organic compounds
[4-(Dimethylamino)phenyl]diphenylphosphine selenide
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za
In the title compound, C20H20NPSe, the P atom lies in a distorted tetrahedral environment. The Tolman cone angle is 157° indicating steric crowding at this atom. In the crystal, weak C—H⋯Se interactions create linked dimeric units and C—H⋯π interactions are also observed.
Related literature
For investigations into the steric and electronic properties of phosphorus containing ligands, see: Roodt et al. (2003); Otto & Roodt (2004); Muller et al. (2008); Cowley & Damasco (1971); Allen & Taylor (1982); Allen et al. (1985). For the free phosphine related to the title compound, see: Dreissig & Plieth (1972). For the oxide analogue of the title compound, see: Lynch et al. (2003). For the related phosphine selenide, see: Phasha et al. (2012). For cone angles, see: Tolman (1977); Otto (2001). For details on the conformational fit of molecules using Mercury, see: Macrae et al. (2006); Weng et al. (2008a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For background on Bent's rule, see: Bent (1961).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812042602/yk2075sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042602/yk2075Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812042602/yk2075Isup3.cml
[4-(Dimethylamino)phenyl]diphenylphosphane and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the [4-(dimethylamino)phenyl]diphenylphosphane (12.2 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphane solution with stirring at room temperature. Slow evaporation of the solvent afforded the title compound as colourless crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 33.62 (t, 1J(31P-77Se) = 713 Hz).
The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Conformational similarity between the title compound (blue), the phosphine oxide (red) and the free phosphine (green). The root mean squared deviations (RMSD) to the title compound were 0.0279 Å (oxide derivative) and 0.0473 Å (free phosphine). | |
Fig. 3. Packing diagram showing the C—H···Se/π interactions (indicated by dashed lines). |
C20H20NPSe | F(000) = 784 |
Mr = 384.3 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9940 reflections |
a = 12.1757 (13) Å | θ = 2.3–28.3° |
b = 10.6173 (11) Å | µ = 2.20 mm−1 |
c = 17.5211 (14) Å | T = 100 K |
β = 128.098 (5)° | Cuboid, colourless |
V = 1782.5 (3) Å3 | 0.22 × 0.11 × 0.09 mm |
Z = 4 |
Bruker APEX DUO 4K CCD diffractometer | 4553 independent reflections |
Radiation source: sealed tube | 3798 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 8.4 pixels mm-1 | θmax = 28.7°, θmin = 2.1° |
ϕ and ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −14→14 |
Tmin = 0.643, Tmax = 0.827 | l = −23→23 |
31924 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0336P)2 + 3.5217P] where P = (Fo2 + 2Fc2)/3 |
4553 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
C20H20NPSe | V = 1782.5 (3) Å3 |
Mr = 384.3 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1757 (13) Å | µ = 2.20 mm−1 |
b = 10.6173 (11) Å | T = 100 K |
c = 17.5211 (14) Å | 0.22 × 0.11 × 0.09 mm |
β = 128.098 (5)° |
Bruker APEX DUO 4K CCD diffractometer | 4553 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3798 reflections with I > 2σ(I) |
Tmin = 0.643, Tmax = 0.827 | Rint = 0.050 |
31924 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.53 e Å−3 |
4553 reflections | Δρmin = −0.72 e Å−3 |
210 parameters |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 2352 frames were collected with a frame width of 0.5° covering up to θ = 28.66° with 99.3% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.65445 (3) | 0.81555 (3) | 0.51517 (2) | 0.02312 (9) | |
P1 | 0.79548 (6) | 0.70500 (6) | 0.51220 (4) | 0.01475 (13) | |
N1 | 0.5685 (2) | 0.1943 (2) | 0.33365 (16) | 0.0202 (4) | |
C1 | 0.8477 (2) | 0.7754 (2) | 0.44440 (17) | 0.0158 (5) | |
C2 | 0.9861 (3) | 0.7749 (3) | 0.4794 (2) | 0.0284 (6) | |
H2 | 1.0572 | 0.744 | 0.5427 | 0.034* | |
C3 | 1.0206 (3) | 0.8195 (3) | 0.4219 (2) | 0.0354 (7) | |
H3 | 1.1152 | 0.8193 | 0.4463 | 0.042* | |
C4 | 0.9182 (3) | 0.8642 (3) | 0.3296 (2) | 0.0236 (5) | |
H4 | 0.9421 | 0.8945 | 0.2906 | 0.028* | |
C5 | 0.7798 (3) | 0.8645 (3) | 0.29429 (19) | 0.0222 (5) | |
H5 | 0.7089 | 0.894 | 0.2305 | 0.027* | |
C6 | 0.7448 (3) | 0.8218 (3) | 0.35178 (19) | 0.0211 (5) | |
H6 | 0.6504 | 0.8243 | 0.3278 | 0.025* | |
C7 | 0.9584 (2) | 0.6739 (2) | 0.63238 (17) | 0.0160 (5) | |
C8 | 1.0104 (3) | 0.5520 (2) | 0.66278 (18) | 0.0179 (5) | |
H8 | 0.9605 | 0.4827 | 0.6205 | 0.021* | |
C9 | 1.1364 (3) | 0.5315 (3) | 0.75581 (19) | 0.0229 (5) | |
H9 | 1.1713 | 0.4484 | 0.777 | 0.027* | |
C10 | 1.2095 (3) | 0.6329 (3) | 0.81646 (19) | 0.0266 (6) | |
H10 | 1.2953 | 0.6191 | 0.8791 | 0.032* | |
C11 | 1.1586 (3) | 0.7546 (3) | 0.78654 (19) | 0.0267 (6) | |
H11 | 1.2098 | 0.8235 | 0.8288 | 0.032* | |
C12 | 1.0330 (3) | 0.7762 (3) | 0.69497 (19) | 0.0216 (5) | |
H12 | 0.9979 | 0.8595 | 0.6749 | 0.026* | |
C13 | 0.7256 (2) | 0.5533 (2) | 0.45680 (17) | 0.0156 (5) | |
C14 | 0.7489 (2) | 0.4999 (2) | 0.39474 (17) | 0.0163 (5) | |
H14 | 0.802 | 0.5451 | 0.3809 | 0.02* | |
C15 | 0.6959 (2) | 0.3825 (2) | 0.35318 (17) | 0.0168 (5) | |
H15 | 0.7116 | 0.3495 | 0.3102 | 0.02* | |
C16 | 0.6189 (2) | 0.3111 (2) | 0.37367 (17) | 0.0167 (5) | |
C17 | 0.5955 (2) | 0.3657 (2) | 0.43629 (17) | 0.0179 (5) | |
H17 | 0.5443 | 0.3202 | 0.4517 | 0.022* | |
C18 | 0.6462 (2) | 0.4845 (2) | 0.47526 (17) | 0.0168 (5) | |
H18 | 0.6267 | 0.5201 | 0.5155 | 0.02* | |
C19 | 0.6003 (3) | 0.1393 (3) | 0.2728 (2) | 0.0234 (5) | |
H19A | 0.5672 | 0.1957 | 0.2182 | 0.035* | |
H19B | 0.5536 | 0.0575 | 0.2482 | 0.035* | |
H19C | 0.7013 | 0.1278 | 0.3113 | 0.035* | |
C20 | 0.5016 (3) | 0.1166 (3) | 0.3625 (2) | 0.0278 (6) | |
H20A | 0.5668 | 0.1017 | 0.4326 | 0.042* | |
H20B | 0.4743 | 0.0359 | 0.3282 | 0.042* | |
H20C | 0.4184 | 0.1599 | 0.3463 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.02080 (14) | 0.02423 (15) | 0.02604 (15) | 0.00213 (10) | 0.01530 (12) | −0.00154 (11) |
P1 | 0.0118 (3) | 0.0177 (3) | 0.0128 (3) | −0.0002 (2) | 0.0066 (2) | 0.0010 (2) |
N1 | 0.0205 (10) | 0.0189 (11) | 0.0198 (11) | −0.0039 (8) | 0.0116 (9) | −0.0033 (8) |
C1 | 0.0143 (11) | 0.0166 (11) | 0.0149 (11) | 0.0002 (9) | 0.0081 (9) | −0.0001 (9) |
C2 | 0.0152 (12) | 0.0482 (18) | 0.0205 (13) | 0.0057 (12) | 0.0103 (11) | 0.0125 (12) |
C3 | 0.0191 (13) | 0.060 (2) | 0.0305 (16) | 0.0037 (14) | 0.0173 (13) | 0.0129 (15) |
C4 | 0.0248 (13) | 0.0277 (14) | 0.0226 (13) | 0.0009 (11) | 0.0168 (12) | 0.0028 (11) |
C5 | 0.0216 (12) | 0.0262 (13) | 0.0161 (12) | 0.0016 (10) | 0.0102 (11) | 0.0051 (10) |
C6 | 0.0138 (11) | 0.0274 (13) | 0.0186 (12) | −0.0003 (10) | 0.0082 (10) | 0.0033 (10) |
C7 | 0.0135 (10) | 0.0210 (12) | 0.0130 (11) | −0.0011 (9) | 0.0078 (9) | 0.0007 (9) |
C8 | 0.0152 (11) | 0.0237 (12) | 0.0154 (11) | 0.0014 (9) | 0.0098 (10) | 0.0027 (9) |
C9 | 0.0179 (12) | 0.0332 (15) | 0.0192 (13) | 0.0073 (10) | 0.0122 (11) | 0.0094 (11) |
C10 | 0.0144 (12) | 0.0492 (18) | 0.0126 (12) | 0.0013 (11) | 0.0065 (10) | 0.0035 (11) |
C11 | 0.0200 (13) | 0.0401 (17) | 0.0159 (12) | −0.0093 (12) | 0.0091 (11) | −0.0090 (11) |
C12 | 0.0202 (12) | 0.0248 (13) | 0.0196 (13) | −0.0038 (10) | 0.0121 (11) | −0.0028 (10) |
C13 | 0.0096 (10) | 0.0197 (11) | 0.0124 (11) | 0.0007 (9) | 0.0043 (9) | 0.0013 (9) |
C14 | 0.0122 (10) | 0.0192 (12) | 0.0144 (11) | 0.0005 (9) | 0.0067 (9) | 0.0010 (9) |
C15 | 0.0138 (11) | 0.0206 (12) | 0.0142 (11) | 0.0019 (9) | 0.0077 (9) | −0.0003 (9) |
C16 | 0.0114 (10) | 0.0183 (11) | 0.0126 (11) | 0.0007 (9) | 0.0035 (9) | 0.0004 (9) |
C17 | 0.0149 (11) | 0.0221 (12) | 0.0149 (11) | −0.0033 (9) | 0.0082 (10) | 0.0004 (9) |
C18 | 0.0142 (11) | 0.0223 (12) | 0.0119 (11) | −0.0003 (9) | 0.0071 (9) | 0.0007 (9) |
C19 | 0.0197 (12) | 0.0226 (13) | 0.0239 (13) | −0.0016 (10) | 0.0114 (11) | −0.0058 (10) |
C20 | 0.0345 (15) | 0.0219 (13) | 0.0248 (14) | −0.0096 (11) | 0.0172 (13) | −0.0030 (11) |
Se1—P1 | 2.1069 (7) | C9—H9 | 0.95 |
P1—C13 | 1.800 (3) | C10—C11 | 1.388 (4) |
P1—C1 | 1.818 (3) | C10—H10 | 0.95 |
P1—C7 | 1.823 (2) | C11—C12 | 1.392 (4) |
N1—C16 | 1.369 (3) | C11—H11 | 0.95 |
N1—C20 | 1.452 (3) | C12—H12 | 0.95 |
N1—C19 | 1.461 (3) | C13—C18 | 1.399 (3) |
C1—C6 | 1.392 (3) | C13—C14 | 1.402 (3) |
C1—C2 | 1.394 (3) | C14—C15 | 1.386 (3) |
C2—C3 | 1.391 (4) | C14—H14 | 0.95 |
C2—H2 | 0.95 | C15—C16 | 1.414 (3) |
C3—C4 | 1.380 (4) | C15—H15 | 0.95 |
C3—H3 | 0.95 | C16—C17 | 1.417 (4) |
C4—C5 | 1.390 (4) | C17—C18 | 1.385 (3) |
C4—H4 | 0.95 | C17—H17 | 0.95 |
C5—C6 | 1.390 (4) | C18—H18 | 0.95 |
C5—H5 | 0.95 | C19—H19A | 0.98 |
C6—H6 | 0.95 | C19—H19B | 0.98 |
C7—C8 | 1.394 (3) | C19—H19C | 0.98 |
C7—C12 | 1.406 (4) | C20—H20A | 0.98 |
C8—C9 | 1.404 (3) | C20—H20B | 0.98 |
C8—H8 | 0.95 | C20—H20C | 0.98 |
C9—C10 | 1.383 (4) | ||
C13—P1—C1 | 104.77 (11) | C11—C10—H10 | 119.7 |
C13—P1—C7 | 106.04 (11) | C10—C11—C12 | 120.4 (3) |
C1—P1—C7 | 105.02 (11) | C10—C11—H11 | 119.8 |
C13—P1—Se1 | 112.98 (8) | C12—C11—H11 | 119.8 |
C1—P1—Se1 | 113.96 (8) | C11—C12—C7 | 119.5 (3) |
C7—P1—Se1 | 113.26 (8) | C11—C12—H12 | 120.2 |
C16—N1—C20 | 120.4 (2) | C7—C12—H12 | 120.2 |
C16—N1—C19 | 119.9 (2) | C18—C13—C14 | 117.8 (2) |
C20—N1—C19 | 119.0 (2) | C18—C13—P1 | 120.45 (19) |
C6—C1—C2 | 119.2 (2) | C14—C13—P1 | 121.71 (18) |
C6—C1—P1 | 118.79 (18) | C15—C14—C13 | 121.4 (2) |
C2—C1—P1 | 121.80 (19) | C15—C14—H14 | 119.3 |
C3—C2—C1 | 120.2 (3) | C13—C14—H14 | 119.3 |
C3—C2—H2 | 119.9 | C14—C15—C16 | 121.0 (2) |
C1—C2—H2 | 119.9 | C14—C15—H15 | 119.5 |
C4—C3—C2 | 120.5 (3) | C16—C15—H15 | 119.5 |
C4—C3—H3 | 119.8 | N1—C16—C15 | 120.9 (2) |
C2—C3—H3 | 119.8 | N1—C16—C17 | 121.7 (2) |
C3—C4—C5 | 119.5 (3) | C15—C16—C17 | 117.3 (2) |
C3—C4—H4 | 120.2 | C18—C17—C16 | 120.8 (2) |
C5—C4—H4 | 120.2 | C18—C17—H17 | 119.6 |
C6—C5—C4 | 120.4 (2) | C16—C17—H17 | 119.6 |
C6—C5—H5 | 119.8 | C17—C18—C13 | 121.6 (2) |
C4—C5—H5 | 119.8 | C17—C18—H18 | 119.2 |
C5—C6—C1 | 120.2 (2) | C13—C18—H18 | 119.2 |
C5—C6—H6 | 119.9 | N1—C19—H19A | 109.5 |
C1—C6—H6 | 119.9 | N1—C19—H19B | 109.5 |
C8—C7—C12 | 119.8 (2) | H19A—C19—H19B | 109.5 |
C8—C7—P1 | 121.55 (19) | N1—C19—H19C | 109.5 |
C12—C7—P1 | 118.67 (19) | H19A—C19—H19C | 109.5 |
C7—C8—C9 | 120.0 (2) | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 120 | N1—C20—H20A | 109.5 |
C9—C8—H8 | 120 | N1—C20—H20B | 109.5 |
C10—C9—C8 | 119.7 (3) | H20A—C20—H20B | 109.5 |
C10—C9—H9 | 120.1 | N1—C20—H20C | 109.5 |
C8—C9—H9 | 120.1 | H20A—C20—H20C | 109.5 |
C9—C10—C11 | 120.6 (2) | H20B—C20—H20C | 109.5 |
C9—C10—H10 | 119.7 | ||
C13—P1—C1—C6 | 74.9 (2) | C9—C10—C11—C12 | 0.1 (4) |
C7—P1—C1—C6 | −173.6 (2) | C10—C11—C12—C7 | −0.6 (4) |
Se1—P1—C1—C6 | −49.0 (2) | C8—C7—C12—C11 | 0.4 (4) |
C13—P1—C1—C2 | −99.9 (2) | P1—C7—C12—C11 | −179.1 (2) |
C7—P1—C1—C2 | 11.6 (3) | C1—P1—C13—C18 | −165.27 (19) |
Se1—P1—C1—C2 | 136.2 (2) | C7—P1—C13—C18 | 84.0 (2) |
C6—C1—C2—C3 | −0.5 (5) | Se1—P1—C13—C18 | −40.7 (2) |
P1—C1—C2—C3 | 174.3 (3) | C1—P1—C13—C14 | 15.1 (2) |
C1—C2—C3—C4 | −0.3 (5) | C7—P1—C13—C14 | −95.7 (2) |
C2—C3—C4—C5 | 0.1 (5) | Se1—P1—C13—C14 | 139.70 (18) |
C3—C4—C5—C6 | 0.9 (4) | C18—C13—C14—C15 | −0.3 (3) |
C4—C5—C6—C1 | −1.7 (4) | P1—C13—C14—C15 | 179.32 (18) |
C2—C1—C6—C5 | 1.4 (4) | C13—C14—C15—C16 | −1.4 (4) |
P1—C1—C6—C5 | −173.5 (2) | C20—N1—C16—C15 | 173.9 (2) |
C13—P1—C7—C8 | 3.9 (2) | C19—N1—C16—C15 | 3.2 (3) |
C1—P1—C7—C8 | −106.7 (2) | C20—N1—C16—C17 | −6.6 (4) |
Se1—P1—C7—C8 | 128.35 (19) | C19—N1—C16—C17 | −177.3 (2) |
C13—P1—C7—C12 | −176.58 (19) | C14—C15—C16—N1 | −179.0 (2) |
C1—P1—C7—C12 | 72.8 (2) | C14—C15—C16—C17 | 1.5 (3) |
Se1—P1—C7—C12 | −52.1 (2) | N1—C16—C17—C18 | −179.4 (2) |
C12—C7—C8—C9 | 0.4 (4) | C15—C16—C17—C18 | 0.1 (3) |
P1—C7—C8—C9 | 179.88 (19) | C16—C17—C18—C13 | −1.9 (4) |
C7—C8—C9—C10 | −0.9 (4) | C14—C13—C18—C17 | 2.0 (3) |
C8—C9—C10—C11 | 0.7 (4) | P1—C13—C18—C17 | −177.68 (18) |
Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20A···Se1i | 0.98 | 3.25 | 3.833 (3) | 120 |
C20—H20C···Se1ii | 0.98 | 3.07 | 3.707 (3) | 124 |
C4—H4···Cg1iii | 0.95 | 2.66 | 3.476 (4) | 145 |
C15—H15···Cg1iv | 0.95 | 2.90 | 3.699 (3) | 142 |
C19—H19B···Cg2v | 0.98 | 2.79 | 3.627 (3) | 144 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y−1/2, z−1/2; (iv) −x, −y, −z; (v) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H20NPSe |
Mr | 384.3 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.1757 (13), 10.6173 (11), 17.5211 (14) |
β (°) | 128.098 (5) |
V (Å3) | 1782.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.20 |
Crystal size (mm) | 0.22 × 0.11 × 0.09 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.643, 0.827 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31924, 4553, 3798 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.06 |
No. of reflections | 4553 |
No. of parameters | 210 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.72 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).
Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20A···Se1i | 0.98 | 3.25 | 3.833 (3) | 119.9 |
C20—H20C···Se1ii | 0.98 | 3.07 | 3.707 (3) | 124.1 |
C4—H4···Cg1iii | 0.95 | 2.66 | 3.476 (4) | 145 |
C15—H15···Cg1iv | 0.95 | 2.90 | 3.699 (3) | 142 |
C19—H19B···Cg2v | 0.98 | 2.79 | 3.627 (3) | 144 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y−1/2, z−1/2; (iv) −x, −y, −z; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505–2508. CSD CrossRef Web of Science Google Scholar
Allen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51–54. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bent, H. A. (1961). Chem. Rev. 61, 275–311. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815–6821. CrossRef CAS Web of Science Google Scholar
Dreissig, W. & Plieth, K. (1972). Z. Kristallogr. 135, 294–307. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (2003). Aust. J. Chem. 56, 1135–1139. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. Web of Science CSD CrossRef PubMed Google Scholar
Otto, S. (2001). Acta Cryst. C57, 793–795. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10. Web of Science CrossRef CAS Google Scholar
Phasha, Z. H., Makhoba, S. & Muller, A. (2012). Acta Cryst. E68, o243. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362. Web of Science CrossRef IUCr Journals Google Scholar
Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past few decades several experimental procedures to rapidly evaluate steric and electronic properties of phoshane ligands have been developed. Highlights from these studies include the measuring of IR stretching frequencies in complexes such as [NiP(CO)3] (Tolman, 1977), trans-[RhCl(CO)(P)2] (Roodt et al., 2003; Otto & Roodt, 2004) and by the measuring of coupling constants between 31P and other NMR active nuclei such as 11B, 195Pt or 77Se (Cowley & Damasco, 1971; Allen & Taylor, 1982; Allen et al., 1985). Recently our research into this area involved the use of seledized phosphane ligands, providing several useful probes such as 1J(31P-77Se) coupling, Se—P bond distance and kinetic reaction rates (Muller et al., 2008) to study the steric and electronic parameters of phosphorus containing ligands. Discussed here, as part of an ongoing study, is the structure of the title compound, which is the selenium derivative of the phosphane PPh2(4-NMe2—C6H4), where Ph = C6H5.
The title compound (see Fig. 1) crystallizes in the monoclinic space group, P 21/c (Z=4), with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The average C—P—C and Se—P—C angles are 105.28 (11)° and 113.40 (8)° respectively. The Se—P distance is 2.1069 (7) Å which is significantly shorter than the 2.1241 (5) Å reported for the analogous SePCy2(4-NMe2—C6H4) compound (Phasha et al., 2012). An increase of 26 Hz in the 1J(31P-77Se) NMR coupling is also observed for the title compound compared to the dicyclohexcyl analogue. This is in accordance with Bent's rule that the s-character of the phosphorus lone pair electrons will decrease with more electron-donating substituents (Bent, 1961).
To describe the steric demand of phosphane ligands a variety of models have been developed, of which the Tolman cone angle (Tolman, 1977) is still the most commonly used method. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure as 157° (Otto, 2001). This value is comparable to the cone angles calculated for the structure of the free (Lynch et al., 2003) and oxidized (Dreissig & Plieth, 1972) forms of the phosphane (calculated as 158° and 161° respectively). The orientation of the substituents for the oxidized derivative is comparable to that of the title compound, whereas the free phosphane shows substantial differences in its orientations. To illustrate this observation, the coordinates of P and ipso C-atoms of the three structures are superimposed using Mercury (see Fig. 2; Macrae et al., 2006; Weng et al., 2008a; Weng et al., 2008b). The reason for the different substituent orientations are possibly due to different interactions observed to the packing of these structures. It is also interesting to note that coordination of the phosphane to transition metals does not induce significant steric crowding, and hence a smaller cone angle, of the ligand at the coordination sphere. Data extracted for these coordination complexes from the Cambridge Structural Database shows an average cone angle of 159° (Allen, 2002; 9 observations with metals: Au, Pt, Pd, Rh and Cu).
Packing in the crystals is assisted by weak C—H···Se interactions creating linked dimeric units of the title compound. In addition C—H···π interactions are also observed (see table 1 and Fig. 3 for a graphical representation of the interactions).