organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl(pyridin-2-yl)­phosphane selenide

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 30 July 2012; accepted 21 September 2012; online 6 October 2012)

In the title compound, C17H14NPSe, the P atom has a distorted tetra­hedral environment resulting in an effective cone angle of 163°. In the crystal, C—H⋯Se/N/π inter­actions are observed.

Related literature

For background to phospho­rus- and selenium-containing ligands, see: Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For the free phosphine of the title compound, see: Charland et al. (1989[Charland, J.-P., Roustan, J.-L. & Ansari, N. (1989). Acta Cryst. C45, 680-681.]). For background on cone angles, see: Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]); Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). For details of the conformational fit of the two mol­ecules using Mercury, see: Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); Weng et al. (2008a[Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348-362.],b[Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955-957.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14NPSe

  • Mr = 342.22

  • Orthorhombic, P 21 21 21

  • a = 8.8092 (4) Å

  • b = 9.4066 (4) Å

  • c = 18.2661 (7) Å

  • V = 1513.61 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.25 mm−1

  • T = 100 K

  • 0.24 × 0.17 × 0.12 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.429, Tmax = 0.629

  • 6004 measured reflections

  • 2501 independent reflections

  • 2461 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 0.87

  • 2501 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 992 Friedel pairs

  • Flack parameter: 0.053 (19)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Se1 0.95 2.87 3.427 (3) 118
C8—H8⋯N1 0.95 2.57 3.111 (3) 116
C14—H14⋯Se1 0.95 2.96 3.472 (2) 115
C5—H5⋯Se1i 0.95 3.07 3.923 (3) 150
C16—H16⋯Se1ii 0.95 3.26 3.938 (3) 130
C11—H11⋯Cg1iii 0.95 2.77 3.630 (3) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part our systematic investigation on the steric and electronic properties of phosphorus containing ligands, we are also utilizing the 1J(31P-77Se) multi-nuclear NMR coupling in Se—P bond as a probe (see Muller et al., 2008). The advantage of this approach is that there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). Herein we report here the single-crystal structure of SePPh2py, where Ph = C6H5 and py = C5H4N as part of our investigation.

Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 105.47° and 113.20° respectively. Describing the steric demand of phosphane ligands has been the topic of many studies and a variety of models have been developed. The Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure of 163° (Otto, 2001). The angle calculated is 9° larger than that of the free phosphine (Charland et al., 1989; effective cone angle calculated as 154°), and could be ascribed to C—H···Se/N/π intra- and interactions observed in the title compound (Table 1, Fig. 2), whereas the free phosphine shows C—H···N/π interactions only. The difference in the orientation of the substituents for these two structures can be illustrated by superimposing their coordinates (Fig. 3); root mean squared deviation calculated as 0.0468 Å for P and ipso C atoms only using Mercury (Macrae et al., 2008; Weng et al., 2008a,b).

Related literature top

For background to phosphorus- and selenium-containing ligands, see: Muller et al. (2006, 2008). For the free phosphine of the title compound, see: Charland et al. (1989). For background on cone angles, see: Otto (2001); Tolman (1977). For details of the conformational fit of the two molecules using Mercury, see: Macrae et al. (2008); Weng et al. (2008a,b).

Experimental top

Diphenyl-2-pyridylphosphine and KSeCN were purchased from Sigma–Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the diphenylpyridylphosphine (10.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added dropwise (5 min) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 31.47 (t, 1J(31P-77Se) = 734 Hz).

Refinement top

The aromatic H atoms were placed in geometrically idealized positions with C—H = 0.95 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (1) showing the C—H···Se/N/π interactions.
[Figure 3] Fig. 3. Conformational similarity between the title compound (black) and the free phosphine (red).
Diphenyl(pyridin-2-yl)phosphane selenide top
Crystal data top
C17H14NPSeF(000) = 688
Mr = 342.22Dx = 1.502 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 5093 reflections
a = 8.8092 (4) Åθ = 4.8–66.6°
b = 9.4066 (4) ŵ = 4.25 mm1
c = 18.2661 (7) ÅT = 100 K
V = 1513.61 (11) Å3Cuboid, colourless
Z = 40.24 × 0.17 × 0.12 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
2501 independent reflections
Incoatec Quazar Multilayer Mirror monochromator2461 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.025
ϕ and ω scansθmax = 66.6°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 910
Tmin = 0.429, Tmax = 0.629k = 311
6004 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0288P)2 + 1.1995P]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2501 reflectionsΔρmax = 0.43 e Å3
181 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), with 992 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.053 (19)
Crystal data top
C17H14NPSeV = 1513.61 (11) Å3
Mr = 342.22Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.8092 (4) ŵ = 4.25 mm1
b = 9.4066 (4) ÅT = 100 K
c = 18.2661 (7) Å0.24 × 0.17 × 0.12 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2461 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.629Rint = 0.025
6004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.43 e Å3
S = 0.87Δρmin = 0.27 e Å3
2501 reflectionsAbsolute structure: Flack (1983), with 992 Friedel pairs
181 parametersAbsolute structure parameter: 0.053 (19)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 287 frames were collected with a frame width of 4° covering up to θ = 66.62° with 96.7% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.16691 (3)0.13803 (3)0.059243 (13)0.01846 (8)
P10.28195 (7)0.00265 (7)0.12974 (3)0.01351 (13)
N10.5564 (3)0.0376 (2)0.19118 (12)0.0211 (5)
C10.2066 (3)0.0007 (3)0.22196 (12)0.0155 (5)
C20.2524 (3)0.1080 (3)0.26909 (13)0.0222 (6)
H20.32820.17370.25410.027*
C30.1867 (3)0.1197 (3)0.33781 (14)0.0279 (6)
H30.21850.19270.37030.034*
C40.0749 (3)0.0250 (3)0.35923 (14)0.0271 (6)
H40.02920.03410.40610.033*
C50.0295 (3)0.0826 (3)0.31256 (14)0.0226 (6)
H50.04650.14790.32760.027*
C60.0953 (3)0.0952 (3)0.24349 (14)0.0192 (6)
H60.06360.16870.21130.023*
C70.2834 (3)0.1863 (3)0.09839 (13)0.0165 (5)
C120.2168 (3)0.2192 (3)0.03143 (13)0.0218 (6)
H120.16540.14810.00410.026*
C110.2266 (3)0.3580 (3)0.00496 (13)0.0257 (6)
H110.18020.3820.04030.031*
C100.3034 (3)0.4608 (3)0.04429 (14)0.0249 (6)
H100.31290.55430.02520.03*
C90.3666 (3)0.4276 (3)0.11135 (15)0.0271 (6)
H90.4170.4990.13890.033*
C80.3567 (3)0.2906 (3)0.13858 (14)0.0216 (6)
H80.40010.26810.18480.026*
C130.4816 (3)0.0441 (3)0.14240 (13)0.0153 (5)
C170.7046 (3)0.0092 (3)0.20170 (14)0.0222 (6)
H170.75970.06570.23560.027*
C160.7802 (3)0.0985 (3)0.16541 (14)0.0203 (6)
H160.88510.11460.17410.024*
C150.7021 (3)0.1817 (3)0.11670 (14)0.0221 (6)
H150.75180.25710.09170.026*
C140.5494 (3)0.1544 (3)0.10432 (13)0.0193 (5)
H140.49280.210.07060.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01952 (13)0.01885 (13)0.01701 (12)0.00321 (11)0.00156 (10)0.00276 (10)
P10.0138 (3)0.0140 (3)0.0127 (3)0.0002 (3)0.0005 (2)0.0005 (2)
N10.0168 (11)0.0207 (12)0.0257 (11)0.0009 (9)0.0010 (9)0.0027 (9)
C10.0160 (13)0.0164 (12)0.0142 (10)0.0031 (11)0.0007 (9)0.0023 (9)
C20.0217 (14)0.0247 (16)0.0201 (13)0.0027 (11)0.0031 (10)0.0015 (10)
C30.0336 (16)0.0306 (15)0.0196 (13)0.0013 (15)0.0005 (11)0.0057 (11)
C40.0285 (16)0.0351 (17)0.0178 (13)0.0114 (13)0.0059 (11)0.0033 (11)
C50.0170 (13)0.0280 (15)0.0229 (13)0.0036 (11)0.0054 (11)0.0099 (11)
C60.0185 (13)0.0200 (15)0.0193 (12)0.0024 (11)0.0020 (10)0.0028 (10)
C70.0141 (12)0.0161 (13)0.0194 (12)0.0012 (10)0.0058 (10)0.0019 (9)
C120.0256 (13)0.0230 (14)0.0167 (12)0.0026 (12)0.0021 (10)0.0000 (10)
C110.0360 (14)0.0233 (13)0.0176 (12)0.0096 (14)0.0010 (11)0.0032 (11)
C100.0329 (16)0.0172 (13)0.0246 (13)0.0034 (11)0.0103 (11)0.0040 (10)
C90.0273 (17)0.0213 (14)0.0327 (15)0.0037 (12)0.0009 (12)0.0000 (11)
C80.0216 (14)0.0233 (13)0.0199 (12)0.0015 (12)0.0043 (11)0.0036 (10)
C130.0142 (12)0.0168 (13)0.0149 (11)0.0028 (10)0.0030 (9)0.0026 (9)
C170.0210 (14)0.0206 (13)0.0250 (13)0.0015 (13)0.0041 (10)0.0007 (11)
C160.0140 (12)0.0222 (15)0.0248 (13)0.0042 (11)0.0014 (10)0.0057 (10)
C150.0191 (14)0.0244 (14)0.0227 (12)0.0061 (11)0.0025 (10)0.0026 (10)
C140.0185 (12)0.0213 (14)0.0179 (12)0.0000 (12)0.0007 (9)0.0002 (10)
Geometric parameters (Å, º) top
Se1—P12.1063 (6)C7—C121.391 (3)
P1—C11.811 (2)C12—C111.395 (4)
P1—C71.820 (2)C12—H120.95
P1—C131.828 (3)C11—C101.381 (4)
N1—C131.349 (3)C11—H110.95
N1—C171.347 (3)C10—C91.381 (4)
C1—C61.380 (4)C10—H100.95
C1—C21.397 (4)C9—C81.384 (4)
C2—C31.387 (4)C9—H90.95
C2—H20.95C8—H80.95
C3—C41.384 (4)C13—C141.384 (4)
C3—H30.95C17—C161.381 (4)
C4—C51.382 (4)C17—H170.95
C4—H40.95C16—C151.370 (4)
C5—C61.393 (4)C16—H160.95
C5—H50.95C15—C141.388 (4)
C6—H60.95C15—H150.95
C7—C81.385 (4)C14—H140.95
C1—P1—C7107.75 (11)C7—C12—H12120.4
C1—P1—C13103.46 (11)C11—C12—H12120.4
C7—P1—C13105.15 (11)C10—C11—C12120.3 (2)
C1—P1—Se1112.71 (8)C10—C11—H11119.8
C7—P1—Se1114.04 (9)C12—C11—H11119.8
C13—P1—Se1112.90 (8)C11—C10—C9120.0 (2)
C13—N1—C17117.0 (2)C11—C10—H10120
C6—C1—C2120.1 (2)C9—C10—H10120
C6—C1—P1121.27 (19)C10—C9—C8120.3 (3)
C2—C1—P1118.34 (19)C10—C9—H9119.9
C3—C2—C1119.7 (2)C8—C9—H9119.9
C3—C2—H2120.2C7—C8—C9119.9 (2)
C1—C2—H2120.2C7—C8—H8120.1
C4—C3—C2120.2 (3)C9—C8—H8120.1
C4—C3—H3119.9N1—C13—C14123.3 (2)
C2—C3—H3119.9N1—C13—P1114.59 (18)
C3—C4—C5120.1 (2)C14—C13—P1122.12 (19)
C3—C4—H4119.9N1—C17—C16123.0 (2)
C5—C4—H4119.9N1—C17—H17118.5
C4—C5—C6120.1 (3)C16—C17—H17118.5
C4—C5—H5120C15—C16—C17119.2 (2)
C6—C5—H5120C15—C16—H16120.4
C1—C6—C5119.9 (2)C17—C16—H16120.4
C1—C6—H6120.1C16—C15—C14119.1 (2)
C5—C6—H6120.1C16—C15—H15120.4
C8—C7—C12120.3 (2)C14—C15—H15120.4
C8—C7—P1120.58 (19)C13—C14—C15118.3 (2)
C12—C7—P1119.0 (2)C13—C14—H14120.8
C7—C12—C11119.1 (3)C15—C14—H14120.8
C7—P1—C1—C634.1 (2)P1—C7—C12—C11175.8 (2)
C13—P1—C1—C6145.1 (2)C7—C12—C11—C101.0 (4)
Se1—P1—C1—C692.6 (2)C12—C11—C10—C92.2 (4)
C7—P1—C1—C2152.3 (2)C11—C10—C9—C81.7 (4)
C13—P1—C1—C241.3 (2)C12—C7—C8—C91.4 (4)
Se1—P1—C1—C281.0 (2)P1—C7—C8—C9175.2 (2)
C6—C1—C2—C30.7 (4)C10—C9—C8—C70.1 (4)
P1—C1—C2—C3174.4 (2)C17—N1—C13—C140.7 (4)
C1—C2—C3—C40.8 (4)C17—N1—C13—P1178.94 (19)
C2—C3—C4—C50.8 (4)C1—P1—C13—N153.4 (2)
C3—C4—C5—C60.6 (4)C7—P1—C13—N159.5 (2)
C2—C1—C6—C50.5 (4)Se1—P1—C13—N1175.59 (16)
P1—C1—C6—C5174.0 (2)C1—P1—C13—C14126.9 (2)
C4—C5—C6—C10.5 (4)C7—P1—C13—C14120.2 (2)
C1—P1—C7—C855.0 (2)Se1—P1—C13—C144.7 (2)
C13—P1—C7—C854.9 (2)C13—N1—C17—C160.3 (4)
Se1—P1—C7—C8179.09 (18)N1—C17—C16—C150.5 (4)
C1—P1—C7—C12128.4 (2)C17—C16—C15—C140.9 (4)
C13—P1—C7—C12121.7 (2)N1—C13—C14—C150.4 (4)
Se1—P1—C7—C122.5 (2)P1—C13—C14—C15179.30 (19)
C8—C7—C12—C110.8 (4)C16—C15—C14—C130.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Se10.952.873.427 (3)118
C8—H8···N10.952.573.111 (3)116
C14—H14···Se10.952.963.472 (2)115
C5—H5···Se1i0.953.073.923 (3)150
C16—H16···Se1ii0.953.263.938 (3)130
C11—H11···Cg1iii0.952.773.630 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H14NPSe
Mr342.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.8092 (4), 9.4066 (4), 18.2661 (7)
V3)1513.61 (11)
Z4
Radiation typeCu Kα
µ (mm1)4.25
Crystal size (mm)0.24 × 0.17 × 0.12
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.429, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
6004, 2501, 2461
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 0.87
No. of reflections2501
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.27
Absolute structureFlack (1983), with 992 Friedel pairs
Absolute structure parameter0.053 (19)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Se10.952.873.427 (3)118.2
C8—H8···N10.952.573.111 (3)116.3
C14—H14···Se10.952.963.472 (2)115.4
C5—H5···Se1i0.953.073.923 (3)149.5
C16—H16···Se1ii0.953.263.938 (3)130.1
C11—H11···Cg1iii0.952.773.630 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharland, J.-P., Roustan, J.-L. & Ansari, N. (1989). Acta Cryst. C45, 680–681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds