organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1931-o1932

3,4,7,8-Tetra­methyl-1,10-phenanthrolin-1-ium nitrate monohydrate

aSchool of Material Science and Engineering, Nanjing Institute of Science and Technology, Nanjing 211168, People's Republic of China, and bDepartment of Life Science and Technology, Xinxiang College, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: xxzhangyanfang@126.com

(Received 10 May 2012; accepted 21 May 2012; online 31 May 2012)

In the crystal of the title compound, C16H17N2+·NO3·H2O, the tetra­methyl-1,10-phenanthrolinium cations, nitrate anions and lattice water mol­ecules are all located on a mirror plane with the methyl H atoms of the cation equally disordered over two sites about the mirror plane. The cation, anion and water mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds into a sheet parallel to the bc plane. ππ stacking between phenanthroline ring systems is observed in the crystal structure, the centroid–centroid distance being 3.4745 (6) Å.

Related literature

For proton-transfer structures of phenanthroline and its derivatives, see: Bei et al. (2004[Bei, F.-L., Yang, X.-J., Lu, L.-D. & Wang, X. (2004). J. Mol. Struct. 689, 237-243.]); Buttery et al. (2006[Buttery, J. H., Effendy, Junk, P. C., Mutrofin, S.,Skelton, B. W., Whitaker, C. R., White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1326-1339.]); Gillard et al. (1998[Gillard, R. D., Hursthouse, M. B., Abdul Malik, K. M. & Paisey, S. (1998). J. Chem. Crystallogr. 28, 611-619.]); Harvey et al. (2008[Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. C64, o489-o492.]); Hensen et al. (1998[Hensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359-361.], 2000[Hensen, K., Spangenberg, B. & Bolte, M. (2000). Acta Cryst. C56, 208-210.]); Kolev et al. (2009[Kolev, T., Koleva, B. B., Nikolova, R., Seidel, R. W., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2009). Spectrochim. Acta Part A, 73, 929-935.]); Lin et al. (2009[Lin, X.-Y., Tang, S.-J. & Wu, W.-S. (2009). Acta Cryst. E65, o2367.]); Maresca et al. (1989[Maresca, L., Natile, G. & Fanizzi, F. P. (1989). J. Am. Chem. Soc. 111, 1492-1493.]); Milani et al. (1997[Milani, B., Anzilutti, A., Vicentini, L., Santi, A. S., o Zangrando, E., Geremia, S. & Mestroni, G. (1997). Organometallics, 16, 5064-5075.]); Montagu-Bourin et al. (1981[Montagu-Bourin, M., Levillain, P., Ceolin, R., Thevenet, G. & Souleau, C. (1981). J. Appl. Cryst. 14, 63.]); Shang et al. (2006[Shang, R.-L., Du, L. & Sun, B.-W. (2006). Acta Cryst. E62, o2920-o2921.]); Thevenet & Rodier (1978[Thevenet, G. & Rodier, N. (1978). Acta Cryst. B34, 880-882.]); Thevenet et al. (1977[Thevenet, G., Toffoli, P., Rodier, N. & Céolin, R. (1977). Acta Cryst. B33, 2526-2529.], 1978[Thevenet, G., Rodier, N. & Khodadad, P. (1978). Acta Cryst. B34, 2594-2599.], 1980[Thevenet, G., Souleau, C., Montagu-Bourin, M. & Ceolin, R. (1980). J. Appl. Cryst. 13, 315.]); Wang et al. (1999[Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503-1506.]); Yu et al. (2006[Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187-o2189.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N2+·NO3·H2O

  • Mr = 317.34

  • Orthorhombic, C m c a

  • a = 6.7401 (8) Å

  • b = 24.090 (3) Å

  • c = 19.254 (2) Å

  • V = 3126.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 11308 measured reflections

  • 1585 independent reflections

  • 1149 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.153

  • S = 1.03

  • 1585 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.86 2.692 (3) 164
O4—H1W⋯O1ii 0.84 1.97 2.808 (4) 174
O4—H2W⋯O1iii 0.83 2.07 2.886 (4) 170
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,10-Phenanthroline and its derivatives have been recognized as good proton acceptors, and usually are considered a suitable agent in the synthesis of proton-transfer systems. Some proton-transfer complexes based on 1,10-phenanthroline (Buttery et al. 2006; Gillard et al. 1998; Hensen et al. 1998, 2000; Kolev et al. 2009; Maresca et al. 1989; Milani et al. 1997; Montagu-Bourin, Levillain, Ceolin, Thevenet & Souleau 1981; Shang et al. 2006; Thevenet & Rodier 1978; Thevenet et al. 1977, 1980; Thevenet, Rodier & Khodadad 1978; Wang et al. 1999), 2,9-dimethyl-1,10-phenanthroline (Harvey et al. 2008; Yu et al. 2006), and 6-nitro-1,10-phenanthroline (Bei et al. 2004), 5,6-dihydroxy-phenanthroline (Lin et al. 2009) have been synthesized. In the recent work, the title compound (I), C16H17N2]NO3.H2O, was obtained unintentionally as a major product in the reaction of Tb(NO3)3.6H2O with the 3,4,7,8-tetramethyl-1,10-phenanthroline in water. To the best our knowledge, this is the first example of proton-transfer system containing 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline.

The numbering scheme of (I) is given in Fig. 1, and the selected bond lengths and bond angles are provided in the cif file. The crystal contains one protonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cation, one nitrate anion and one water molecule. In the crystal structure, the cations, anions and water molecules are linked into two dimensional layers parallel to the bc plane by N—H···O and O—H···O hydrogen bonds (Table 1). Among them, N—H···O hydrogen bonds play a very important role in the formation of proton-transfer compounds. Additionally, the monoprotonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cations are parallel to each other in the crystal packing, showing π-π interactions (Fig. 2); the centroid–centroid distance is 3.4745 (6) Å.

Related literature top

For proton-transfer structures of phenanthroline and its derivations, see: Bei et al. (2004); Buttery et al. (2006); Gillard et al. (1998); Harvey et al. (2008); Hensen et al. (1998, 2000); Kolev et al. (2009); Lin et al. (2009); Maresca et al. (1989); Milani et al. (1997); Montagu-Bourin et al. (1981); Shang et al. (2006); Thevenet & Rodier (1978); Thevenet et al. (1977, 1978, 1980); Wang et al. (1999); Yu et al. (2006).

Experimental top

A aqueous solution (12 ml) of Tb(NO3)3.6H2O (1 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthroline (1 mmol) was stirred. The mixture was then transferred to a 25-ml Teflon reactor and kept at 433 K for 3 d under autogenous pressure, and then cooled to room temperature at a rate of 10 K h-1. Colorless crystals of the title compound were obtained.

