organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-Phenyl (tert-butyl­amido)(p-tolyl­amido)­phosphinate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 21 October 2011; accepted 15 November 2011; online 23 November 2011)

In the title mol­ecule, C17H23N2O2P, the P atom has a distorted tetra­hedral environment. The P—N bond to the tolyl­amido fragment is 1.642 (4) Å while that to the butyl­amido fragment is 1.629 (3) Å. The dihedral angle between the two benzene rings is 82.3 (2)°. In the crystal, adjacent mol­ecules are linked via weak N—H⋯(O)P and N—H⋯N hydrogen-bonding inter­actions into an extended chain parallel to the b axis. The three methyl groups of the tert-butyl­amido substituent are disordered over two sets of sites with equal occupancies. The crystal studied was found to be a non-merohedral twin with the minor twin component = 23.1 (1)%.

Related literature

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2011a[Pourayoubi, M., Karimi Ahmadabad, F. & Nečas, M. (2011a). Acta Cryst. E67, o2523.]); Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.]). For the sp2 character of the nitro­gen atom of the P(=O)N unit and also for its low Lewis-base character in acting as a hydrogen-bond acceptor, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]); Pourayoubi et al. (2011b[Pourayoubi, M., Nečas, M. & Negari, M. (2011b). Acta Cryst. C67. Submitted.],c[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. C67, o265-o272.]). For a description of the Cambridge Structure Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23N2O2P

  • Mr = 318.34

  • Monoclinic, P 21 /n

  • a = 11.412 (5) Å

  • b = 9.519 (4) Å

  • c = 15.768 (6) Å

  • β = 104.332 (5)°

  • V = 1659.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW and TWINABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.974

  • 18075 measured reflections

  • 3860 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.203

  • S = 1.08

  • 3860 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.32 3.175 (5) 163
N2—H2⋯O1ii 0.88 2.40 3.275 (5) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW and TWINABS. University of Göttingen, Germany.]) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Following our previous work on the synthesis of mixed-amido phosphinates containing a P(O)(O)(NH)(NH) skeleton (Pourayoubi et al., 2011a), we report here on the synthesis and crystal structure of the title compound, P(O)[OC6H5][NHC6H4(4-CH3)][NHC(CH3)3] (Fig. 1).

The PO, P—O and P—N bond lengths and P—O—C and P—N—C bond angles are within the expected values (Sabbaghi et al., 2011). The P atom has a distorted tetrahedral conformation with the bond angles in the range of 96.76 (17)° [O2–P1–N2] to 117.03 (17)° [O1–P1–N2]. The P1—N1 bond (with length of 1.642 (4) Å) is slightly longer than the P1—N2 bond (1.629 (3) Å). The dihedral angle between the phenyl rings of the OC6H5 and NHC6H4(4-CH3) moieties is 82.3 (2)°.

In the crystal structure, the molecules are linked by weak N—H···(O)P and N—H···N hydrogen bonding interactions (Table 1) into an extended chain along [010] (Fig. 2). As illustrated for phosphoramidates by Toghraee et al. (2011) and Pourayoubi et al. (2011b,c) by examining all deposited phosphoramidates in the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002), the N atom of the P(O)N unit usually adopts an sp2 character (which is reflected in the bond angles at the N atom) and usually does not act as an acceptor in hydrogen bonding interactions. Therefore, the N—H···N—P contact in the crystal packing may rather be attributed to the assembly of the molecules with respect to one another.

Related literature top

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2011a); Sabbaghi et al. (2011). For the sp2 character of the nitrogen atom of the P(O)N unit and also for its low Lewis-base character in acting as a hydrogen-bond acceptor, see: Toghraee et al. (2011); Pourayoubi et al. (2011b,c). For a description of the Cambridge Structure Database, see: Allen (2002).

Experimental top

To a solution of (C6H5O)(4-CH3C6H4NH)P(O)Cl (1.714 mmol) in chloroform, a solution of tert-butylamine (3.428 mmol) in chloroform was added at 273 K. After 5 h stirring, the solvent was removed in vacuum and the solid product was washed with distilled water. Single crystals were obtained from a mixture of CH3CN/CHCl3 at room temperature.

Refinement top

The investigated crystal was found to be a two-component rotational twin. The data for both components were integrated using SAINT and scaled with TWINABS. Final refinement was done using a HKLF5 file generated by TWINABS with an appropriate BASF parameter (0.23089 (10)). The three methyl groups of the tert-butyl moiety were refined as being disordered in a 0.5:0.5 ratio. All H atoms were placed geometrically using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL97 (d(C—H) = 0.98 Å for methyl H atoms, d(C—H) = 0.95 Å for aromatic H atoms and d(N—H) = 0.88 Å for amide H atoms, with Uiso(H) = 1.2Ueq(C,N) for aromatic and amide H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms).

Structure description top

Following our previous work on the synthesis of mixed-amido phosphinates containing a P(O)(O)(NH)(NH) skeleton (Pourayoubi et al., 2011a), we report here on the synthesis and crystal structure of the title compound, P(O)[OC6H5][NHC6H4(4-CH3)][NHC(CH3)3] (Fig. 1).

The PO, P—O and P—N bond lengths and P—O—C and P—N—C bond angles are within the expected values (Sabbaghi et al., 2011). The P atom has a distorted tetrahedral conformation with the bond angles in the range of 96.76 (17)° [O2–P1–N2] to 117.03 (17)° [O1–P1–N2]. The P1—N1 bond (with length of 1.642 (4) Å) is slightly longer than the P1—N2 bond (1.629 (3) Å). The dihedral angle between the phenyl rings of the OC6H5 and NHC6H4(4-CH3) moieties is 82.3 (2)°.

In the crystal structure, the molecules are linked by weak N—H···(O)P and N—H···N hydrogen bonding interactions (Table 1) into an extended chain along [010] (Fig. 2). As illustrated for phosphoramidates by Toghraee et al. (2011) and Pourayoubi et al. (2011b,c) by examining all deposited phosphoramidates in the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002), the N atom of the P(O)N unit usually adopts an sp2 character (which is reflected in the bond angles at the N atom) and usually does not act as an acceptor in hydrogen bonding interactions. Therefore, the N—H···N—P contact in the crystal packing may rather be attributed to the assembly of the molecules with respect to one another.

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2011a); Sabbaghi et al. (2011). For the sp2 character of the nitrogen atom of the P(O)N unit and also for its low Lewis-base character in acting as a hydrogen-bond acceptor, see: Toghraee et al. (2011); Pourayoubi et al. (2011b,c). For a description of the Cambridge Structure Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: CELL_NOW (Sheldrick, 2008a) and SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radius. The disorder of the methyl groups is not shown.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through the N—H···(O)P and N—H···N hydrogen bonds which are shown as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
O-Phenyl (tert-butylamido)(p-tolylamido)phosphinate top
Crystal data top
C17H23N2O2PF(000) = 680
Mr = 318.34Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2700 reflections
a = 11.412 (5) Åθ = 2.5–27.3°
b = 9.519 (4) ŵ = 0.18 mm1
c = 15.768 (6) ÅT = 100 K
β = 104.332 (5)°Block, colourless
V = 1659.5 (12) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
18075 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
h = 1514
Tmin = 0.966, Tmax = 0.974k = 012
3860 measured reflectionsl = 020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.032P)2 + 5.6384P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3860 reflectionsΔρmax = 0.36 e Å3
235 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (8)
Crystal data top
C17H23N2O2PV = 1659.5 (12) Å3
Mr = 318.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.412 (5) ŵ = 0.18 mm1
b = 9.519 (4) ÅT = 100 K
c = 15.768 (6) Å0.20 × 0.18 × 0.15 mm
β = 104.332 (5)°
Data collection top
Bruker APEX CCD
diffractometer
18075 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
2497 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.087
3860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
3860 reflectionsΔρmin = 0.42 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3828 (4)0.3138 (7)0.1636 (3)0.0484 (14)
H1A0.42410.32130.10140.073*
H1B0.40380.39500.19510.073*
H1C0.40830.22730.18760.073*
C20.2482 (4)0.3104 (6)0.1738 (3)0.0375 (11)
C30.1876 (4)0.1854 (5)0.1663 (2)0.0330 (10)
H30.23290.10080.15480.040*
C40.0631 (4)0.1802 (5)0.1750 (2)0.0293 (9)
H40.02490.09330.16880.035*
C50.0049 (3)0.3026 (5)0.1927 (2)0.0264 (9)
C60.0545 (3)0.4307 (5)0.1998 (2)0.0288 (9)
H60.00950.51550.21130.035*
C70.1785 (4)0.4320 (5)0.1901 (2)0.0338 (10)
H70.21740.51890.19480.041*
C80.2197 (4)0.1078 (5)0.0673 (3)0.0323 (10)
C90.1197 (4)0.1458 (5)0.0015 (3)0.0362 (11)
H90.04110.14700.01180.043*
C100.1373 (5)0.1821 (6)0.0801 (3)0.0449 (12)
H100.07000.20840.12610.054*
C110.2522 (5)0.1802 (6)0.0946 (3)0.0450 (12)
H110.26380.20680.15000.054*
C120.3495 (5)0.1395 (6)0.0283 (3)0.0439 (12)
H120.42770.13640.03910.053*
C130.3357 (4)0.1030 (5)0.0541 (3)0.0369 (11)
H130.40310.07570.09980.044*
C140.2211 (4)0.1101 (5)0.3984 (2)0.0286 (9)
C150.3531 (8)0.0707 (13)0.4489 (6)0.041 (2)0.50
H15A0.36570.03030.44320.061*0.50
H15B0.36530.09480.51090.061*0.50
H15C0.41080.12310.42420.061*0.50
C160.1961 (10)0.2594 (11)0.4144 (6)0.038 (2)0.50
H16A0.24950.31990.39050.058*0.50
H16B0.21050.27570.47750.058*0.50
H16C0.11160.28110.38580.058*0.50
C170.1378 (10)0.0128 (12)0.4394 (6)0.043 (2)0.50
H17A0.05290.03860.41540.065*0.50
H17B0.15880.02470.50310.065*0.50
H17C0.15000.08550.42510.065*0.50
C15'0.3377 (8)0.1837 (13)0.4350 (5)0.041 (2)0.50
H15D0.40460.12560.42640.062*0.50
H15E0.34730.20020.49770.062*0.50
H15F0.33780.27390.40500.062*0.50
C16'0.1147 (9)0.2038 (12)0.4044 (6)0.042 (2)0.50
H16D0.12450.29660.38020.063*0.50
H16E0.11230.21350.46580.063*0.50
H16F0.03910.16130.37100.063*0.50
C17'0.2138 (9)0.0251 (11)0.4441 (5)0.034 (2)0.50
H17D0.14210.07730.41260.051*0.50
H17E0.20800.00630.50400.051*0.50
H17F0.28650.08100.44570.051*0.50
N10.1321 (3)0.3055 (4)0.2034 (2)0.0272 (8)
H10.16190.38820.19510.033*
N20.2060 (3)0.0744 (4)0.3037 (2)0.0281 (8)
H20.18060.01090.28710.034*
O10.3536 (2)0.2436 (3)0.24577 (18)0.0325 (7)
O20.2020 (2)0.0677 (3)0.14980 (17)0.0304 (7)
P10.23229 (9)0.17878 (13)0.22865 (6)0.0262 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.083 (4)0.036 (2)0.002 (3)0.0118 (19)0.001 (3)
C20.024 (2)0.070 (4)0.0189 (19)0.006 (2)0.0061 (15)0.004 (2)
C30.029 (2)0.048 (3)0.0203 (19)0.008 (2)0.0044 (16)0.003 (2)
C40.028 (2)0.037 (2)0.0229 (19)0.0024 (19)0.0063 (15)0.0036 (19)
C50.0230 (19)0.040 (2)0.0163 (17)0.0016 (18)0.0043 (14)0.0045 (17)
C60.024 (2)0.041 (3)0.0214 (19)0.0008 (18)0.0050 (15)0.0012 (18)
C70.029 (2)0.054 (3)0.0192 (19)0.008 (2)0.0083 (16)0.003 (2)
C80.038 (2)0.038 (3)0.022 (2)0.001 (2)0.0106 (17)0.0050 (19)
C90.036 (2)0.048 (3)0.025 (2)0.000 (2)0.0081 (17)0.004 (2)
C100.057 (3)0.053 (3)0.024 (2)0.010 (3)0.009 (2)0.003 (2)
C110.063 (3)0.051 (3)0.027 (2)0.002 (3)0.022 (2)0.008 (2)
C120.048 (3)0.055 (3)0.035 (2)0.007 (2)0.023 (2)0.011 (2)
C130.034 (2)0.045 (3)0.033 (2)0.004 (2)0.0097 (19)0.008 (2)
C140.031 (2)0.037 (3)0.0199 (19)0.0019 (19)0.0097 (16)0.0009 (18)
C150.038 (5)0.063 (7)0.019 (4)0.001 (5)0.002 (4)0.002 (5)
C160.047 (6)0.049 (6)0.023 (4)0.000 (5)0.015 (4)0.006 (4)
C170.057 (7)0.052 (7)0.023 (5)0.018 (6)0.016 (5)0.001 (4)
C15'0.040 (5)0.066 (7)0.019 (4)0.019 (5)0.009 (4)0.009 (5)
C16'0.041 (5)0.063 (7)0.024 (4)0.021 (5)0.012 (4)0.004 (4)
C17'0.040 (5)0.046 (6)0.019 (4)0.002 (5)0.011 (4)0.004 (4)
N10.0212 (16)0.038 (2)0.0229 (16)0.0022 (15)0.0067 (13)0.0015 (15)
N20.0318 (18)0.035 (2)0.0169 (16)0.0020 (16)0.0045 (13)0.0002 (14)
O10.0238 (14)0.0463 (19)0.0275 (15)0.0002 (13)0.0067 (11)0.0013 (14)
O20.0316 (15)0.0385 (18)0.0216 (14)0.0021 (13)0.0079 (11)0.0046 (13)
P10.0215 (5)0.0383 (6)0.0184 (5)0.0005 (5)0.0045 (4)0.0014 (5)
Geometric parameters (Å, º) top
C1—C21.506 (6)C14—C17'1.488 (10)
C1—H1A0.9800C14—N21.500 (5)
C1—H1B0.9800C14—C16'1.528 (10)
C1—H1C0.9800C14—C151.565 (10)
C2—C71.391 (7)C14—C171.576 (10)
C2—C31.396 (7)C15—H15A0.9800
C3—C41.394 (5)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.390 (6)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.413 (6)C16—H16C0.9800
C5—N11.419 (5)C17—H17A0.9800
C6—C71.386 (5)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C7—H70.9500C15'—H15D0.9800
C8—C91.386 (6)C15'—H15E0.9800
C8—C131.391 (6)C15'—H15F0.9800
C8—O21.417 (5)C16'—H16D0.9800
C9—C101.395 (6)C16'—H16E0.9800
C9—H90.9500C16'—H16F0.9800
C10—C111.385 (7)C17'—H17D0.9800
C10—H100.9500C17'—H17E0.9800
C11—C121.379 (7)C17'—H17F0.9800
C11—H110.9500N1—P11.642 (4)
C12—C131.392 (6)N1—H10.8800
C12—H120.9500N2—P11.629 (3)
C13—H130.9500N2—H20.8800
C14—C161.483 (11)O1—P11.478 (3)
C14—C15'1.487 (10)O2—P11.603 (3)
C2—C1—H1A109.5N2—C14—C16'107.3 (4)
C2—C1—H1B109.5C16—C14—C15110.2 (7)
H1A—C1—H1B109.5C17'—C14—C1573.1 (6)
C2—C1—H1C109.5N2—C14—C15108.1 (4)
H1A—C1—H1C109.5C16'—C14—C15142.0 (6)
H1B—C1—H1C109.5C16—C14—C17109.4 (6)
C7—C2—C3116.9 (4)C15'—C14—C17133.6 (6)
C7—C2—C1121.5 (5)N2—C14—C17110.0 (5)
C3—C2—C1121.5 (5)C16'—C14—C1775.4 (6)
C4—C3—C2122.4 (4)C15—C14—C17104.6 (6)
C4—C3—H3118.8C14—C15—H15A109.5
C2—C3—H3118.8C14—C15—H15B109.5
C5—C4—C3119.6 (4)C14—C15—H15C109.5
C5—C4—H4120.2C14—C16—H16A109.5
C3—C4—H4120.2C14—C16—H16B109.5
C4—C5—C6119.0 (4)C14—C16—H16C109.5
C4—C5—N1122.9 (4)C14—C17—H17A109.5
C6—C5—N1118.1 (4)C14—C17—H17B109.5
C7—C6—C5119.8 (4)C14—C17—H17C109.5
C7—C6—H6120.1C14—C15'—H15D109.5
C5—C6—H6120.1C14—C15'—H15E109.5
C6—C7—C2122.3 (4)H15D—C15'—H15E109.5
C6—C7—H7118.9C14—C15'—H15F109.5
C2—C7—H7118.9H15D—C15'—H15F109.5
C9—C8—C13122.3 (4)H15E—C15'—H15F109.5
C9—C8—O2118.6 (4)C14—C16'—H16D109.5
C13—C8—O2119.0 (4)C14—C16'—H16E109.5
C8—C9—C10118.4 (4)H16D—C16'—H16E109.5
C8—C9—H9120.8C14—C16'—H16F109.5
C10—C9—H9120.8H16D—C16'—H16F109.5
C11—C10—C9120.5 (4)H16E—C16'—H16F109.5
C11—C10—H10119.8C14—C17'—H17D109.5
C9—C10—H10119.8C14—C17'—H17E109.5
C12—C11—C10119.7 (4)H17D—C17'—H17E109.5
C12—C11—H11120.1C14—C17'—H17F109.5
C10—C11—H11120.1H17D—C17'—H17F109.5
C11—C12—C13121.5 (5)H17E—C17'—H17F109.5
C11—C12—H12119.2C5—N1—P1130.2 (3)
C13—C12—H12119.2C5—N1—H1114.9
C8—C13—C12117.6 (4)P1—N1—H1114.9
C8—C13—H13121.2C14—N2—P1126.0 (3)
C12—C13—H13121.2C14—N2—H2117.0
C16—C14—C15'71.0 (7)P1—N2—H2117.0
C16—C14—C17'135.3 (6)C8—O2—P1118.8 (3)
C15'—C14—C17'111.8 (6)O1—P1—O2115.41 (16)
C16—C14—N2114.0 (5)O1—P1—N2117.03 (17)
C15'—C14—N2111.4 (4)O2—P1—N296.76 (17)
C17'—C14—N2106.2 (5)O1—P1—N1107.61 (19)
C15'—C14—C16'110.4 (7)O2—P1—N1107.01 (16)
C17'—C14—C16'109.5 (6)N2—P1—N1112.47 (17)
C7—C2—C3—C40.3 (6)C6—C5—N1—P1159.1 (3)
C1—C2—C3—C4179.6 (4)C16—C14—N2—P132.5 (6)
C2—C3—C4—C50.7 (6)C15'—C14—N2—P145.5 (7)
C3—C4—C5—C61.2 (5)C17'—C14—N2—P1167.5 (5)
C3—C4—C5—N1179.3 (3)C16'—C14—N2—P175.5 (6)
C4—C5—C6—C70.7 (6)C15—C14—N2—P190.4 (6)
N1—C5—C6—C7179.8 (3)C17—C14—N2—P1155.9 (6)
C5—C6—C7—C20.3 (6)C9—C8—O2—P1101.8 (4)
C3—C2—C7—C60.8 (6)C13—C8—O2—P180.5 (5)
C1—C2—C7—C6179.9 (4)C8—O2—P1—O151.6 (3)
C13—C8—C9—C101.0 (7)C8—O2—P1—N2175.9 (3)
O2—C8—C9—C10178.6 (4)C8—O2—P1—N168.1 (3)
C8—C9—C10—C110.0 (8)C14—N2—P1—O154.8 (4)
C9—C10—C11—C121.2 (8)C14—N2—P1—O2177.8 (3)
C10—C11—C12—C131.4 (8)C14—N2—P1—N170.6 (4)
C9—C8—C13—C120.7 (7)C5—N1—P1—O1170.6 (3)
O2—C8—C13—C12178.3 (4)C5—N1—P1—O264.8 (3)
C11—C12—C13—C80.5 (8)C5—N1—P1—N240.3 (4)
C4—C5—N1—P121.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.323.175 (5)163
N2—H2···O1ii0.882.403.275 (5)170
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23N2O2P
Mr318.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.412 (5), 9.519 (4), 15.768 (6)
β (°) 104.332 (5)
V3)1659.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2008a)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
3860, 18075, 2497
Rint0.087
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.203, 1.08
No. of reflections3860
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: APEX2 (Bruker, 2005), CELL_NOW (Sheldrick, 2008a) and SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008b) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.323.175 (5)162.7
N2—H2···O1ii0.882.403.275 (5)170.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Karimi Ahmadabad, F. & Nečas, M. (2011a). Acta Cryst. E67, o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2011b). Acta Cryst. C67. Submitted.  CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW and TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds