organic compounds
3,4,7,8-Tetramethyl-1,10-phenanthrolin-1-ium nitrate monohydrate
aSchool of Material Science and Engineering, Nanjing Institute of Science and Technology, Nanjing 211168, People's Republic of China, and bDepartment of Life Science and Technology, Xinxiang College, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: xxzhangyanfang@126.com
In the crystal of the title compound, C16H17N2+·NO3−·H2O, the tetramethyl-1,10-phenanthrolinium cations, nitrate anions and lattice water molecules are all located on a mirror plane with the methyl H atoms of the cation equally disordered over two sites about the mirror plane. The cation, anion and water molecule are linked by O—H⋯O and N—H⋯O hydrogen bonds into a sheet parallel to the bc plane. π–π stacking between phenanthroline ring systems is observed in the the centroid–centroid distance being 3.4745 (6) Å.
Related literature
For proton-transfer structures of phenanthroline and its derivatives, see: Bei et al. (2004); Buttery et al. (2006); Gillard et al. (1998); Harvey et al. (2008); Hensen et al. (1998, 2000); Kolev et al. (2009); Lin et al. (2009); Maresca et al. (1989); Milani et al. (1997); Montagu-Bourin et al. (1981); Shang et al. (2006); Thevenet & Rodier (1978); Thevenet et al. (1977, 1978, 1980); Wang et al. (1999); Yu et al. (2006).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812023318/xu5537sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023318/xu5537Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812023318/xu5537Isup3.cml
A aqueous solution (12 ml) of Tb(NO3)3.6H2O (1 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthroline (1 mmol) was stirred. The mixture was then transferred to a 25-ml Teflon reactor and kept at 433 K for 3 d under autogenous pressure, and then cooled to room temperature at a rate of 10 K h-1. Colorless crystals of the title compound were obtained.
The carbon-bound H atoms were placed in calculated positions and were included in the
in the riding model approximation, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C aromatic) and C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C methyl), respectively. The H atoms bound to O were located in a difference Fourier map, and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). The methyl H atoms are equally disordered over two sites about the mirror plane.Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C16H17N2+·NO3−·H2O | F(000) = 1344 |
Mr = 317.34 | Dx = 1.349 Mg m−3 |
Orthorhombic, Cmca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2bc 2 | Cell parameters from 2972 reflections |
a = 6.7401 (8) Å | θ = 2.7–25.0° |
b = 24.090 (3) Å | µ = 0.10 mm−1 |
c = 19.254 (2) Å | T = 296 K |
V = 3126.1 (6) Å3 | Block, colorless |
Z = 8 | 0.37 × 0.30 × 0.21 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 1149 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 25.5°, θmin = 2.7° |
ϕ and ω scans | h = −8→7 |
11308 measured reflections | k = −28→28 |
1585 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0707P)2 + 2.7655P] where P = (Fo2 + 2Fc2)/3 |
1585 reflections | (Δ/σ)max < 0.001 |
143 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C16H17N2+·NO3−·H2O | V = 3126.1 (6) Å3 |
Mr = 317.34 | Z = 8 |
Orthorhombic, Cmca | Mo Kα radiation |
a = 6.7401 (8) Å | µ = 0.10 mm−1 |
b = 24.090 (3) Å | T = 296 K |
c = 19.254 (2) Å | 0.37 × 0.30 × 0.21 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 1149 reflections with I > 2σ(I) |
11308 measured reflections | Rint = 0.029 |
1585 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.22 e Å−3 |
1585 reflections | Δρmin = −0.27 e Å−3 |
143 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.0000 | 0.19047 (14) | 0.08694 (15) | 0.0642 (9) | |
H1 | 1.0000 | 0.1825 | 0.0397 | 0.077* | |
C2 | 1.0000 | 0.24624 (14) | 0.10669 (16) | 0.0618 (8) | |
C3 | 1.0000 | 0.25954 (12) | 0.17669 (16) | 0.0550 (8) | |
C4 | 1.0000 | 0.21518 (11) | 0.22551 (14) | 0.0474 (7) | |
C5 | 1.0000 | 0.22191 (12) | 0.29933 (15) | 0.0517 (7) | |
H5 | 1.0000 | 0.2576 | 0.3177 | 0.062* | |
C6 | 1.0000 | 0.17823 (11) | 0.34314 (14) | 0.0520 (7) | |
H6 | 1.0000 | 0.1847 | 0.3908 | 0.062* | |
C7 | 1.0000 | 0.12218 (11) | 0.31849 (13) | 0.0485 (7) | |
C8 | 1.0000 | 0.07458 (12) | 0.36186 (14) | 0.0561 (8) | |
C9 | 1.0000 | 0.02213 (12) | 0.33180 (16) | 0.0635 (9) | |
C10 | 1.0000 | 0.01823 (12) | 0.26008 (17) | 0.0660 (9) | |
H10 | 1.0000 | −0.0168 | 0.2396 | 0.079* | |
C11 | 1.0000 | 0.11486 (10) | 0.24627 (14) | 0.0483 (7) | |
C12 | 1.0000 | 0.16081 (12) | 0.19900 (13) | 0.0485 (7) | |
C13 | 1.0000 | 0.29005 (16) | 0.05051 (19) | 0.0890 (12) | |
H13A | 1.0207 | 0.2728 | 0.0062 | 0.134* | 0.50 |
H13B | 1.1046 | 0.3162 | 0.0592 | 0.134* | 0.50 |
H13C | 0.8747 | 0.3090 | 0.0505 | 0.134* | 0.50 |
C14 | 1.0000 | 0.31938 (13) | 0.1996 (2) | 0.0764 (10) | |
H14A | 0.8712 | 0.3352 | 0.1918 | 0.115* | 0.50 |
H14B | 1.0972 | 0.3397 | 0.1734 | 0.115* | 0.50 |
H14C | 1.0316 | 0.3214 | 0.2481 | 0.115* | 0.50 |
C15 | 1.0000 | 0.08170 (15) | 0.43955 (15) | 0.0770 (11) | |
H15A | 0.9482 | 0.0488 | 0.4610 | 0.116* | 0.50 |
H15B | 0.9186 | 0.1129 | 0.4518 | 0.116* | 0.50 |
H15C | 1.1332 | 0.0880 | 0.4554 | 0.116* | 0.50 |
C16 | 1.0000 | −0.03134 (13) | 0.3737 (2) | 0.0912 (13) | |
H16A | 1.0869 | −0.0274 | 0.4129 | 0.137* | 0.50 |
H16B | 1.0453 | −0.0614 | 0.3450 | 0.137* | 0.50 |
H16C | 0.8679 | −0.0390 | 0.3896 | 0.137* | 0.50 |
N1 | 1.0000 | 0.14820 (10) | 0.13060 (11) | 0.0570 (7) | |
N2 | 1.0000 | 0.06277 (9) | 0.21952 (11) | 0.0574 (7) | |
H2 | 1.0000 | 0.0585 | 0.1752 | 0.069* | |
N3 | 0.5000 | 0.38702 (12) | 0.09781 (14) | 0.0702 (8) | |
O1 | 0.5000 | 0.41620 (12) | 0.04627 (14) | 0.1338 (15) | |
O2 | 0.5000 | 0.40810 (14) | 0.15514 (15) | 0.1348 (15) | |
O3 | 0.5000 | 0.33707 (11) | 0.09262 (15) | 0.1115 (11) | |
O4 | 0.0000 | 0.02821 (10) | 0.08654 (12) | 0.1174 (13) | |
H2W | 0.0000 | 0.0477 | 0.0512 | 0.176* | |
H1W | 0.0000 | −0.0058 | 0.0779 | 0.176* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.080 (2) | 0.077 (2) | 0.0361 (15) | 0.000 | 0.000 | 0.0103 (14) |
C2 | 0.066 (2) | 0.067 (2) | 0.0532 (18) | 0.000 | 0.000 | 0.0177 (15) |
