metal-organic compounds
catena-Poly[[[diaquacopper(II)]-μ-quinoline-2,3-dicarboxylato-κ3N,O2:O3] monohydrate]
aCollege of Sciences, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, People's Republic of China
*Correspondence e-mail: libingzjfc@163.com
In the title compound, {[Cu(C11H5NO4)(H2O)2]·H2O}n, the CuII ion is five-coordinated by two O atoms and one N atom of two symmetry-related quinoline-2,3-dicarboxylate ligands, and two water molecules. The water molecules occupy basal and apical positions of the square-pyramidal Each quinoline-2,3-dicarboxylate dianion bridges two adjacent CuII ions, forming a polymeric chain along [010]. The chains are further connected via O—H⋯O hydrogen-bonding interactions and quinoline ring π–π interactions [centroid–centroid distance = 3.725 (4) Å], generating a three-dimensional structure. Lattice water molecules participate in the via O—H⋯O hydrogen bonds.
Related literature
For background to complexes based on quinoline-2,3-dicarboxylic acid, see: Li & Liu (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812043206/bh2454sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043206/bh2454Isup2.hkl
All commercially obtained reagent grade chemicals were used without further purification. A mixture of copper chloride dihydrate (0.1708 g, 1 mmol) and 2,3-quinolinedicarboxylic acid (0.2171 g, 1 mmol) was added into 20 ml of water with few drops of ammonia solution, and then stirred for 1 h. After 2 days, blue crystals of the title complex were collected by filtration, washed with distilled water, and dried in air.
All H atoms bonded to C atoms were positioned geometrically and refined using the riding model with C—H = 0.93 Å. The H atoms of water molecules were located from a difference map and were restrained at distances O—H = 0.83 (1) Å. The separation between H atoms in the same water molecule was restrained to H···H = 1.35 (1) Å. Cu and OW2 atoms were restrained to have similar displacement parameters (SIMU restraint; Sheldrick, 2008). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C) and Uiso(H) = 1.5Ueq(carrier O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, with 50% probability displacement ellipsoids for non-H atoms. Symmetry codes: (A) x, -1 + y, z; (B) x, -2 + y, z. | |
Fig. 2. Crystal packing diagram for the title compound. All atoms are shown as isotropic spheres of arbitrary size. H atoms bonded to C atoms are omitted for clarity. The H-bonding interactions are shown as red dashed lines. |
[Cu(C11H5NO4)(H2O)2]·H2O | Z = 2 |
Mr = 332.76 | F(000) = 338 |
Triclinic, P1 | Dx = 1.818 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0284 (14) Å | Cell parameters from 5355 reflections |
b = 7.5836 (15) Å | θ = 3.1–27.5° |
c = 13.276 (3) Å | µ = 1.83 mm−1 |
α = 104.74 (3)° | T = 293 K |
β = 91.19 (3)° | Block, blue |
γ = 116.03 (3)° | 0.43 × 0.34 × 0.20 mm |
V = 607.7 (2) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2696 independent reflections |
Radiation source: fine-focus sealed tube | 2382 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→9 |
Tmin = 0.763, Tmax = 0.854 | k = −9→8 |
5813 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4308P] where P = (Fo2 + 2Fc2)/3 |
2696 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.73 e Å−3 |
10 restraints | Δρmin = −0.74 e Å−3 |
0 constraints |
[Cu(C11H5NO4)(H2O)2]·H2O | γ = 116.03 (3)° |
Mr = 332.76 | V = 607.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0284 (14) Å | Mo Kα radiation |
b = 7.5836 (15) Å | µ = 1.83 mm−1 |
c = 13.276 (3) Å | T = 293 K |
α = 104.74 (3)° | 0.43 × 0.34 × 0.20 mm |
β = 91.19 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2696 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2382 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.854 | Rint = 0.048 |
5813 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 10 restraints |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.73 e Å−3 |
2696 reflections | Δρmin = −0.74 e Å−3 |
199 parameters |
x | y | z | Uiso*/Ueq | ||
Cu | 0.30340 (5) | 0.43833 (4) | 0.17117 (2) | 0.02367 (13) | |
O1 | 0.2017 (5) | 0.8429 (3) | 0.07483 (18) | 0.0454 (6) | |
O2 | 0.3062 (4) | 0.6111 (3) | 0.08503 (16) | 0.0323 (5) | |
O3 | −0.0584 (3) | 1.0076 (3) | 0.20096 (18) | 0.0351 (5) | |
O4 | 0.2863 (3) | 1.2456 (3) | 0.24768 (16) | 0.0279 (4) | |
OW1 | 0.6719 (4) | 0.5956 (4) | 0.2208 (2) | 0.0448 (6) | |
H1 | 0.723 (7) | 0.518 (5) | 0.198 (4) | 0.067* | |
H2 | 0.733 (7) | 0.701 (4) | 0.205 (4) | 0.067* | |
OW2 | 0.2962 (5) | 0.2398 (4) | 0.0373 (2) | 0.0465 (6) | |
H3 | 0.292 (7) | 0.126 (5) | 0.042 (4) | 0.070* | |
H4 | 0.406 (6) | 0.284 (6) | 0.003 (4) | 0.070* | |
OW3 | −0.1618 (5) | 0.3035 (4) | 0.1425 (2) | 0.0516 (7) | |
H5 | −0.185 (8) | 0.265 (7) | 0.0779 (15) | 0.077* | |
H6 | −0.140 (8) | 0.226 (6) | 0.166 (3) | 0.077* | |
N | 0.2639 (3) | 0.6617 (3) | 0.28625 (17) | 0.0193 (4) | |
C1 | 0.1293 (4) | 1.0719 (4) | 0.2397 (2) | 0.0229 (5) | |
C2 | 0.1836 (4) | 0.9435 (4) | 0.2947 (2) | 0.0195 (5) | |
C3 | 0.1917 (4) | 0.9836 (4) | 0.4014 (2) | 0.0216 (5) | |
H3A | 0.1706 | 1.0930 | 0.4396 | 0.026* | |
C4 | 0.2314 (4) | 0.8615 (4) | 0.4539 (2) | 0.0208 (5) | |
C5 | 0.2409 (4) | 0.8966 (4) | 0.5644 (2) | 0.0259 (6) | |
H5A | 0.2254 | 1.0074 | 0.6055 | 0.031* | |
C6 | 0.2726 (5) | 0.7685 (5) | 0.6109 (2) | 0.0306 (6) | |
H6A | 0.2771 | 0.7918 | 0.6833 | 0.037* | |
C7 | 0.2985 (5) | 0.6019 (5) | 0.5502 (2) | 0.0312 (6) | |
H7A | 0.3172 | 0.5143 | 0.5827 | 0.037* | |
C8 | 0.2966 (5) | 0.5668 (4) | 0.4442 (2) | 0.0277 (6) | |
H8A | 0.3183 | 0.4581 | 0.4056 | 0.033* | |
C9 | 0.2620 (4) | 0.6941 (4) | 0.3922 (2) | 0.0200 (5) | |
C10 | 0.2271 (4) | 0.7826 (4) | 0.2399 (2) | 0.0201 (5) | |
C11 | 0.2456 (5) | 0.7447 (4) | 0.1240 (2) | 0.0255 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0347 (2) | 0.02115 (19) | 0.0221 (2) | 0.01646 (16) | 0.00703 (14) | 0.01064 (13) |
O1 | 0.095 (2) | 0.0415 (12) | 0.0239 (12) | 0.0488 (14) | 0.0131 (12) | 0.0165 (9) |
O2 | 0.0555 (13) | 0.0351 (11) | 0.0250 (11) | 0.0322 (11) | 0.0176 (10) | 0.0170 (9) |
O3 | 0.0349 (11) | 0.0418 (12) | 0.0381 (13) | 0.0222 (10) | 0.0005 (9) | 0.0186 (10) |
O4 | 0.0396 (11) | 0.0189 (9) | 0.0266 (11) | 0.0122 (9) | 0.0022 (8) | 0.0112 (8) |
OW1 | 0.0312 (12) | 0.0355 (12) | 0.0668 (19) | 0.0131 (11) | 0.0090 (11) | 0.0173 (12) |
OW2 | 0.0751 (18) | 0.0352 (12) | 0.0353 (12) | 0.0300 (13) | 0.0176 (12) | 0.0108 (8) |
OW3 | 0.084 (2) | 0.0524 (15) | 0.0269 (13) | 0.0385 (15) | 0.0068 (13) | 0.0121 (11) |
N | 0.0243 (10) | 0.0177 (10) | 0.0182 (11) | 0.0109 (9) | 0.0034 (8) | 0.0071 (8) |
C1 | 0.0340 (14) | 0.0258 (13) | 0.0168 (13) | 0.0200 (12) | 0.0052 (10) | 0.0071 (10) |
C2 | 0.0198 (11) | 0.0191 (11) | 0.0223 (13) | 0.0092 (10) | 0.0029 (9) | 0.0099 (9) |
C3 | 0.0235 (12) | 0.0233 (12) | 0.0217 (14) | 0.0138 (11) | 0.0042 (10) | 0.0072 (10) |
C4 | 0.0171 (11) | 0.0252 (12) | 0.0224 (14) | 0.0100 (10) | 0.0044 (9) | 0.0100 (10) |
C5 | 0.0257 (13) | 0.0348 (14) | 0.0221 (14) | 0.0170 (12) | 0.0064 (10) | 0.0103 (11) |
C6 | 0.0302 (14) | 0.0482 (17) | 0.0208 (14) | 0.0203 (14) | 0.0078 (11) | 0.0176 (12) |
C7 | 0.0339 (15) | 0.0401 (16) | 0.0292 (16) | 0.0198 (14) | 0.0044 (12) | 0.0202 (13) |
C8 | 0.0349 (14) | 0.0287 (13) | 0.0258 (15) | 0.0176 (13) | 0.0025 (11) | 0.0128 (11) |
C9 | 0.0213 (11) | 0.0208 (11) | 0.0198 (13) | 0.0098 (10) | 0.0024 (9) | 0.0089 (9) |
C10 | 0.0249 (12) | 0.0202 (11) | 0.0182 (13) | 0.0111 (10) | 0.0026 (9) | 0.0090 (9) |
C11 | 0.0378 (15) | 0.0224 (12) | 0.0197 (14) | 0.0154 (12) | 0.0053 (11) | 0.0088 (10) |
Cu—O2 | 1.9403 (19) | C5—C6 | 1.365 (4) |
Cu—O4i | 1.9463 (19) | C5—H5A | 0.9300 |
Cu—OW2 | 1.999 (3) | C11—C10 | 1.511 (4) |
Cu—N | 2.096 (2) | C7—C8 | 1.362 (4) |
Cu—OW1 | 2.320 (3) | C7—C6 | 1.403 (4) |
O2—C11 | 1.264 (3) | C7—H7A | 0.9300 |
OW2—H3 | 0.872 (18) | C10—C2 | 1.413 (4) |
OW2—H4 | 0.888 (18) | C6—H6A | 0.9300 |
N—C10 | 1.332 (3) | C8—H8A | 0.9300 |
N—C9 | 1.367 (3) | OW3—H5 | 0.820 (19) |
OW1—H1 | 0.813 (18) | OW3—H6 | 0.803 (18) |
OW1—H2 | 0.810 (18) | C2—C3 | 1.365 (4) |
O1—C11 | 1.231 (3) | C2—C1 | 1.517 (3) |
C9—C8 | 1.416 (3) | C3—H3A | 0.9300 |
C9—C4 | 1.430 (4) | C1—O3 | 1.234 (4) |
C4—C3 | 1.403 (4) | C1—O4 | 1.270 (3) |
C4—C5 | 1.418 (4) | O4—Cuii | 1.9463 (19) |
O2—Cu—O4i | 175.29 (9) | C4—C5—H5A | 119.8 |
O2—Cu—OW2 | 86.24 (10) | O1—C11—O2 | 125.0 (3) |
O4i—Cu—OW2 | 89.79 (10) | O1—C11—C10 | 119.1 (2) |
O2—Cu—N | 81.69 (8) | O2—C11—C10 | 115.9 (2) |
O4i—Cu—N | 101.87 (8) | C8—C7—C6 | 120.8 (3) |
OW2—Cu—N | 165.40 (10) | C8—C7—H7A | 119.6 |
O2—Cu—OW1 | 95.74 (10) | C6—C7—H7A | 119.6 |
O4i—Cu—OW1 | 87.18 (9) | N—C10—C2 | 123.3 (2) |
OW2—Cu—OW1 | 95.84 (12) | N—C10—C11 | 115.7 (2) |
N—Cu—OW1 | 93.51 (10) | C2—C10—C11 | 120.9 (2) |
C11—O2—Cu | 116.02 (17) | C5—C6—C7 | 120.5 (3) |
Cu—OW2—H3 | 117 (3) | C5—C6—H6A | 119.7 |
Cu—OW2—H4 | 116 (3) | C7—C6—H6A | 119.7 |
H3—OW2—H4 | 101 (2) | C7—C8—C9 | 120.8 (3) |
C10—N—C9 | 119.2 (2) | C7—C8—H8A | 119.6 |
C10—N—Cu | 108.84 (17) | C9—C8—H8A | 119.6 |
C9—N—Cu | 131.95 (17) | H5—OW3—H6 | 112 (3) |
Cu—OW1—H1 | 112 (3) | C3—C2—C10 | 118.0 (2) |
Cu—OW1—H2 | 113 (3) | C3—C2—C1 | 119.3 (2) |
H1—OW1—H2 | 111 (3) | C10—C2—C1 | 122.7 (2) |
N—C9—C8 | 120.9 (2) | C2—C3—C4 | 120.7 (2) |
N—C9—C4 | 120.7 (2) | C2—C3—H3A | 119.6 |
C8—C9—C4 | 118.4 (2) | C4—C3—H3A | 119.6 |
C3—C4—C5 | 122.9 (2) | O3—C1—O4 | 127.4 (2) |
C3—C4—C9 | 118.0 (2) | O3—C1—C2 | 118.7 (2) |
C5—C4—C9 | 119.1 (2) | O4—C1—C2 | 113.6 (2) |
C6—C5—C4 | 120.3 (3) | C1—O4—Cuii | 127.31 (19) |
C6—C5—H5A | 119.8 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1···OW3iii | 0.81 (2) | 2.11 (2) | 2.916 (4) | 177 (4) |
OW1—H2···O3iii | 0.81 (2) | 2.15 (2) | 2.944 (3) | 166 (5) |
OW2—H3···O1i | 0.87 (2) | 2.12 (2) | 2.962 (3) | 163 (4) |
OW2—H4···O2iv | 0.89 (2) | 2.29 (2) | 3.174 (3) | 178 (4) |
OW3—H5···O1v | 0.82 (2) | 1.96 (2) | 2.775 (4) | 170 (5) |
OW3—H6···O3i | 0.80 (2) | 2.12 (2) | 2.909 (3) | 169 (5) |
Symmetry codes: (i) x, y−1, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H5NO4)(H2O)2]·H2O |
Mr | 332.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0284 (14), 7.5836 (15), 13.276 (3) |
α, β, γ (°) | 104.74 (3), 91.19 (3), 116.03 (3) |
V (Å3) | 607.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.83 |
Crystal size (mm) | 0.43 × 0.34 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.763, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5813, 2696, 2382 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.104, 1.10 |
No. of reflections | 2696 |
No. of parameters | 199 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.73, −0.74 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1···OW3i | 0.813 (18) | 2.105 (19) | 2.916 (4) | 177 (4) |
OW1—H2···O3i | 0.810 (18) | 2.15 (2) | 2.944 (3) | 166 (5) |
OW2—H3···O1ii | 0.872 (18) | 2.117 (19) | 2.962 (3) | 163 (4) |
OW2—H4···O2iii | 0.888 (18) | 2.287 (19) | 3.174 (3) | 178 (4) |
OW3—H5···O1iv | 0.820 (19) | 1.96 (2) | 2.775 (4) | 170 (5) |
OW3—H6···O3ii | 0.803 (18) | 2.12 (2) | 2.909 (3) | 169 (5) |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z. |
Acknowledgements
This work was supported by the National Natural Science (No.21207117) and Zhejiang Provincial Municipal Science and Technology Project (2008 C12055).
References
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, X. & Liu, G. (2010). Z. Kristallogr. New Cryst. Struct. 225, 761–762. CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit of the title complex contains one CuII ion, one quinoline-2,3-dicarboxylate dianion, two coordinated water molecules and one lattice water molecule (Fig. 1). The CuII ion is five-coordinated within a square-pyramidal [CuNO4]coordination geometry. Five coordination arises from two O atoms and one N atom belonging to two 2,3-quinolinedicarboxylate ligands (Li & Liu, 2010), and two water molecules. The Cu—O bond lengths vary from 1.9403 (19) to 2.320 (3) Å, and the Cu—N distance is 2.096 (2) Å. Each CuII ion interacts with adjacent CuII via the bridging mode of the dianion, forming a one-dimensional framework. The resulting chains are further connected through O—H···O hydrogen bonding interactions between the O atoms of quinoline-2,3-dicarboxylate dianion, coordinated water molecules and one lattice water molecule [O···O separations in the range 2.775 (4)–3.174 (3) Å]. Additionally, π–π [3.725 (4) Å] interactions between quinoline rings are involved in the formation of the three-dimensional supramolecular structure (Fig. 2). The shortest Cu···Cu separation along the polymeric chain is 7.5836 (2) Å.