 (8)
H180.13620.38890.32560.032*
C190.1186 (5)0.5699 (4)0.3819 (2)0.0262 (8)
H190.06540.60170.33850.031*
C200.1542 (4)0.6568 (4)0.4535 (2)0.0222 (7)
C210.1174 (5)0.7900 (4)0.4624 (2)0.0295 (9)
H210.06810.82460.41930.035*
C220.1518 (5)0.8716 (4)0.5327 (2)0.0288 (8)
H220.12530.96150.53880.035*
C230.2259 (5)0.8189 (4)0.5943 (2)0.0290 (8)
H230.25170.87350.64320.035*
C240.4551 (6)0.3602 (4)0.8063 (2)0.0329 (9)
H24A0.52700.38070.85660.049*
H24B0.41630.26260.79350.049*
H24C0.34960.40690.80750.049*
C250.4131 (7)0.7114 (5)0.8025 (2)0.0414 (10)
H25A0.52180.66910.80940.062*
H25B0.30700.64200.79550.062*
H25C0.40830.77770.84790.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02318 (13)0.01235 (12)0.01641 (13)0.00327 (9)0.00053 (9)0.00207 (8)
Cl10.0566 (7)0.0134 (4)0.0472 (6)0.0041 (4)0.0256 (5)0.0014 (4)
Cl20.0283 (4)0.0200 (4)0.0237 (4)0.0035 (3)0.0062 (4)0.0027 (3)
Cl30.0279 (5)0.0373 (5)0.0282 (5)0.0008 (4)0.0084 (4)0.0156 (4)
Cl40.0331 (5)0.0530 (6)0.0187 (4)0.0224 (5)0.0053 (4)0.0007 (4)
O10.0193 (11)0.0139 (11)0.0167 (11)0.0049 (9)0.0023 (9)0.0027 (9)
O20.0339 (15)0.0294 (15)0.0213 (14)0.0096 (12)0.0004 (12)0.0102 (11)
O30.0230 (13)0.0351 (15)0.0266 (14)0.0133 (11)0.0089 (11)0.0143 (11)
O40.0452 (18)0.049 (2)0.0390 (18)0.0141 (15)0.0075 (15)0.0209 (15)
N10.0194 (13)0.0164 (14)0.0144 (14)0.0025 (11)0.0040 (11)0.0031 (11)
N20.0192 (14)0.0256 (16)0.0242 (16)0.0015 (13)0.0018 (13)0.0104 (13)
C10.0184 (15)0.0135 (15)0.0180 (16)0.0004 (13)0.0074 (13)0.0036 (12)
C20.0167 (15)0.0177 (16)0.0167 (16)0.0029 (13)0.0083 (13)0.0039 (12)
C30.0242 (17)0.0179 (17)0.0240 (18)0.0047 (14)0.0099 (15)0.0078 (14)
C40.0272 (18)0.0135 (16)0.032 (2)0.0002 (14)0.0135 (16)0.0024 (14)
C50.0218 (17)0.0196 (18)0.0244 (19)0.0027 (14)0.0071 (15)0.0042 (14)
C60.0171 (16)0.0209 (17)0.0186 (17)0.0020 (13)0.0088 (14)0.0001 (13)
C70.0196 (17)0.029 (2)0.0192 (18)0.0016 (15)0.0024 (14)0.0036 (14)
C80.0246 (18)0.029 (2)0.0218 (18)0.0049 (16)0.0029 (15)0.0050 (15)
C90.0249 (17)0.0204 (18)0.0192 (17)0.0047 (14)0.0020 (14)0.0047 (13)
C100.040 (2)0.0217 (19)0.032 (2)0.0077 (17)0.0115 (18)0.0049 (16)
C110.0128 (15)0.0243 (18)0.0214 (18)0.0013 (13)0.0046 (13)0.0090 (14)
C120.0129 (15)0.0285 (19)0.0222 (18)0.0034 (14)0.0064 (14)0.0109 (14)
C130.0182 (16)0.0268 (19)0.0217 (18)0.0034 (14)0.0051 (14)0.0089 (14)
C140.0200 (17)0.029 (2)0.029 (2)0.0058 (15)0.0065 (15)0.0139 (15)
C150.0227 (18)0.0247 (19)0.033 (2)0.0053 (15)0.0108 (16)0.0089 (15)
C160.0238 (18)0.031 (2)0.0235 (19)0.0039 (16)0.0095 (15)0.0048 (15)
C170.0166 (16)0.0291 (19)0.0215 (18)0.0039 (14)0.0079 (14)0.0100 (14)
C180.0283 (19)0.036 (2)0.0170 (17)0.0049 (16)0.0064 (15)0.0081 (15)
C190.0215 (17)0.040 (2)0.0220 (19)0.0068 (16)0.0067 (15)0.0156 (16)
C200.0170 (16)0.030 (2)0.0236 (18)0.0041 (14)0.0071 (14)0.0135 (15)
C210.0214 (18)0.038 (2)0.035 (2)0.0083 (17)0.0081 (17)0.0216 (18)
C220.0288 (19)0.027 (2)0.034 (2)0.0071 (16)0.0080 (17)0.0113 (16)
C230.0278 (19)0.024 (2)0.036 (2)0.0037 (16)0.0039 (17)0.0075 (16)
C240.037 (2)0.034 (2)0.034 (2)0.0086 (18)0.0181 (18)0.0113 (17)
C250.055 (3)0.037 (2)0.033 (2)0.006 (2)0.009 (2)0.0052 (19)
Geometric parameters (Å, º) top
Sn1—O12.063 (2)C9—C101.494 (5)
Sn1—N12.272 (3)C10—H10A0.9800
Sn1—Cl42.3988 (10)C10—H10B0.9800
Sn1—Cl22.4011 (8)C10—H10C0.9800
Sn1—Cl12.4036 (9)C11—C201.414 (5)
Sn1—Cl32.4145 (9)C11—C121.435 (5)
O1—C21.324 (4)C12—C171.422 (5)
O2—C131.366 (4)C12—C131.429 (5)
O2—H20.843 (10)C13—C141.375 (5)
O3—C241.421 (5)C14—C151.393 (5)
O3—H30.835 (10)C14—H140.9500
O4—C251.395 (5)C15—C161.376 (5)
O4—H40.838 (10)C15—H150.9500
N1—C91.333 (4)C16—C171.403 (5)
N1—C11.374 (4)C16—H160.9500
N2—C231.325 (5)C17—C181.436 (5)
N2—C111.369 (5)C18—C191.342 (5)
N2—H10.888 (10)C18—H180.9500
C1—C61.413 (5)C19—C201.423 (5)
C1—C21.433 (5)C19—H190.9500
C2—C31.377 (5)C20—C211.401 (5)
C3—C41.412 (5)C21—C221.380 (6)
C3—H3A0.9500C21—H210.9500
C4—C51.366 (5)C22—C231.385 (5)
C4—H4A0.9500C22—H220.9500
C5—C61.413 (5)C23—H230.9500
C5—H50.9500C24—H24A0.9800
C6—C71.418 (5)C24—H24B0.9800
C7—C81.358 (5)C24—H24C0.9800
C7—H70.9500C25—H25A0.9800
C8—C91.415 (5)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
O1—Sn1—N177.28 (9)C9—C10—H10C109.5
O1—Sn1—Cl490.31 (7)H10A—C10—H10C109.5
N1—Sn1—Cl486.85 (7)H10B—C10—H10C109.5
O1—Sn1—Cl286.01 (6)N2—C11—C20116.6 (3)
N1—Sn1—Cl2163.26 (7)N2—C11—C12121.9 (3)
Cl4—Sn1—Cl294.22 (3)C20—C11—C12121.5 (3)
O1—Sn1—Cl1178.56 (7)C17—C12—C13117.9 (3)
N1—Sn1—Cl1103.94 (7)C17—C12—C11117.7 (3)
Cl4—Sn1—Cl190.53 (4)C13—C12—C11124.4 (3)
Cl2—Sn1—Cl192.77 (3)O2—C13—C14122.6 (3)
O1—Sn1—Cl390.14 (7)O2—C13—C12116.5 (3)
N1—Sn1—Cl384.93 (7)C14—C13—C12120.8 (3)
Cl4—Sn1—Cl3171.46 (3)C13—C14—C15120.0 (3)
Cl2—Sn1—Cl394.32 (3)C13—C14—H14120.0
Cl1—Sn1—Cl389.20 (4)C15—C14—H14120.0
C2—O1—Sn1116.63 (19)C16—C15—C14121.1 (3)
C13—O2—H2109 (3)C16—C15—H15119.5
C24—O3—H3105 (3)C14—C15—H15119.5
C25—O4—H4104 (4)C15—C16—C17120.2 (3)
C9—N1—C1119.5 (3)C15—C16—H16119.9
C9—N1—Sn1131.3 (2)C17—C16—H16119.9
C1—N1—Sn1109.2 (2)C16—C17—C12119.9 (3)
C23—N2—C11124.4 (3)C16—C17—C18120.7 (3)
C23—N2—H1110 (3)C12—C17—C18119.3 (3)
C11—N2—H1126 (3)C19—C18—C17121.8 (3)
N1—C1—C6122.7 (3)C19—C18—H18119.1
N1—C1—C2117.1 (3)C17—C18—H18119.1
C6—C1—C2120.3 (3)C18—C19—C20121.1 (3)
O1—C2—C3122.2 (3)C18—C19—H19119.4
O1—C2—C1119.5 (3)C20—C19—H19119.4
C3—C2—C1118.3 (3)C21—C20—C11119.3 (3)
C2—C3—C4120.8 (3)C21—C20—C19122.2 (3)
C2—C3—H3A119.6C11—C20—C19118.5 (3)
C4—C3—H3A119.6C22—C21—C20121.0 (4)
C5—C4—C3121.7 (3)C22—C21—H21119.5
C5—C4—H4A119.2C20—C21—H21119.5
C3—C4—H4A119.2C21—C22—C23118.2 (4)
C4—C5—C6119.3 (3)C21—C22—H22120.9
C4—C5—H5120.3C23—C22—H22120.9
C6—C5—H5120.3N2—C23—C22120.6 (4)
C1—C6—C5119.6 (3)N2—C23—H23119.7
C1—C6—C7116.4 (3)C22—C23—H23119.7
C5—C6—C7123.9 (3)O3—C24—H24A109.5
C8—C7—C6120.1 (3)O3—C24—H24B109.5
C8—C7—H7120.0H24A—C24—H24B109.5
C6—C7—H7120.0O3—C24—H24C109.5
C7—C8—C9120.8 (3)H24A—C24—H24C109.5
C7—C8—H8119.6H24B—C24—H24C109.5
C9—C8—H8119.6O4—C25—H25A109.5
N1—C9—C8120.5 (3)O4—C25—H25B109.5
N1—C9—C10119.5 (3)H25A—C25—H25B109.5
C8—C9—C10119.9 (3)O4—C25—H25C109.5
C9—C10—H10A109.5H25A—C25—H25C109.5
C9—C10—H10B109.5H25B—C25—H25C109.5
H10A—C10—H10B109.5
N1—Sn1—O1—C25.0 (2)C1—N1—C9—C10178.0 (3)
Cl4—Sn1—O1—C291.7 (2)Sn1—N1—C9—C105.3 (5)
Cl2—Sn1—O1—C2174.1 (2)C7—C8—C9—N10.7 (6)
Cl3—Sn1—O1—C279.8 (2)C7—C8—C9—C10178.6 (4)
O1—Sn1—N1—C9178.4 (3)C23—N2—C11—C200.3 (5)
Cl4—Sn1—N1—C987.4 (3)C23—N2—C11—C12179.5 (3)
Cl2—Sn1—N1—C9178.4 (2)N2—C11—C12—C17179.2 (3)
Cl1—Sn1—N1—C92.4 (3)C20—C11—C12—C170.0 (5)
Cl3—Sn1—N1—C990.3 (3)N2—C11—C12—C130.6 (5)
O1—Sn1—N1—C14.6 (2)C20—C11—C12—C13179.8 (3)
Cl4—Sn1—N1—C195.7 (2)C17—C12—C13—O2179.5 (3)
Cl2—Sn1—N1—C11.5 (4)C11—C12—C13—O20.7 (5)
Cl1—Sn1—N1—C1174.57 (19)C17—C12—C13—C140.3 (5)
Cl3—Sn1—N1—C186.7 (2)C11—C12—C13—C14179.4 (3)
C9—N1—C1—C60.7 (5)O2—C13—C14—C15179.3 (3)
Sn1—N1—C1—C6176.6 (3)C12—C13—C14—C150.8 (5)
C9—N1—C1—C2178.8 (3)C13—C14—C15—C161.0 (5)
Sn1—N1—C1—C23.8 (3)C14—C15—C16—C170.0 (5)
Sn1—O1—C2—C3175.9 (2)C15—C16—C17—C121.2 (5)
Sn1—O1—C2—C14.7 (4)C15—C16—C17—C18179.7 (3)
N1—C1—C2—O10.2 (4)C13—C12—C17—C161.3 (5)
C6—C1—C2—O1179.4 (3)C11—C12—C17—C16178.4 (3)
N1—C1—C2—C3179.6 (3)C13—C12—C17—C18179.9 (3)
C6—C1—C2—C30.0 (5)C11—C12—C17—C180.1 (5)
O1—C2—C3—C4179.5 (3)C16—C17—C18—C19179.2 (3)
C1—C2—C3—C40.2 (5)C12—C17—C18—C190.7 (5)
C2—C3—C4—C50.3 (5)C17—C18—C19—C201.5 (6)
C3—C4—C5—C60.3 (5)N2—C11—C20—C210.1 (5)
N1—C1—C6—C5179.5 (3)C12—C11—C20—C21179.2 (3)
C2—C1—C6—C50.0 (5)N2—C11—C20—C19179.9 (3)
N1—C1—C6—C70.5 (5)C12—C11—C20—C190.8 (5)
C2—C1—C6—C7180.0 (3)C18—C19—C20—C21178.4 (3)
C4—C5—C6—C10.2 (5)C18—C19—C20—C111.6 (5)
C4—C5—C6—C7179.8 (3)C11—C20—C21—C220.6 (5)
C1—C6—C7—C81.2 (5)C19—C20—C21—C22179.4 (4)
C5—C6—C7—C8178.9 (3)C20—C21—C22—C230.9 (6)
C6—C7—C8—C90.6 (5)C11—N2—C23—C220.0 (6)
C1—N1—C9—C81.3 (5)C21—C22—C23—N20.5 (6)
Sn1—N1—C9—C8175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (1)1.75 (2)2.570 (3)164 (5)
O3—H3···O10.84 (1)1.94 (2)2.746 (3)162 (4)
N2—H1···O40.89 (1)2.09 (3)2.816 (4)138 (3)

Experimental details

Crystal data
Chemical formula(C13H10NO)[SnCl4(C10H8NO)]·2CH4O
Mr678.97
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5645 (2), 10.1112 (3), 17.7837 (5)
α, β, γ (°)98.105 (3), 95.653 (3), 97.509 (3)
V3)1325.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.678, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
10548, 5871, 5239
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.11
No. of reflections5871
No. of parameters340
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 1.14

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (1)1.75 (2)2.570 (3)164 (5)
O3—H3···O10.84 (1)1.94 (2)2.746 (3)162 (4)
N2—H1···O40.89 (1)2.09 (3)2.816 (4)138 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVafaee, M., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m381–m382.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds