organic compounds
Diphenyl(pyridin-2-yl)phosphane selenide
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za
In the title compound, C17H14NPSe, the P atom has a distorted tetrahedral environment resulting in an effective cone angle of 163°. In the crystal, C—H⋯Se/N/π interactions are observed.
Related literature
For background to phosphorus- and selenium-containing ligands, see: Muller et al. (2006, 2008). For the free phosphine of the title compound, see: Charland et al. (1989). For background on cone angles, see: Otto (2001); Tolman (1977). For details of the conformational fit of the two molecules using Mercury, see: Macrae et al. (2008); Weng et al. (2008a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681204007X/kp2438sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681204007X/kp2438Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681204007X/kp2438Isup3.cml
Diphenyl-2-pyridylphosphine and KSeCN were purchased from Sigma–Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the diphenylpyridylphosphine (10.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added dropwise (5 min) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 31.47 (t, 1J(31P-77Se) = 734 Hz).
The aromatic H atoms were placed in geometrically idealized positions with C—H = 0.95 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing diagram of (1) showing the C—H···Se/N/π interactions. | |
Fig. 3. Conformational similarity between the title compound (black) and the free phosphine (red). |
C17H14NPSe | F(000) = 688 |
Mr = 342.22 | Dx = 1.502 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5093 reflections |
a = 8.8092 (4) Å | θ = 4.8–66.6° |
b = 9.4066 (4) Å | µ = 4.25 mm−1 |
c = 18.2661 (7) Å | T = 100 K |
V = 1513.61 (11) Å3 | Cuboid, colourless |
Z = 4 | 0.24 × 0.17 × 0.12 mm |
Bruker APEX DUO 4K-CCD diffractometer | 2501 independent reflections |
Incoatec Quazar Multilayer Mirror monochromator | 2461 reflections with I > 2σ(I) |
Detector resolution: 8.4 pixels mm-1 | Rint = 0.025 |
ϕ and ω scans | θmax = 66.6°, θmin = 4.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→10 |
Tmin = 0.429, Tmax = 0.629 | k = −3→11 |
6004 measured reflections | l = −21→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0288P)2 + 1.1995P] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max < 0.001 |
2501 reflections | Δρmax = 0.43 e Å−3 |
181 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Absolute structure: Flack (1983), with 992 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.053 (19) |
C17H14NPSe | V = 1513.61 (11) Å3 |
Mr = 342.22 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 8.8092 (4) Å | µ = 4.25 mm−1 |
b = 9.4066 (4) Å | T = 100 K |
c = 18.2661 (7) Å | 0.24 × 0.17 × 0.12 mm |
Bruker APEX DUO 4K-CCD diffractometer | 2501 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2461 reflections with I > 2σ(I) |
Tmin = 0.429, Tmax = 0.629 | Rint = 0.025 |
6004 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.053 | Δρmax = 0.43 e Å−3 |
S = 0.87 | Δρmin = −0.27 e Å−3 |
2501 reflections | Absolute structure: Flack (1983), with 992 Friedel pairs |
181 parameters | Absolute structure parameter: 0.053 (19) |
0 restraints |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 287 frames were collected with a frame width of 4° covering up to θ = 66.62° with 96.7% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.16691 (3) | 0.13803 (3) | 0.059243 (13) | 0.01846 (8) | |
P1 | 0.28195 (7) | −0.00265 (7) | 0.12974 (3) | 0.01351 (13) | |
N1 | 0.5564 (3) | −0.0376 (2) | 0.19118 (12) | 0.0211 (5) | |
C1 | 0.2066 (3) | −0.0007 (3) | 0.22196 (12) | 0.0155 (5) | |
C2 | 0.2524 (3) | 0.1080 (3) | 0.26909 (13) | 0.0222 (6) | |
H2 | 0.3282 | 0.1737 | 0.2541 | 0.027* | |
C3 | 0.1867 (3) | 0.1197 (3) | 0.33781 (14) | 0.0279 (6) | |
H3 | 0.2185 | 0.1927 | 0.3703 | 0.034* | |
C4 | 0.0749 (3) | 0.0250 (3) | 0.35923 (14) | 0.0271 (6) | |
H4 | 0.0292 | 0.0341 | 0.4061 | 0.033* | |
C5 | 0.0295 (3) | −0.0826 (3) | 0.31256 (14) | 0.0226 (6) | |
H5 | −0.0465 | −0.1479 | 0.3276 | 0.027* | |
C6 | 0.0953 (3) | −0.0952 (3) | 0.24349 (14) | 0.0192 (6) | |
H6 | 0.0636 | −0.1687 | 0.2113 | 0.023* | |
C7 | 0.2834 (3) | −0.1863 (3) | 0.09839 (13) | 0.0165 (5) | |
C12 | 0.2168 (3) | −0.2192 (3) | 0.03143 (13) | 0.0218 (6) | |
H12 | 0.1654 | −0.1481 | 0.0041 | 0.026* | |
C11 | 0.2266 (3) | −0.3580 (3) | 0.00496 (13) | 0.0257 (6) | |
H11 | 0.1802 | −0.382 | −0.0403 | 0.031* | |
C10 | 0.3034 (3) | −0.4608 (3) | 0.04429 (14) | 0.0249 (6) | |
H10 | 0.3129 | −0.5543 | 0.0252 | 0.03* | |
C9 | 0.3666 (3) | −0.4276 (3) | 0.11135 (15) | 0.0271 (6) | |
H9 | 0.417 | −0.499 | 0.1389 | 0.033* | |
C8 | 0.3567 (3) | −0.2906 (3) | 0.13858 (14) | 0.0216 (6) | |
H8 | 0.4001 | −0.2681 | 0.1848 | 0.026* | |
C13 | 0.4816 (3) | 0.0441 (3) | 0.14240 (13) | 0.0153 (5) | |
C17 | 0.7046 (3) | −0.0092 (3) | 0.20170 (14) | 0.0222 (6) | |
H17 | 0.7597 | −0.0657 | 0.2356 | 0.027* | |
C16 | 0.7802 (3) | 0.0985 (3) | 0.16541 (14) | 0.0203 (6) | |
H16 | 0.8851 | 0.1146 | 0.1741 | 0.024* | |
C15 | 0.7021 (3) | 0.1817 (3) | 0.11670 (14) | 0.0221 (6) | |
H15 | 0.7518 | 0.2571 | 0.0917 | 0.026* | |
C14 | 0.5494 (3) | 0.1544 (3) | 0.10432 (13) | 0.0193 (5) | |
H14 | 0.4928 | 0.21 | 0.0706 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.01952 (13) | 0.01885 (13) | 0.01701 (12) | 0.00321 (11) | −0.00156 (10) | 0.00276 (10) |
P1 | 0.0138 (3) | 0.0140 (3) | 0.0127 (3) | 0.0002 (3) | 0.0005 (2) | 0.0005 (2) |
N1 | 0.0168 (11) | 0.0207 (12) | 0.0257 (11) | 0.0009 (9) | −0.0010 (9) | 0.0027 (9) |
C1 | 0.0160 (13) | 0.0164 (12) | 0.0142 (10) | 0.0031 (11) | −0.0007 (9) | 0.0023 (9) |
C2 | 0.0217 (14) | 0.0247 (16) | 0.0201 (13) | −0.0027 (11) | 0.0031 (10) | −0.0015 (10) |
C3 | 0.0336 (16) | 0.0306 (15) | 0.0196 (13) | 0.0013 (15) | 0.0005 (11) | −0.0057 (11) |
C4 | 0.0285 (16) | 0.0351 (17) | 0.0178 (13) | 0.0114 (13) | 0.0059 (11) | 0.0033 (11) |
C5 | 0.0170 (13) | 0.0280 (15) | 0.0229 (13) | 0.0036 (11) | 0.0054 (11) | 0.0099 (11) |
C6 | 0.0185 (13) | 0.0200 (15) | 0.0193 (12) | 0.0024 (11) | −0.0020 (10) | 0.0028 (10) |
C7 | 0.0141 (12) | 0.0161 (13) | 0.0194 (12) | −0.0012 (10) | 0.0058 (10) | −0.0019 (9) |
C12 | 0.0256 (13) | 0.0230 (14) | 0.0167 (12) | −0.0026 (12) | 0.0021 (10) | 0.0000 (10) |
C11 | 0.0360 (14) | 0.0233 (13) | 0.0176 (12) | −0.0096 (14) | 0.0010 (11) | −0.0032 (11) |
C10 | 0.0329 (16) | 0.0172 (13) | 0.0246 (13) | −0.0034 (11) | 0.0103 (11) | −0.0040 (10) |
C9 | 0.0273 (17) | 0.0213 (14) | 0.0327 (15) | 0.0037 (12) | 0.0009 (12) | 0.0000 (11) |
C8 | 0.0216 (14) | 0.0233 (13) | 0.0199 (12) | −0.0015 (12) | −0.0043 (11) | −0.0036 (10) |
C13 | 0.0142 (12) | 0.0168 (13) | 0.0149 (11) | 0.0028 (10) | 0.0030 (9) | −0.0026 (9) |
C17 | 0.0210 (14) | 0.0206 (13) | 0.0250 (13) | −0.0015 (13) | −0.0041 (10) | 0.0007 (11) |
C16 | 0.0140 (12) | 0.0222 (15) | 0.0248 (13) | −0.0042 (11) | 0.0014 (10) | −0.0057 (10) |
C15 | 0.0191 (14) | 0.0244 (14) | 0.0227 (12) | −0.0061 (11) | 0.0025 (10) | 0.0026 (10) |
C14 | 0.0185 (12) | 0.0213 (14) | 0.0179 (12) | 0.0000 (12) | −0.0007 (9) | 0.0002 (10) |
Se1—P1 | 2.1063 (6) | C7—C12 | 1.391 (3) |
P1—C1 | 1.811 (2) | C12—C11 | 1.395 (4) |
P1—C7 | 1.820 (2) | C12—H12 | 0.95 |
P1—C13 | 1.828 (3) | C11—C10 | 1.381 (4) |
N1—C13 | 1.349 (3) | C11—H11 | 0.95 |
N1—C17 | 1.347 (3) | C10—C9 | 1.381 (4) |
C1—C6 | 1.380 (4) | C10—H10 | 0.95 |
C1—C2 | 1.397 (4) | C9—C8 | 1.384 (4) |
C2—C3 | 1.387 (4) | C9—H9 | 0.95 |
C2—H2 | 0.95 | C8—H8 | 0.95 |
C3—C4 | 1.384 (4) | C13—C14 | 1.384 (4) |
C3—H3 | 0.95 | C17—C16 | 1.381 (4) |
C4—C5 | 1.382 (4) | C17—H17 | 0.95 |
C4—H4 | 0.95 | C16—C15 | 1.370 (4) |
C5—C6 | 1.393 (4) | C16—H16 | 0.95 |
C5—H5 | 0.95 | C15—C14 | 1.388 (4) |
C6—H6 | 0.95 | C15—H15 | 0.95 |
C7—C8 | 1.385 (4) | C14—H14 | 0.95 |
C1—P1—C7 | 107.75 (11) | C7—C12—H12 | 120.4 |
C1—P1—C13 | 103.46 (11) | C11—C12—H12 | 120.4 |
C7—P1—C13 | 105.15 (11) | C10—C11—C12 | 120.3 (2) |
C1—P1—Se1 | 112.71 (8) | C10—C11—H11 | 119.8 |
C7—P1—Se1 | 114.04 (9) | C12—C11—H11 | 119.8 |
C13—P1—Se1 | 112.90 (8) | C11—C10—C9 | 120.0 (2) |
C13—N1—C17 | 117.0 (2) | C11—C10—H10 | 120 |
C6—C1—C2 | 120.1 (2) | C9—C10—H10 | 120 |
C6—C1—P1 | 121.27 (19) | C10—C9—C8 | 120.3 (3) |
C2—C1—P1 | 118.34 (19) | C10—C9—H9 | 119.9 |
C3—C2—C1 | 119.7 (2) | C8—C9—H9 | 119.9 |
C3—C2—H2 | 120.2 | C7—C8—C9 | 119.9 (2) |
C1—C2—H2 | 120.2 | C7—C8—H8 | 120.1 |
C4—C3—C2 | 120.2 (3) | C9—C8—H8 | 120.1 |
C4—C3—H3 | 119.9 | N1—C13—C14 | 123.3 (2) |
C2—C3—H3 | 119.9 | N1—C13—P1 | 114.59 (18) |
C3—C4—C5 | 120.1 (2) | C14—C13—P1 | 122.12 (19) |
C3—C4—H4 | 119.9 | N1—C17—C16 | 123.0 (2) |
C5—C4—H4 | 119.9 | N1—C17—H17 | 118.5 |
C4—C5—C6 | 120.1 (3) | C16—C17—H17 | 118.5 |
C4—C5—H5 | 120 | C15—C16—C17 | 119.2 (2) |
C6—C5—H5 | 120 | C15—C16—H16 | 120.4 |
C1—C6—C5 | 119.9 (2) | C17—C16—H16 | 120.4 |
C1—C6—H6 | 120.1 | C16—C15—C14 | 119.1 (2) |
C5—C6—H6 | 120.1 | C16—C15—H15 | 120.4 |
C8—C7—C12 | 120.3 (2) | C14—C15—H15 | 120.4 |
C8—C7—P1 | 120.58 (19) | C13—C14—C15 | 118.3 (2) |
C12—C7—P1 | 119.0 (2) | C13—C14—H14 | 120.8 |
C7—C12—C11 | 119.1 (3) | C15—C14—H14 | 120.8 |
C7—P1—C1—C6 | −34.1 (2) | P1—C7—C12—C11 | 175.8 (2) |
C13—P1—C1—C6 | −145.1 (2) | C7—C12—C11—C10 | −1.0 (4) |
Se1—P1—C1—C6 | 92.6 (2) | C12—C11—C10—C9 | 2.2 (4) |
C7—P1—C1—C2 | 152.3 (2) | C11—C10—C9—C8 | −1.7 (4) |
C13—P1—C1—C2 | 41.3 (2) | C12—C7—C8—C9 | 1.4 (4) |
Se1—P1—C1—C2 | −81.0 (2) | P1—C7—C8—C9 | −175.2 (2) |
C6—C1—C2—C3 | 0.7 (4) | C10—C9—C8—C7 | −0.1 (4) |
P1—C1—C2—C3 | 174.4 (2) | C17—N1—C13—C14 | −0.7 (4) |
C1—C2—C3—C4 | −0.8 (4) | C17—N1—C13—P1 | 178.94 (19) |
C2—C3—C4—C5 | 0.8 (4) | C1—P1—C13—N1 | 53.4 (2) |
C3—C4—C5—C6 | −0.6 (4) | C7—P1—C13—N1 | −59.5 (2) |
C2—C1—C6—C5 | −0.5 (4) | Se1—P1—C13—N1 | 175.59 (16) |
P1—C1—C6—C5 | −174.0 (2) | C1—P1—C13—C14 | −126.9 (2) |
C4—C5—C6—C1 | 0.5 (4) | C7—P1—C13—C14 | 120.2 (2) |
C1—P1—C7—C8 | −55.0 (2) | Se1—P1—C13—C14 | −4.7 (2) |
C13—P1—C7—C8 | 54.9 (2) | C13—N1—C17—C16 | 0.3 (4) |
Se1—P1—C7—C8 | 179.09 (18) | N1—C17—C16—C15 | 0.5 (4) |
C1—P1—C7—C12 | 128.4 (2) | C17—C16—C15—C14 | −0.9 (4) |
C13—P1—C7—C12 | −121.7 (2) | N1—C13—C14—C15 | 0.4 (4) |
Se1—P1—C7—C12 | 2.5 (2) | P1—C13—C14—C15 | −179.30 (19) |
C8—C7—C12—C11 | −0.8 (4) | C16—C15—C14—C13 | 0.5 (4) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Se1 | 0.95 | 2.87 | 3.427 (3) | 118 |
C8—H8···N1 | 0.95 | 2.57 | 3.111 (3) | 116 |
C14—H14···Se1 | 0.95 | 2.96 | 3.472 (2) | 115 |
C5—H5···Se1i | 0.95 | 3.07 | 3.923 (3) | 150 |
C16—H16···Se1ii | 0.95 | 3.26 | 3.938 (3) | 130 |
C11—H11···Cg1iii | 0.95 | 2.77 | 3.630 (3) | 151 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1/2, −y−1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C17H14NPSe |
Mr | 342.22 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 8.8092 (4), 9.4066 (4), 18.2661 (7) |
V (Å3) | 1513.61 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.25 |
Crystal size (mm) | 0.24 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K-CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.429, 0.629 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6004, 2501, 2461 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.053, 0.87 |
No. of reflections | 2501 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.27 |
Absolute structure | Flack (1983), with 992 Friedel pairs |
Absolute structure parameter | 0.053 (19) |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Se1 | 0.95 | 2.87 | 3.427 (3) | 118.2 |
C8—H8···N1 | 0.95 | 2.57 | 3.111 (3) | 116.3 |
C14—H14···Se1 | 0.95 | 2.96 | 3.472 (2) | 115.4 |
C5—H5···Se1i | 0.95 | 3.07 | 3.923 (3) | 149.5 |
C16—H16···Se1ii | 0.95 | 3.26 | 3.938 (3) | 130.1 |
C11—H11···Cg1iii | 0.95 | 2.77 | 3.630 (3) | 151 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1/2, −y−1/2, −z. |
Acknowledgements
Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charland, J.-P., Roustan, J.-L. & Ansari, N. (1989). Acta Cryst. C45, 680–681. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801. Web of Science CSD CrossRef CAS Google Scholar
Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. Web of Science CSD CrossRef PubMed Google Scholar
Otto, S. (2001). Acta Cryst. C57, 793–795. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362. Web of Science CrossRef IUCr Journals Google Scholar
Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part our systematic investigation on the steric and electronic properties of phosphorus containing ligands, we are also utilizing the 1J(31P-77Se) multi-nuclear NMR coupling in Se—P bond as a probe (see Muller et al., 2008). The advantage of this approach is that there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). Herein we report here the single-crystal structure of SePPh2py, where Ph = C6H5 and py = C5H4N as part of our investigation.
Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 105.47° and 113.20° respectively. Describing the steric demand of phosphane ligands has been the topic of many studies and a variety of models have been developed. The Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure of 163° (Otto, 2001). The angle calculated is 9° larger than that of the free phosphine (Charland et al., 1989; effective cone angle calculated as 154°), and could be ascribed to C—H···Se/N/π intra- and interactions observed in the title compound (Table 1, Fig. 2), whereas the free phosphine shows C—H···N/π interactions only. The difference in the orientation of the substituents for these two structures can be illustrated by superimposing their coordinates (Fig. 3); root mean squared deviation calculated as 0.0468 Å for P and ipso C atoms only using Mercury (Macrae et al., 2008; Weng et al., 2008a,b).