C3 | 0.0574 (18) | 0.0486 (16) | 0.0589 (18) | 0.000 | 0.000 | 0.0098 (13) |
C4 | 0.0515 (16) | 0.0464 (15) | 0.0444 (15) | 0.000 | 0.000 | 0.0003 (11) |
C5 | 0.0607 (18) | 0.0442 (15) | 0.0501 (16) | 0.000 | 0.000 | −0.0088 (12) |
C6 | 0.0679 (19) | 0.0516 (16) | 0.0365 (14) | 0.000 | 0.000 | −0.0074 (12) |
C7 | 0.0616 (18) | 0.0480 (15) | 0.0360 (13) | 0.000 | 0.000 | −0.0022 (11) |
C8 | 0.078 (2) | 0.0541 (17) | 0.0366 (14) | 0.000 | 0.000 | 0.0036 (12) |
C9 | 0.093 (2) | 0.0498 (17) | 0.0477 (17) | 0.000 | 0.000 | 0.0039 (13) |
C10 | 0.101 (3) | 0.0448 (16) | 0.0521 (18) | 0.000 | 0.000 | −0.0060 (13) |
C11 | 0.0632 (18) | 0.0475 (15) | 0.0343 (13) | 0.000 | 0.000 | −0.0024 (11) |
C12 | 0.0574 (17) | 0.0528 (16) | 0.0354 (13) | 0.000 | 0.000 | 0.0007 (11) |
C13 | 0.110 (3) | 0.091 (3) | 0.067 (2) | 0.000 | 0.000 | 0.036 (2) |
C14 | 0.091 (3) | 0.055 (2) | 0.083 (2) | 0.000 | 0.000 | 0.0130 (17) |
C15 | 0.125 (3) | 0.070 (2) | 0.0363 (15) | 0.000 | 0.000 | 0.0060 (14) |
C16 | 0.149 (4) | 0.053 (2) | 0.072 (2) | 0.000 | 0.000 | 0.0145 (17) |
N1 | 0.0772 (17) | 0.0600 (14) | 0.0338 (11) | 0.000 | 0.000 | 0.0002 (10) |
N2 | 0.0918 (19) | 0.0467 (13) | 0.0336 (11) | 0.000 | 0.000 | −0.0057 (10) |
N3 | 0.095 (2) | 0.0645 (18) | 0.0508 (16) | 0.000 | 0.000 | −0.0033 (13) |
O1 | 0.259 (5) | 0.0823 (19) | 0.0605 (16) | 0.000 | 0.000 | 0.0153 (15) |
O2 | 0.233 (4) | 0.104 (2) | 0.0669 (18) | 0.000 | 0.000 | −0.0228 (17) |
O3 | 0.178 (3) | 0.0621 (17) | 0.095 (2) | 0.000 | 0.000 | 0.0016 (15) |
O4 | 0.238 (4) | 0.0661 (15) | 0.0483 (14) | 0.000 | 0.000 | −0.0128 (11) |
C1—N1 | 1.320 (4) | C11—N2 | 1.356 (3) |
C1—C2 | 1.396 (5) | C11—C12 | 1.433 (4) |
C1—H1 | 0.9300 | C12—N1 | 1.351 (3) |
C2—C3 | 1.385 (4) | C13—H13A | 0.9600 |
C2—C13 | 1.511 (4) | C13—H13B | 0.9600 |
C3—C4 | 1.423 (4) | C13—H13C | 0.9600 |
C3—C14 | 1.508 (4) | C14—H14A | 0.9600 |
C4—C12 | 1.406 (4) | C14—H14B | 0.9600 |
C4—C5 | 1.431 (4) | C14—H14C | 0.9600 |
C5—C6 | 1.349 (4) | C15—H15A | 0.9600 |
C5—H5 | 0.9300 | C15—H15B | 0.9600 |
C6—C7 | 1.431 (4) | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | C16—H16A | 0.9600 |
C7—C11 | 1.402 (4) | C16—H16B | 0.9600 |
C7—C8 | 1.419 (4) | C16—H16C | 0.9600 |
C8—C9 | 1.390 (4) | N2—H2 | 0.8600 |
C8—C15 | 1.506 (4) | N3—O3 | 1.208 (4) |
C9—C10 | 1.384 (5) | N3—O2 | 1.215 (4) |
C9—C16 | 1.520 (4) | N3—O1 | 1.216 (4) |
C10—N2 | 1.327 (4) | O4—H2W | 0.8276 |
C10—H10 | 0.9300 | O4—H1W | 0.8365 |
N1—C1—C2 | 124.7 (3) | N1—C12—C11 | 116.4 (2) |
N1—C1—H1 | 117.7 | C4—C12—C11 | 119.3 (2) |
C2—C1—H1 | 117.7 | C2—C13—H13A | 109.5 |
C3—C2—C1 | 119.2 (3) | C2—C13—H13B | 109.5 |
C3—C2—C13 | 122.3 (3) | H13A—C13—H13B | 109.5 |
C1—C2—C13 | 118.5 (3) | C2—C13—H13C | 109.5 |
C2—C3—C4 | 118.0 (3) | H13A—C13—H13C | 109.5 |
C2—C3—C14 | 120.4 (3) | H13B—C13—H13C | 109.5 |
C4—C3—C14 | 121.7 (3) | C3—C14—H14A | 109.5 |
C12—C4—C3 | 117.4 (2) | C3—C14—H14B | 109.5 |
C12—C4—C5 | 117.8 (2) | H14A—C14—H14B | 109.5 |
C3—C4—C5 | 124.8 (3) | C3—C14—H14C | 109.5 |
C6—C5—C4 | 122.2 (3) | H14A—C14—H14C | 109.5 |
C6—C5—H5 | 118.9 | H14B—C14—H14C | 109.5 |
C4—C5—H5 | 118.9 | C8—C15—H15A | 109.5 |
C5—C6—C7 | 121.9 (2) | C8—C15—H15B | 109.5 |
C5—C6—H6 | 119.0 | H15A—C15—H15B | 109.5 |
C7—C6—H6 | 119.0 | C8—C15—H15C | 109.5 |
C11—C7—C8 | 118.8 (2) | H15A—C15—H15C | 109.5 |
C11—C7—C6 | 116.6 (2) | H15B—C15—H15C | 109.5 |
C8—C7—C6 | 124.6 (2) | C9—C16—H16A | 109.5 |
C9—C8—C7 | 119.3 (2) | C9—C16—H16B | 109.5 |
C9—C8—C15 | 121.2 (3) | H16A—C16—H16B | 109.5 |
C7—C8—C15 | 119.5 (3) | C9—C16—H16C | 109.5 |
C10—C9—C8 | 118.5 (3) | H16A—C16—H16C | 109.5 |
C10—C9—C16 | 118.2 (3) | H16B—C16—H16C | 109.5 |
C8—C9—C16 | 123.3 (3) | C1—N1—C12 | 116.5 (3) |
N2—C10—C9 | 122.2 (3) | C10—N2—C11 | 121.6 (2) |
N2—C10—H10 | 118.9 | C10—N2—H2 | 119.2 |
C9—C10—H10 | 118.9 | C11—N2—H2 | 119.2 |
N2—C11—C7 | 119.5 (2) | O3—N3—O2 | 119.4 (3) |
N2—C11—C12 | 118.3 (2) | O3—N3—O1 | 120.6 (3) |
C7—C11—C12 | 122.2 (2) | O2—N3—O1 | 120.0 (3) |
N1—C12—C4 | 124.3 (2) | H2W—O4—H1W | 113.2 |
N1—C1—C2—C3 | 0.0 | C15—C8—C9—C16 | 0.0 |
N1—C1—C2—C13 | 180.0 | C8—C9—C10—N2 | 0.0 |
C1—C2—C3—C4 | 0.0 | C16—C9—C10—N2 | 180.0 |
C13—C2—C3—C4 | 180.0 | C8—C7—C11—N2 | 0.0 |
C1—C2—C3—C14 | 180.0 | C6—C7—C11—N2 | 180.0 |
C13—C2—C3—C14 | 0.0 | C8—C7—C11—C12 | 180.0 |
C2—C3—C4—C12 | 0.0 | C6—C7—C11—C12 | 0.0 |
C14—C3—C4—C12 | 180.0 | C3—C4—C12—N1 | 0.0 |
C2—C3—C4—C5 | 180.0 | C5—C4—C12—N1 | 180.0 |
C14—C3—C4—C5 | 0.0 | C3—C4—C12—C11 | 180.0 |
C12—C4—C5—C6 | 0.0 | C5—C4—C12—C11 | 0.0 |
C3—C4—C5—C6 | 180.0 | N2—C11—C12—N1 | 0.0 |
C4—C5—C6—C7 | 0.0 | C7—C11—C12—N1 | 180.0 |
C5—C6—C7—C11 | 0.0 | N2—C11—C12—C4 | 180.0 |
C5—C6—C7—C8 | 180.0 | C7—C11—C12—C4 | 0.0 |
C11—C7—C8—C9 | 0.0 | C2—C1—N1—C12 | 0.0 |
C6—C7—C8—C9 | 180.0 | C4—C12—N1—C1 | 0.0 |
C11—C7—C8—C15 | 180.0 | C11—C12—N1—C1 | 180.0 |
C6—C7—C8—C15 | 0.0 | C9—C10—N2—C11 | 0.0 |
C7—C8—C9—C10 | 0.0 | C7—C11—N2—C10 | 0.0 |
C15—C8—C9—C10 | 180.0 | C12—C11—N2—C10 | 180.0 |
C7—C8—C9—C16 | 180.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4i | 0.86 | 1.86 | 2.692 (3) | 164 |
O4—H1W···O1ii | 0.84 | 1.97 | 2.808 (4) | 174 |
O4—H2W···O1iii | 0.83 | 2.07 | 2.886 (4) | 170 |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, y−1/2, z; (iii) −x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H17N2+·NO3−·H2O |
Mr | 317.34 |
Crystal system, space group | Orthorhombic, Cmca |
Temperature (K) | 296 |
a, b, c (Å) | 6.7401 (8), 24.090 (3), 19.254 (2) |
V (Å3) | 3126.1 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.37 × 0.30 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11308, 1585, 1149 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.153, 1.03 |
No. of reflections | 1585 |
No. of parameters | 143 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.27 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4i | 0.86 | 1.86 | 2.692 (3) | 163.7 |
O4—H1W···O1ii | 0.84 | 1.97 | 2.808 (4) | 173.5 |
O4—H2W···O1iii | 0.83 | 2.07 | 2.886 (4) | 170.2 |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, y−1/2, z; (iii) −x+1/2, −y+1/2, −z. |
Acknowledgements
Financial support from the National Natural Science Foundation of Henan Educational Committee, China (2011 C550002) is gratefully acknowledged.
References
Bei, F.-L., Yang, X.-J., Lu, L.-D. & Wang, X. (2004). J. Mol. Struct. 689, 237–243. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buttery, J. H., Effendy, Junk, P. C., Mutrofin, S.,Skelton, B. W., Whitaker, C. R., White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1326–1339. Web of Science CSD CrossRef CAS Google Scholar
Gillard, R. D., Hursthouse, M. B., Abdul Malik, K. M. & Paisey, S. (1998). J. Chem. Crystallogr. 28, 611–619. Web of Science CSD CrossRef CAS Google Scholar
Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. C64, o489–o492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359–361. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hensen, K., Spangenberg, B. & Bolte, M. (2000). Acta Cryst. C56, 208–210. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kolev, T., Koleva, B. B., Nikolova, R., Seidel, R. W., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2009). Spectrochim. Acta Part A, 73, 929–935. CrossRef Google Scholar
Lin, X.-Y., Tang, S.-J. & Wu, W.-S. (2009). Acta Cryst. E65, o2367. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maresca, L., Natile, G. & Fanizzi, F. P. (1989). J. Am. Chem. Soc. 111, 1492–1493. CSD CrossRef CAS Web of Science Google Scholar
Milani, B., Anzilutti, A., Vicentini, L., Santi, A. S., o Zangrando, E., Geremia, S. & Mestroni, G. (1997). Organometallics, 16, 5064–5075. Google Scholar
Montagu-Bourin, M., Levillain, P., Ceolin, R., Thevenet, G. & Souleau, C. (1981). J. Appl. Cryst. 14, 63. CSD CrossRef Web of Science IUCr Journals Google Scholar
Shang, R.-L., Du, L. & Sun, B.-W. (2006). Acta Cryst. E62, o2920–o2921. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thevenet, G. & Rodier, N. (1978). Acta Cryst. B34, 880–882. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Thevenet, G., Rodier, N. & Khodadad, P. (1978). Acta Cryst. B34, 2594–2599. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Thevenet, G., Souleau, C., Montagu-Bourin, M. & Ceolin, R. (1980). J. Appl. Cryst. 13, 315. CSD CrossRef IUCr Journals Web of Science Google Scholar
Thevenet, G., Toffoli, P., Rodier, N. & Céolin, R. (1977). Acta Cryst. B33, 2526–2529. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503–1506. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187–o2189. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,10-Phenanthroline and its derivatives have been recognized as good proton acceptors, and usually are considered a suitable agent in the synthesis of proton-transfer systems. Some proton-transfer complexes based on 1,10-phenanthroline (Buttery et al. 2006; Gillard et al. 1998; Hensen et al. 1998, 2000; Kolev et al. 2009; Maresca et al. 1989; Milani et al. 1997; Montagu-Bourin, Levillain, Ceolin, Thevenet & Souleau 1981; Shang et al. 2006; Thevenet & Rodier 1978; Thevenet et al. 1977, 1980; Thevenet, Rodier & Khodadad 1978; Wang et al. 1999), 2,9-dimethyl-1,10-phenanthroline (Harvey et al. 2008; Yu et al. 2006), and 6-nitro-1,10-phenanthroline (Bei et al. 2004), 5,6-dihydroxy-phenanthroline (Lin et al. 2009) have been synthesized. In the recent work, the title compound (I), C16H17N2]NO3.H2O, was obtained unintentionally as a major product in the reaction of Tb(NO3)3.6H2O with the 3,4,7,8-tetramethyl-1,10-phenanthroline in water. To the best our knowledge, this is the first example of proton-transfer system containing 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline.
The numbering scheme of (I) is given in Fig. 1, and the selected bond lengths and bond angles are provided in the cif file. The crystal contains one protonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cation, one nitrate anion and one water molecule. In the crystal structure, the cations, anions and water molecules are linked into two dimensional layers parallel to the bc plane by N—H···O and O—H···O hydrogen bonds (Table 1). Among them, N—H···O hydrogen bonds play a very important role in the formation of proton-transfer compounds. Additionally, the monoprotonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cations are parallel to each other in the crystal packing, showing π-π interactions (Fig. 2); the centroid–centroid distance is 3.4745 (6) Å.