Refinement top

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C aromatic) and C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C methyl), respectively. The H atoms bound to O were located in a difference Fourier map, and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). The methyl H atoms are equally disordered over two sites about the mirror plane.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. π-π interactions between the neighboring aromatic rings of the title compound. Aromatic hydrogen atoms and methyl groups have been omitted for clarity.
3,4,7,8-Tetramethyl-1,10-phenanthrolin-1-ium nitrate monohydrate top
Crystal data top
C16H17N2+·NO3·H2OF(000) = 1344
Mr = 317.34Dx = 1.349 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 2972 reflections
a = 6.7401 (8) Åθ = 2.7–25.0°
b = 24.090 (3) ŵ = 0.10 mm1
c = 19.254 (2) ÅT = 296 K
V = 3126.1 (6) Å3Block, colorless
Z = 80.37 × 0.30 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1149 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.5°, θmin = 2.7°
ϕ and ω scansh = 87
11308 measured reflectionsk = 2828
1585 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0707P)2 + 2.7655P]
where P = (Fo2 + 2Fc2)/3
1585 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H17N2+·NO3·H2OV = 3126.1 (6) Å3
Mr = 317.34Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 6.7401 (8) ŵ = 0.10 mm1
b = 24.090 (3) ÅT = 296 K
c = 19.254 (2) Å0.37 × 0.30 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1149 reflections with I > 2σ(I)
11308 measured reflectionsRint = 0.029
1585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
1585 reflectionsΔρmin = 0.27 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.00000.19047 (14)0.08694 (15)0.0642 (9)
H11.00000.18250.03970.077*
C21.00000.24624 (14)0.10669 (16)0.0618 (8)
C31.00000.25954 (12)0.17669 (16)0.0550 (8)
C41.00000.21518 (11)0.22551 (14)0.0474 (7)
C51.00000.22191 (12)0.29933 (15)0.0517 (7)
H51.00000.25760.31770.062*
C61.00000.17823 (11)0.34314 (14)0.0520 (7)
H61.00000.18470.39080.062*
C71.00000.12218 (11)0.31849 (13)0.0485 (7)
C81.00000.07458 (12)0.36186 (14)0.0561 (8)
C91.00000.02213 (12)0.33180 (16)0.0635 (9)
C101.00000.01823 (12)0.26008 (17)0.0660 (9)
H101.00000.01680.23960.079*
C111.00000.11486 (10)0.24627 (14)0.0483 (7)
C121.00000.16081 (12)0.19900 (13)0.0485 (7)
C131.00000.29005 (16)0.05051 (19)0.0890 (12)
H13A1.02070.27280.00620.134*0.50
H13B1.10460.31620.05920.134*0.50
H13C0.87470.30900.05050.134*0.50
C141.00000.31938 (13)0.1996 (2)0.0764 (10)
H14A0.87120.33520.19180.115*0.50
H14B1.09720.33970.17340.115*0.50
H14C1.03160.32140.24810.115*0.50
C151.00000.08170 (15)0.43955 (15)0.0770 (11)
H15A0.94820.04880.46100.116*0.50
H15B0.91860.11290.45180.116*0.50
H15C1.13320.08800.45540.116*0.50
C161.00000.03134 (13)0.3737 (2)0.0912 (13)
H16A1.08690.02740.41290.137*0.50
H16B1.04530.06140.34500.137*0.50
H16C0.86790.03900.38960.137*0.50
N11.00000.14820 (10)0.13060 (11)0.0570 (7)
N21.00000.06277 (9)0.21952 (11)0.0574 (7)
H21.00000.05850.17520.069*
N30.50000.38702 (12)0.09781 (14)0.0702 (8)
O10.50000.41620 (12)0.04627 (14)0.1338 (15)
O20.50000.40810 (14)0.15514 (15)0.1348 (15)
O30.50000.33707 (11)0.09262 (15)0.1115 (11)
O40.00000.02821 (10)0.08654 (12)0.1174 (13)
H2W0.00000.04770.05120.176*
H1W0.00000.00580.07790.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (2)0.077 (2)0.0361 (15)0.0000.0000.0103 (14)
C20.066 (2)0.067 (2)0.0532 (18)0.0000.0000.0177 (15)
C30.0574 (18)0.0486 (16)0.0589 (18)0.0000.0000.0098 (13)
C40.0515 (16)0.0464 (15)0.0444 (15)0.0000.0000.0003 (11)
C50.0607 (18)0.0442 (15)0.0501 (16)0.0000.0000.0088 (12)
C60.0679 (19)0.0516 (16)0.0365 (14)0.0000.0000.0074 (12)
C70.0616 (18)0.0480 (15)0.0360 (13)0.0000.0000.0022 (11)
C80.078 (2)0.0541 (17)0.0366 (14)0.0000.0000.0036 (12)
C90.093 (2)0.0498 (17)0.0477 (17)0.0000.0000.0039 (13)
C100.101 (3)0.0448 (16)0.0521 (18)0.0000.0000.0060 (13)
C110.0632 (18)0.0475 (15)0.0343 (13)0.0000.0000.0024 (11)
C120.0574 (17)0.0528 (16)0.0354 (13)0.0000.0000.0007 (11)
C130.110 (3)0.091 (3)0.067 (2)0.0000.0000.036 (2)
C140.091 (3)0.055 (2)0.083 (2)0.0000.0000.0130 (17)
C150.125 (3)0.070 (2)0.0363 (15)0.0000.0000.0060 (14)
C160.149 (4)0.053 (2)0.072 (2)0.0000.0000.0145 (17)
N10.0772 (17)0.0600 (14)0.0338 (11)0.0000.0000.0002 (10)
N20.0918 (19)0.0467 (13)0.0336 (11)0.0000.0000.0057 (10)
N30.095 (2)0.0645 (18)0.0508 (16)0.0000.0000.0033 (13)
O10.259 (5)0.0823 (19)0.0605 (16)0.0000.0000.0153 (15)
O20.233 (4)0.104 (2)0.0669 (18)0.0000.0000.0228 (17)
O30.178 (3)0.0621 (17)0.095 (2)0.0000.0000.0016 (15)
O40.238 (4)0.0661 (15)0.0483 (14)0.0000.0000.0128 (11)
Geometric parameters (Å, º) top
C1—N11.320 (4)C11—N21.356 (3)
C1—C21.396 (5)C11—C121.433 (4)
C1—H10.9300C12—N11.351 (3)
C2—C31.385 (4)C13—H13A0.9600
C2—C131.511 (4)C13—H13B0.9600
C3—C41.423 (4)C13—H13C0.9600
C3—C141.508 (4)C14—H14A0.9600
C4—C121.406 (4)C14—H14B0.9600
C4—C51.431 (4)C14—H14C0.9600
C5—C61.349 (4)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.431 (4)C15—H15C0.9600
C6—H60.9300C16—H16A0.9600
C7—C111.402 (4)C16—H16B0.9600
C7—C81.419 (4)C16—H16C0.9600
C8—C91.390 (4)N2—H20.8600
C8—C151.506 (4)N3—O31.208 (4)
C9—C101.384 (5)N3—O21.215 (4)
C9—C161.520 (4)N3—O11.216 (4)
C10—N21.327 (4)O4—H2W0.8276
C10—H100.9300O4—H1W0.8365
N1—C1—C2124.7 (3)N1—C12—C11116.4 (2)
N1—C1—H1117.7C4—C12—C11119.3 (2)
C2—C1—H1117.7C2—C13—H13A109.5
C3—C2—C1119.2 (3)C2—C13—H13B109.5
C3—C2—C13122.3 (3)H13A—C13—H13B109.5
C1—C2—C13118.5 (3)C2—C13—H13C109.5
C2—C3—C4118.0 (3)H13A—C13—H13C109.5
C2—C3—C14120.4 (3)H13B—C13—H13C109.5
C4—C3—C14121.7 (3)C3—C14—H14A109.5
C12—C4—C3117.4 (2)C3—C14—H14B109.5
C12—C4—C5117.8 (2)H14A—C14—H14B109.5
C3—C4—C5124.8 (3)C3—C14—H14C109.5
C6—C5—C4122.2 (3)H14A—C14—H14C109.5
C6—C5—H5118.9H14B—C14—H14C109.5
C4—C5—H5118.9C8—C15—H15A109.5
C5—C6—C7121.9 (2)C8—C15—H15B109.5
C5—C6—H6119.0H15A—C15—H15B109.5
C7—C6—H6119.0C8—C15—H15C109.5
C11—C7—C8118.8 (2)H15A—C15—H15C109.5
C11—C7—C6116.6 (2)H15B—C15—H15C109.5
C8—C7—C6124.6 (2)C9—C16—H16A109.5
C9—C8—C7119.3 (2)C9—C16—H16B109.5
C9—C8—C15121.2 (3)H16A—C16—H16B109.5
C7—C8—C15119.5 (3)C9—C16—H16C109.5
C10—C9—C8118.5 (3)H16A—C16—H16C109.5
C10—C9—C16118.2 (3)H16B—C16—H16C109.5
C8—C9—C16123.3 (3)C1—N1—C12116.5 (3)
N2—C10—C9122.2 (3)C10—N2—C11121.6 (2)
N2—C10—H10118.9C10—N2—H2119.2
C9—C10—H10118.9C11—N2—H2119.2
N2—C11—C7119.5 (2)O3—N3—O2119.4 (3)
N2—C11—C12118.3 (2)O3—N3—O1120.6 (3)
C7—C11—C12122.2 (2)O2—N3—O1120.0 (3)
N1—C12—C4124.3 (2)H2W—O4—H1W113.2
N1—C1—C2—C30.0C15—C8—C9—C160.0
N1—C1—C2—C13180.0C8—C9—C10—N20.0
C1—C2—C3—C40.0C16—C9—C10—N2180.0
C13—C2—C3—C4180.0C8—C7—C11—N20.0
C1—C2—C3—C14180.0C6—C7—C11—N2180.0
C13—C2—C3—C140.0C8—C7—C11—C12180.0
C2—C3—C4—C120.0C6—C7—C11—C120.0
C14—C3—C4—C12180.0C3—C4—C12—N10.0
C2—C3—C4—C5180.0C5—C4—C12—N1180.0
C14—C3—C4—C50.0C3—C4—C12—C11180.0
C12—C4—C5—C60.0C5—C4—C12—C110.0
C3—C4—C5—C6180.0N2—C11—C12—N10.0
C4—C5—C6—C70.0C7—C11—C12—N1180.0
C5—C6—C7—C110.0N2—C11—C12—C4180.0
C5—C6—C7—C8180.0C7—C11—C12—C40.0
C11—C7—C8—C90.0C2—C1—N1—C120.0
C6—C7—C8—C9180.0C4—C12—N1—C10.0
C11—C7—C8—C15180.0C11—C12—N1—C1180.0
C6—C7—C8—C150.0C9—C10—N2—C110.0
C7—C8—C9—C100.0C7—C11—N2—C100.0
C15—C8—C9—C10180.0C12—C11—N2—C10180.0
C7—C8—C9—C16180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.862.692 (3)164
O4—H1W···O1ii0.841.972.808 (4)174
O4—H2W···O1iii0.832.072.886 (4)170
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H17N2+·NO3·H2O
Mr317.34
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)296
a, b, c (Å)6.7401 (8), 24.090 (3), 19.254 (2)
V3)3126.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11308, 1585, 1149
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.153, 1.03
No. of reflections1585
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.862.692 (3)163.7
O4—H1W···O1ii0.841.972.808 (4)173.5
O4—H2W···O1iii0.832.072.886 (4)170.2
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of Henan Educational Committee, China (2011 C550002) is gratefully acknowledged.

References

First citationBei, F.-L., Yang, X.-J., Lu, L.-D. & Wang, X. (2004). J. Mol. Struct. 689, 237–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButtery, J. H., Effendy, Junk, P. C., Mutrofin, S.,Skelton, B. W., Whitaker, C. R., White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1326–1339.  Web of Science CSD CrossRef CAS Google Scholar
First citationGillard, R. D., Hursthouse, M. B., Abdul Malik, K. M. & Paisey, S. (1998). J. Chem. Crystallogr. 28, 611–619.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. C64, o489–o492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359–361.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHensen, K., Spangenberg, B. & Bolte, M. (2000). Acta Cryst. C56, 208–210.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKolev, T., Koleva, B. B., Nikolova, R., Seidel, R. W., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2009). Spectrochim. Acta Part A, 73, 929–935.  CrossRef Google Scholar
First citationLin, X.-Y., Tang, S.-J. & Wu, W.-S. (2009). Acta Cryst. E65, o2367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaresca, L., Natile, G. & Fanizzi, F. P. (1989). J. Am. Chem. Soc. 111, 1492–1493.  CSD CrossRef CAS Web of Science Google Scholar
First citationMilani, B., Anzilutti, A., Vicentini, L., Santi, A. S., o Zangrando, E., Geremia, S. & Mestroni, G. (1997). Organometallics, 16, 5064–5075.  Google Scholar
First citationMontagu-Bourin, M., Levillain, P., Ceolin, R., Thevenet, G. & Souleau, C. (1981). J. Appl. Cryst. 14, 63.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationShang, R.-L., Du, L. & Sun, B.-W. (2006). Acta Cryst. E62, o2920–o2921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThevenet, G. & Rodier, N. (1978). Acta Cryst. B34, 880–882.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationThevenet, G., Rodier, N. & Khodadad, P. (1978). Acta Cryst. B34, 2594–2599.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationThevenet, G., Souleau, C., Montagu-Bourin, M. & Ceolin, R. (1980). J. Appl. Cryst. 13, 315.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationThevenet, G., Toffoli, P., Rodier, N. & Céolin, R. (1977). Acta Cryst. B33, 2526–2529.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187–o2189.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1931-o1932
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds