inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The solid solution K3.84Ni0.78Fe3.19(PO4)5

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St, 01601 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: Nataliya_N@ukr.net

(Received 16 May 2014; accepted 11 June 2014; online 14 June 2014)

The title compound, tetra­potassium tetra­[nickel(II)/iron(III)] penta­kis­(orthophosphate), K3.84Ni0.78Fe3.19(PO4)5, has been obtained from a flux. The structure is isotypic with that of K4MgFe3(PO4)5. The three-dimensional framework is built up from (Ni/Fe)O5 trigonal bipyramids with a mixed Fe:Ni occupancy of 0.799 (8):0.196 (10) and isolated PO4 tetra­hedra, one of which is on a general position and one of which has -4.. site symmetry. Two K+ cations are statistically occupied and are distributed over two positions in hexa­gonally shaped channels that run parallel to [001]. One K+ cation [occupancy 0.73 (3)] is surrounded by nine O atoms, while the other K+ cation [occupancy 0.23 (3)] is surrounded by eight O atoms.

Related literature

The structure of isotypic K4MgFe3(PO4)5 was determined by Hidouri et al. (2008[Hidouri, M., Sendi, N., Wattiaux, A. & Ben Amara, M. (2008). J. Phys. Chem. Solids, 69, 2555-2558.]). For applications of iron-containing phosphates, see: Barpanda et al. (2012[Barpanda, P., Nishimura, S., Chung, S., Yamada, Y., Okubo, M., Zhou, H. & Yamada, A. (2012). Electrochem. Commun. 24, 116-119.]); Fisher et al. (2008[Fisher, C. A. J., Hart-Prieto, V. M. & Islam, M. S. (2008). Chem. Mater. 20, 5907-5915.]); Huang et al. (2005[Huang, W., Day, D. E., Ray, C. S. & Kim, C. W. (2005). J. Nucl. Mater. 346, 298-305.]); Shih (2003[Shih, P. Y. (2003). Mater. Chem. Phys. 80, 299-304.]); Trad et al. (2010[Trad, K., Carlier, D., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). J. Electrochem. Soc. 157, A947-A952.]). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002[Hidouri, M., Lajmi, B. & Ben Amara, M. (2002). Acta Cryst. C58, i147-i148.], 2003[Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2003). J. Alloys Compd, 358, 36-41.]). Lajmi et al. (2002[Lajmi, B., Hidouri, M., Rzeigui, M. & Ben Amara, M. (2002). Mater. Res. Bull. 37, 2407-2416.]). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995[Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909-916.]). For related compounds, see: Strutynska et al. (2014[Strutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160-164.]).

Experimental

Crystal data
  • K3.84Ni0.78Fe3.19(PO4)5

  • Mr = 848.92

  • Tetragonal, [P \overline 42_1 c ]

  • a = 9.6622 (6) Å

  • c = 9.380 (1) Å

  • V = 875.70 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.90 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.562, Tmax = 0.743

  • 14788 measured reflections

  • 1935 independent reflections

  • 1771 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.04

  • 1935 reflections

  • 82 parameters

  • 1 restraint

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.00 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 829 Friedel pairs

  • Absolute structure parameter: 0.02 (3)

Table 1
Selected bond lengths (Å)

Fe1—O1 1.908 (3)
Fe1—O4i 1.908 (3)
Fe1—O3ii 1.918 (3)
Fe1—O5 1.975 (2)
Fe1—O2iii 1.979 (3)
P1—O5iv 1.531 (3)
P1—O5 1.531 (2)
P1—O5v 1.531 (3)
P1—O5vi 1.531 (2)
P2—O2 1.510 (3)
P2—O4 1.514 (3)
P2—O3 1.520 (3)
P2—O1 1.542 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iii) [y-{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -y+1, x+1, -z+1; (v) y-1, -x+1, -z+1; (vi) -x, -y+2, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Complex iron-containing phosphates have different applications, for example as ionic conductors (Fisher et al., 2008), cathode materials (Barpanda et al., 2012; Trad et al., 2010) and matrices for storage of nuclear waste (Huang et al., 2005; Shih, 2003). In the crystal structures of these compounds the iron cations can adopt different coordination numbers and hence different oxygen polyhedra: FeO4 (Hidouri et al., 2002), FeO5 (Hidouri et al., 2003) or FeO6 (Lajmi et al., 2002). Herein, the structure of the solid solution K3.84Ni0.78Fe3.19(PO4)5, tetrapotassium tetra(nickel(II)/iron(III)) pentakis(orthophosphate), (I), is reported. The crystal structure of (I) is isotypic with K4MgFe3(PO4)5 (Hidouri et al., 2008).

The asymmetric unit of (I) consists of one mixed-occupied (NiII/FeIII) site, two P sites (one of which is located on a fourfold rotoinversion axis), five oxygen sites and two K+ sites which are partly occupied and distributed over two positions (K1A and K1B) (Fig. 1). The main building blocks are one [(Ni/FeIII)O5] trigonal bipyramid and two [PO4] tetrahedra. The [(Ni/FeIII)O5] polyhedron is linked with [P1O4] tetrahedra into chains along [001] which additionally are aggregated by the linkage with [P2O4] tetrahedra into a three-dimensional framework with composition [Ni0.78Fe3.19(PO4)5]3.84- (Fig. 2).

The environment of the mixed (NiII/FeIII) site is defined by five oxygen atoms from four [P2O4] tetrahedra and one [P1O4] tetrahedron. The distances (Ni/Fe)—O vary between 1.908 (3) and 1.979 (3) Å. The average distance ((Ni/Fe)—O) = 1.937 Å is slightly less than that in K4MgFe3(PO4)5 (d((Mg/Fe)—O) = 1.952 Å) (Hidouri et al., 2008). The tetrahedral orthophosphate anions deviate only slightly from ideal values with P—O bond lengths ranging from 1.510 (3) to 1.542 (3) Å.

The disordered K+ cations are located in hexagonally-shaped channels running along [001], with occupancies of 0.73 (3) (K1A) and 0.23 (3) (K1B). The results of the construction of Voronoi-Dirichlet polyhedra (Blatov et al., 1995) show the K1A being surrounded by nine O atoms while K1B is surrounded by eight O atoms. The K—O distances in the [K1AO9]-polyhedron are in the range 2.719 (5)–3.072 (6) Å, while in the [K1BO8]-polyhedron they are in the range 2.636 (13)–3.065 (15) Å.

The main difference between the obtained solid solution and the phosphate K4MgFe3(PO4)5 (Hidouri et al., 2008) is the splitting of the K+ site in two positions. The occupation of the K1B site (0.23 (3)) correlates with the increase of the iron content (from 3 to 3.19) in the starting matrix [MIIFeIII3(PO4)5]4-. It seems that a partial substitution of Ni by Fe in [MIIFeIII3(PO4)5]4- causes the formation of vacancies in the cationic K+ lattice and a splitting of the respective K+ site. A similar influence of an heterovalent substitution on the splitting of alkaline metal sites was found for KNi0.93FeII0.07FeIII(PO4)2 (Strutynska et al., 2014).

Related literature top

The structure of isotypic K4MgFe3(PO4)5 was determined by Hidouri et al. (2008). For applications of iron-containing phosphates, see: Barpanda et al. (2012); Fisher et al. (2008); Huang et al. (2005); Shih (2003); Trad et al. (2010). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002, 2003) Lajmi et al. (2002). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995). For related compounds, see: Strutynska et al. (2014).

Experimental top

The title compound was obtained during investigation of the melting system K2O–P2O5–Fe2O3–NiO–MoO3. A mixture of KPO3 (14.16 g), NiO (2.70 g), Fe2O3 (2.88 g) and K2Mo2O7 (4 g) was ground in an agate mortar, placed in a platinum crucible and heated up to 1273 K. The melt was kept at this temperature for 3 h. After that, the temperature was cooled down to 873 K at a rate of 10 K/h. The crystals of (I) were separated from the remaining flux by boiling with water. The chemical composition of selected single-crystal was verified by EDX analysis. Analysis found (calculated) for K3.84Ni0.78Fe3.19 (PO4)5 in atomic percentage: K 17.62 (17.69), Ni 5.34 (5.39), Fe 20.83 (20.99), P 18.44 (18.24) and O 37.77 (37.69).

Refinement top

Because of the similarity of possible coordination by O atoms, Ni and Fe were placed on the same site. Their coordinates and anisotropic displacement parameters (ADP) were constrained to be equal. The corresponding occupancy factors were refined using free variables. After that procedure, an unidentified high electron density peak was found near the position of the K site. It was supposed that this site can be occupied only by another K+ caion. ADPs of both split K sites were constrained to be equal, while the occupancies were refined using free variables. The calculated occupancy factors of all partially occupied positions were close to those reported in this paper. To fix the electroneutrality of the compound, SUMP restraints in SHELXL (Sheldrick, 2008) were applied to the occupancy factors of the refined atoms.

The highest and lowest electron densities were found 1.00 Å from O1 and 0.76 Å from NI1, respectively.

Structure description top

Complex iron-containing phosphates have different applications, for example as ionic conductors (Fisher et al., 2008), cathode materials (Barpanda et al., 2012; Trad et al., 2010) and matrices for storage of nuclear waste (Huang et al., 2005; Shih, 2003). In the crystal structures of these compounds the iron cations can adopt different coordination numbers and hence different oxygen polyhedra: FeO4 (Hidouri et al., 2002), FeO5 (Hidouri et al., 2003) or FeO6 (Lajmi et al., 2002). Herein, the structure of the solid solution K3.84Ni0.78Fe3.19(PO4)5, tetrapotassium tetra(nickel(II)/iron(III)) pentakis(orthophosphate), (I), is reported. The crystal structure of (I) is isotypic with K4MgFe3(PO4)5 (Hidouri et al., 2008).

The asymmetric unit of (I) consists of one mixed-occupied (NiII/FeIII) site, two P sites (one of which is located on a fourfold rotoinversion axis), five oxygen sites and two K+ sites which are partly occupied and distributed over two positions (K1A and K1B) (Fig. 1). The main building blocks are one [(Ni/FeIII)O5] trigonal bipyramid and two [PO4] tetrahedra. The [(Ni/FeIII)O5] polyhedron is linked with [P1O4] tetrahedra into chains along [001] which additionally are aggregated by the linkage with [P2O4] tetrahedra into a three-dimensional framework with composition [Ni0.78Fe3.19(PO4)5]3.84- (Fig. 2).

The environment of the mixed (NiII/FeIII) site is defined by five oxygen atoms from four [P2O4] tetrahedra and one [P1O4] tetrahedron. The distances (Ni/Fe)—O vary between 1.908 (3) and 1.979 (3) Å. The average distance ((Ni/Fe)—O) = 1.937 Å is slightly less than that in K4MgFe3(PO4)5 (d((Mg/Fe)—O) = 1.952 Å) (Hidouri et al., 2008). The tetrahedral orthophosphate anions deviate only slightly from ideal values with P—O bond lengths ranging from 1.510 (3) to 1.542 (3) Å.

The disordered K+ cations are located in hexagonally-shaped channels running along [001], with occupancies of 0.73 (3) (K1A) and 0.23 (3) (K1B). The results of the construction of Voronoi-Dirichlet polyhedra (Blatov et al., 1995) show the K1A being surrounded by nine O atoms while K1B is surrounded by eight O atoms. The K—O distances in the [K1AO9]-polyhedron are in the range 2.719 (5)–3.072 (6) Å, while in the [K1BO8]-polyhedron they are in the range 2.636 (13)–3.065 (15) Å.

The main difference between the obtained solid solution and the phosphate K4MgFe3(PO4)5 (Hidouri et al., 2008) is the splitting of the K+ site in two positions. The occupation of the K1B site (0.23 (3)) correlates with the increase of the iron content (from 3 to 3.19) in the starting matrix [MIIFeIII3(PO4)5]4-. It seems that a partial substitution of Ni by Fe in [MIIFeIII3(PO4)5]4- causes the formation of vacancies in the cationic K+ lattice and a splitting of the respective K+ site. A similar influence of an heterovalent substitution on the splitting of alkaline metal sites was found for KNi0.93FeII0.07FeIII(PO4)2 (Strutynska et al., 2014).

The structure of isotypic K4MgFe3(PO4)5 was determined by Hidouri et al. (2008). For applications of iron-containing phosphates, see: Barpanda et al. (2012); Fisher et al. (2008); Huang et al. (2005); Shih (2003); Trad et al. (2010). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002, 2003) Lajmi et al. (2002). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995). For related compounds, see: Strutynska et al. (2014).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The main building blocks and their linkage into chains and the three-dimensional framework for (I) in polyhedral representation.
Tetrapotassium tetra[nickel(II)/iron(III)] pentakis(orthophosphate) top
Crystal data top
K3.84Ni0.78Fe3.19(PO4)5Dx = 3.222 Mg m3
Mr = 848.92Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 14788 reflections
Hall symbol: P -4 2 nθ = 3.0–35°
a = 9.6622 (6) ŵ = 4.90 mm1
c = 9.380 (1) ÅT = 293 K
V = 875.70 (12) Å3Prism, yellow
Z = 20.12 × 0.10 × 0.05 mm
F(000) = 826
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1935 independent reflections
Radiation source: fine-focus sealed tube1771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 35°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.562, Tmax = 0.743k = 1515
14788 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.050P)2 + 0.8951P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.02 e Å3
1935 reflectionsΔρmin = 1.00 e Å3
82 parametersAbsolute structure: Flack (1983), 829 Friedel pairs
1 restraintAbsolute structure parameter: 0.02 (3)
Crystal data top
K3.84Ni0.78Fe3.19(PO4)5Z = 2
Mr = 848.92Mo Kα radiation
Tetragonal, P421cµ = 4.90 mm1
a = 9.6622 (6) ÅT = 293 K
c = 9.380 (1) Å0.12 × 0.10 × 0.05 mm
V = 875.70 (12) Å3
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1935 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1771 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.743Rint = 0.064
14788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.095Δρmax = 1.02 e Å3
S = 1.04Δρmin = 1.00 e Å3
1935 reflectionsAbsolute structure: Flack (1983), 829 Friedel pairs
82 parametersAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.07474 (5)0.81210 (5)0.21055 (5)0.01399 (11)0.799 (8)
Ni10.07474 (5)0.81210 (5)0.21055 (5)0.01399 (11)0.196 (10)
K1A0.0677 (6)0.3344 (4)0.5415 (10)0.0267 (8)0.73 (3)
K1B0.0837 (15)0.3284 (14)0.5131 (17)0.0267 (8)0.23 (3)
P1010.50.0138 (3)
P20.25560 (9)0.58266 (10)0.36473 (8)0.01535 (18)
O10.1268 (3)0.6356 (3)0.2843 (3)0.0238 (5)
O20.2226 (3)0.5930 (3)0.5217 (3)0.0245 (6)
O30.3798 (4)0.6706 (4)0.3236 (4)0.0361 (8)
O40.2718 (3)0.4322 (3)0.3226 (3)0.0289 (6)
O50.0560 (3)0.8822 (3)0.4074 (3)0.0204 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0157 (2)0.0181 (2)0.00817 (16)0.00085 (16)0.00043 (16)0.00122 (15)
Ni10.0157 (2)0.0181 (2)0.00817 (16)0.00085 (16)0.00043 (16)0.00122 (15)
K1A0.0289 (10)0.0276 (6)0.0235 (18)0.0078 (6)0.0031 (11)0.0056 (9)
K1B0.0289 (10)0.0276 (6)0.0235 (18)0.0078 (6)0.0031 (11)0.0056 (9)
P10.0177 (5)0.0177 (5)0.0061 (6)000
P20.0180 (4)0.0198 (4)0.0083 (3)0.0018 (3)0.0008 (3)0.0018 (3)
O10.0294 (13)0.0228 (12)0.0191 (11)0.0015 (10)0.0095 (11)0.0004 (10)
O20.0299 (13)0.0363 (15)0.0074 (9)0.0067 (13)0.0033 (8)0.0001 (10)
O30.0270 (14)0.0427 (19)0.0385 (18)0.0108 (14)0.0101 (13)0.0073 (15)
O40.0402 (16)0.0222 (12)0.0243 (13)0.0091 (12)0.0056 (11)0.0014 (11)
O50.0245 (13)0.0247 (12)0.0120 (9)0.0010 (10)0.0020 (9)0.0054 (9)
Geometric parameters (Å, º) top
Fe1—O11.908 (3)P1—K1Bxii3.277 (13)
Fe1—O4i1.908 (3)P1—K1Biv3.277 (13)
Fe1—O3ii1.918 (3)P1—K1Bxiii3.277 (13)
Fe1—O51.975 (2)P1—K1Bv3.277 (13)
Fe1—O2iii1.979 (3)P1—K1Aiv3.319 (4)
Fe1—K1Biv3.498 (14)P1—K1Axii3.319 (4)
Fe1—K1Av3.613 (4)P1—K1Axiii3.319 (4)
Fe1—K1Aiii3.672 (4)P1—K1Av3.319 (4)
Fe1—K1Aiv3.679 (7)P2—O21.510 (3)
Fe1—K1Bv3.707 (13)P2—O41.514 (3)
Fe1—K1Biii3.737 (13)P2—O31.520 (3)
Fe1—K1Bi3.914 (17)P2—O11.542 (3)
K1A—O5iv2.719 (5)P2—K1Axiv3.473 (9)
K1A—O5vi2.774 (5)P2—K1Bv3.493 (13)
K1A—O4vii2.830 (8)P2—K1Av3.573 (4)
K1A—O3vi2.862 (5)P2—K1Aiv3.626 (3)
K1A—O2iv2.898 (6)P2—K1Biv3.664 (13)
K1A—O22.919 (5)P2—K1Bxiv3.758 (16)
K1A—O43.000 (9)O1—K1Biv2.978 (13)
K1A—O1vii3.031 (10)O1—K1Axiv3.031 (10)
K1A—O1iv3.072 (6)O1—K1Aiv3.072 (6)
K1A—P1viii3.319 (4)O1—K1Bxiv3.339 (18)
K1A—P23.435 (6)O2—Ni1xv1.979 (3)
K1A—K1Aiv3.458 (10)O2—Fe1xv1.979 (3)
K1B—O5iv2.636 (13)O2—K1Aiv2.898 (6)
K1B—O42.739 (16)O2—K1Biv3.057 (15)
K1B—O5vi2.755 (13)O2—K1Bv3.303 (16)
K1B—O3vi2.869 (13)O3—Ni1xvi1.918 (3)
K1B—O22.889 (13)O3—Fe1xvi1.918 (3)
K1B—O1iv2.978 (13)O3—K1Av2.862 (5)
K1B—O2iv3.057 (15)O3—K1Bv2.869 (13)
K1B—O4vii3.065 (15)O4—Ni1xvii1.908 (3)
K1B—P23.276 (13)O4—Fe1xvii1.908 (3)
K1B—P1viii3.277 (13)O4—K1Axiv2.830 (8)
K1B—O2vi3.303 (16)O4—K1Bxiv3.065 (15)
K1B—O1vii3.339 (18)O5—K1Biv2.636 (13)
P1—O5ix1.531 (3)O5—K1Aiv2.719 (5)
P1—O51.531 (2)O5—K1Bv2.755 (13)
P1—O5x1.531 (3)O5—K1Av2.774 (5)
P1—O5xi1.531 (2)
O1—Fe1—O4i113.45 (13)O5x—P1—K1Biv56.8 (2)
O1—Fe1—O3ii113.43 (14)O5xi—P1—K1Biv130.8 (3)
O4i—Fe1—O3ii133.04 (15)K1Bxii—P1—K1Biv175.7 (5)
O1—Fe1—O589.54 (12)O5ix—P1—K1Bxiii130.8 (3)
O4i—Fe1—O590.85 (12)O5—P1—K1Bxiii120.3 (3)
O3ii—Fe1—O592.08 (13)O5x—P1—K1Bxiii52.3 (2)
O1—Fe1—O2iii84.85 (12)O5xi—P1—K1Bxiii56.8 (2)
O4i—Fe1—O2iii92.89 (13)K1Bxii—P1—K1Bxiii90.08 (2)
O3ii—Fe1—O2iii88.65 (13)K1Biv—P1—K1Bxiii90.08 (2)
O5—Fe1—O2iii174.16 (12)O5ix—P1—K1Bv52.3 (2)
O1—Fe1—K1Biv58.3 (3)O5—P1—K1Bv56.8 (2)
O4i—Fe1—K1Biv135.1 (3)O5x—P1—K1Bv130.8 (3)
O3ii—Fe1—K1Biv74.9 (3)O5xi—P1—K1Bv120.3 (3)
O5—Fe1—K1Biv48.3 (2)K1Bxii—P1—K1Bv90.08 (2)
O2iii—Fe1—K1Biv126.6 (2)K1Biv—P1—K1Bv90.08 (2)
O1—Fe1—K1Av82.58 (14)K1Bxiii—P1—K1Bv175.7 (5)
O4i—Fe1—K1Av50.96 (18)O5ix—P1—K1Aiv115.1 (2)
O3ii—Fe1—K1Av139.59 (13)O5—P1—K1Aiv54.03 (13)
O5—Fe1—K1Av49.57 (14)O5x—P1—K1Aiv56.12 (12)
O2iii—Fe1—K1Av130.90 (13)O5xi—P1—K1Aiv136.1 (2)
K1Biv—Fe1—K1Av84.63 (17)K1Bxii—P1—K1Aiv170.7 (4)
O1—Fe1—K1Aiii75.43 (16)K1Biv—P1—K1Aiv5.40 (18)
O4i—Fe1—K1Aiii144.29 (15)K1Bxiii—P1—K1Aiv93.1 (3)
O3ii—Fe1—K1Aiii50.43 (13)K1Bv—P1—K1Aiv87.4 (3)
O5—Fe1—K1Aiii124.50 (14)O5ix—P1—K1Axii56.12 (12)
O2iii—Fe1—K1Aiii52.34 (13)O5—P1—K1Axii136.1 (2)
K1Biv—Fe1—K1Aiii79.86 (19)O5x—P1—K1Axii115.1 (2)
K1Av—Fe1—K1Aiii157.50 (3)O5xi—P1—K1Axii54.03 (13)
O1—Fe1—K1Aiv56.57 (12)K1Bxii—P1—K1Axii5.40 (18)
O4i—Fe1—K1Aiv131.48 (15)K1Biv—P1—K1Axii170.7 (4)
O3ii—Fe1—K1Aiv78.87 (17)K1Bxiii—P1—K1Axii87.4 (3)
O5—Fe1—K1Aiv46.28 (11)K1Bv—P1—K1Axii93.1 (3)
O2iii—Fe1—K1Aiv128.36 (11)K1Aiv—P1—K1Axii166.5 (3)
K1Biv—Fe1—K1Aiv4.1 (2)O5ix—P1—K1Axiii136.1 (2)
K1Av—Fe1—K1Aiv80.81 (6)O5—P1—K1Axiii115.1 (2)
K1Aiii—Fe1—K1Aiv83.13 (5)O5x—P1—K1Axiii54.03 (13)
O1—Fe1—K1Bv79.3 (2)O5xi—P1—K1Axiii56.12 (12)
O4i—Fe1—K1Bv55.6 (3)K1Bxii—P1—K1Axiii93.1 (3)
O3ii—Fe1—K1Bv137.9 (2)K1Biv—P1—K1Axiii87.4 (3)
O5—Fe1—K1Bv46.6 (2)K1Bxiii—P1—K1Axiii5.40 (18)
O2iii—Fe1—K1Bv133.3 (2)K1Bv—P1—K1Axiii170.7 (4)
K1Biv—Fe1—K1Bv80.1 (2)K1Aiv—P1—K1Axiii90.79 (4)
K1Av—Fe1—K1Bv4.68 (18)K1Axii—P1—K1Axiii90.79 (4)
K1Aiii—Fe1—K1Bv153.49 (18)O5ix—P1—K1Av54.03 (13)
K1Aiv—Fe1—K1Bv76.22 (18)O5—P1—K1Av56.12 (12)
O1—Fe1—K1Biii79.6 (3)O5x—P1—K1Av136.1 (2)
O4i—Fe1—K1Biii140.6 (2)O5xi—P1—K1Av115.1 (2)
O3ii—Fe1—K1Biii49.0 (2)K1Bxii—P1—K1Av87.4 (3)
O5—Fe1—K1Biii127.4 (2)K1Biv—P1—K1Av93.1 (3)
O2iii—Fe1—K1Biii49.9 (2)K1Bxiii—P1—K1Av170.7 (4)
K1Biv—Fe1—K1Biii83.93 (9)K1Bv—P1—K1Av5.40 (18)
K1Av—Fe1—K1Biii162.0 (2)K1Aiv—P1—K1Av90.79 (4)
K1Aiii—Fe1—K1Biii4.74 (16)K1Axii—P1—K1Av90.79 (4)
K1Aiv—Fe1—K1Biii87.29 (19)K1Axiii—P1—K1Av166.5 (3)
K1Bv—Fe1—K1Biii158.14 (6)O2—P2—O4109.86 (17)
O1—Fe1—K1Bi90.4 (2)O2—P2—O3112.16 (19)
O4i—Fe1—K1Bi39.9 (2)O4—P2—O3112.85 (18)
O3ii—Fe1—K1Bi137.3 (2)O2—P2—O1106.56 (17)
O5—Fe1—K1Bi124.4 (2)O4—P2—O1105.92 (17)
O2iii—Fe1—K1Bi57.5 (2)O3—P2—O1109.10 (19)
K1Biv—Fe1—K1Bi145.0 (3)O2—P2—K1B61.9 (3)
K1Av—Fe1—K1Bi75.32 (18)O4—P2—K1B56.2 (3)
K1Aiii—Fe1—K1Bi109.1 (2)O3—P2—K1B158.0 (3)
K1Aiv—Fe1—K1Bi141.56 (17)O1—P2—K1B92.7 (3)
K1Bv—Fe1—K1Bi78.8 (2)O2—P2—K1A57.59 (18)
K1Biii—Fe1—K1Bi107.17 (6)O4—P2—K1A60.68 (19)
O5iv—K1A—O5vi53.88 (13)O3—P2—K1A158.44 (17)
O5iv—K1A—O4vii98.74 (17)O1—P2—K1A92.38 (12)
O5vi—K1A—O4vii59.16 (13)K1B—P2—K1A4.6 (2)
O5iv—K1A—O3vi135.3 (2)O2—P2—K1Axiv145.72 (14)
O5vi—K1A—O3vi85.30 (13)O4—P2—K1Axiv52.89 (13)
O4vii—K1A—O3vi69.10 (15)O3—P2—K1Axiv102.11 (15)
O5iv—K1A—O2iv74.39 (12)O1—P2—K1Axiv60.63 (14)
O5vi—K1A—O2iv114.49 (17)K1B—P2—K1Axiv86.0 (3)
O4vii—K1A—O2iv98.5 (3)K1A—P2—K1Axiv89.82 (9)
O3vi—K1A—O2iv147.9 (3)O2—P2—K1Bv70.2 (3)
O5iv—K1A—O2148.8 (4)O4—P2—K1Bv161.9 (3)
O5vi—K1A—O2138.7 (2)O3—P2—K1Bv53.7 (3)
O4vii—K1A—O2111.7 (2)O1—P2—K1Bv91.0 (2)
O3vi—K1A—O256.21 (11)K1B—P2—K1Bv130.91 (4)
O2iv—K1A—O2106.56 (15)K1A—P2—K1Bv126.3 (2)
O5iv—K1A—O4102.4 (3)K1Axiv—P2—K1Bv136.3 (3)
O5vi—K1A—O4108.0 (3)O2—P2—K1Av75.1 (2)
O4vii—K1A—O4138.76 (16)O4—P2—K1Av161.74 (15)
O3vi—K1A—O470.94 (17)O3—P2—K1Av50.65 (17)
O2iv—K1A—O4121.09 (19)O1—P2—K1Av88.79 (14)
O2—K1A—O449.42 (13)K1B—P2—K1Av135.4 (2)
O5iv—K1A—O1vii99.1 (2)K1A—P2—K1Av130.85 (3)
O5vi—K1A—O1vii95.9 (2)K1Axiv—P2—K1Av131.60 (16)
O4vii—K1A—O1vii49.06 (18)K1Bv—P2—K1Av4.92 (17)
O3vi—K1A—O1vii102.8 (3)O2—P2—K1Aiv50.0 (2)
O2iv—K1A—O1vii52.46 (16)O4—P2—K1Aiv114.87 (14)
O2—K1A—O1vii105.9 (2)O3—P2—K1Aiv132.28 (15)
O4—K1A—O1vii154.35 (18)O1—P2—K1Aiv57.0 (2)
O5iv—K1A—O1iv55.96 (12)K1B—P2—K1Aiv62.3 (3)
O5vi—K1A—O1iv109.51 (18)K1A—P2—K1Aiv58.56 (19)
O4vii—K1A—O1iv140.0 (2)K1Axiv—P2—K1Aiv106.02 (10)
O3vi—K1A—O1iv150.9 (3)K1Bv—P2—K1Aiv79.60 (18)
O2iv—K1A—O1iv48.28 (9)K1Av—P2—K1Aiv82.07 (11)
O2—K1A—O1iv100.54 (17)O2—P2—K1Biv54.9 (3)
O4—K1A—O1iv80.5 (2)O4—P2—K1Biv114.6 (2)
O1vii—K1A—O1iv100.48 (17)O3—P2—K1Biv132.2 (2)
O5iv—K1A—P1viii27.11 (6)O1—P2—K1Biv52.1 (3)
O5vi—K1A—P1viii27.26 (6)K1B—P2—K1Biv64.0 (5)
O4vii—K1A—P1viii75.89 (12)K1A—P2—K1Biv60.5 (3)
O3vi—K1A—P1viii112.04 (14)K1Axiv—P2—K1Biv101.87 (18)
O2iv—K1A—P1viii92.13 (12)K1Bv—P2—K1Biv80.7 (4)
O2—K1A—P1viii158.0 (3)K1Av—P2—K1Biv82.84 (15)
O4—K1A—P1viii110.9 (3)K1Aiv—P2—K1Biv4.89 (16)
O1vii—K1A—P1viii94.63 (17)O2—P2—K1Bxiv147.0 (2)
O1iv—K1A—P1viii83.06 (12)O4—P2—K1Bxiv51.9 (2)
O5iv—K1A—P2123.1 (3)O3—P2—K1Bxiv100.8 (2)
O5vi—K1A—P2131.9 (3)O1—P2—K1Bxiv62.5 (2)
O4vii—K1A—P2134.67 (15)K1B—P2—K1Bxiv86.7 (2)
O3vi—K1A—P268.87 (13)K1A—P2—K1Bxiv90.6 (2)
O2iv—K1A—P2108.16 (12)K1Axiv—P2—K1Bxiv2.1 (2)
O2—K1A—P225.89 (8)K1Bv—P2—K1Bxiv136.6 (3)
O4—K1A—P226.12 (7)K1Av—P2—K1Bxiv131.8 (3)
O1vii—K1A—P2128.24 (19)K1Aiv—P2—K1Bxiv108.05 (18)
O1iv—K1A—P283.01 (17)K1Biv—P2—K1Bxiv103.9 (3)
P1viii—K1A—P2136.7 (3)P2—O1—Fe1133.35 (16)
O5iv—K1A—K1Aiv123.1 (2)P2—O1—K1Biv103.7 (4)
O5vi—K1A—K1Aiv164.4 (3)Fe1—O1—K1Biv88.7 (3)
O4vii—K1A—K1Aiv109.62 (17)P2—O1—K1Axiv93.04 (15)
O3vi—K1A—K1Aiv101.10 (15)Fe1—O1—K1Axiv109.87 (14)
O2iv—K1A—K1Aiv53.81 (18)K1Biv—O1—K1Axiv134.6 (2)
O2—K1A—K1Aiv53.25 (10)P2—O1—K1Aiv98.1 (2)
O4—K1A—K1Aiv87.55 (11)Fe1—O1—K1Aiv92.22 (17)
O1vii—K1A—K1Aiv68.91 (12)K1Biv—O1—K1Aiv5.7 (2)
O1iv—K1A—K1Aiv71.40 (18)K1Axiv—O1—K1Aiv136.63 (15)
P1viii—K1A—K1Aiv145.7 (2)P2—O1—K1Bxiv93.3 (3)
P2—K1A—K1Aiv63.49 (9)Fe1—O1—K1Bxiv109.0 (2)
O5iv—K1B—O4112.2 (6)K1Biv—O1—K1Bxiv135.4 (4)
O5iv—K1B—O5vi54.9 (3)K1Axiv—O1—K1Bxiv1.0 (3)
O4—K1B—O5vi116.6 (6)K1Aiv—O1—K1Bxiv137.52 (19)
O5iv—K1B—O3vi139.3 (5)P2—O2—Ni1xv140.79 (19)
O4—K1B—O3vi74.7 (4)P2—O2—Fe1xv140.79 (19)
O5vi—K1B—O3vi85.5 (4)Ni1xv—O2—Fe1xv0.00 (3)
O5iv—K1B—O2158.7 (6)P2—O2—K1B90.7 (4)
O4—K1B—O252.1 (3)Ni1xv—O2—K1B98.6 (3)
O5vi—K1B—O2141.5 (5)Fe1xv—O2—K1B98.6 (3)
O3vi—K1B—O256.5 (3)P2—O2—K1Aiv106.4 (2)
O5iv—K1B—O1iv57.9 (3)Ni1xv—O2—K1Aiv112.8 (2)
O4—K1B—O1iv86.6 (4)Fe1xv—O2—K1Aiv112.8 (2)
O5vi—K1B—O1iv112.9 (4)K1B—O2—K1Aiv76.5 (3)
O3vi—K1B—O1iv158.5 (5)P2—O2—K1A96.5 (2)
O2—K1B—O1iv103.5 (4)Ni1xv—O2—K1A95.20 (17)
O5iv—K1B—O2iv72.9 (3)Fe1xv—O2—K1A95.20 (17)
O4—K1B—O2iv124.7 (5)K1B—O2—K1A6.2 (2)
O5vi—K1B—O2iv110.2 (5)K1Aiv—O2—K1A72.95 (18)
O3vi—K1B—O2iv138.1 (6)P2—O2—K1Biv101.2 (3)
O2—K1B—O2iv103.3 (4)Ni1xv—O2—K1Biv118.0 (3)
O1iv—K1B—O2iv47.8 (2)Fe1xv—O2—K1Biv118.0 (3)
O5iv—K1B—O4vii95.0 (4)K1B—O2—K1Biv76.7 (4)
O4—K1B—O4vii140.1 (5)K1Aiv—O2—K1Biv5.2 (2)
O5vi—K1B—O4vii56.5 (3)K1A—O2—K1Biv73.6 (3)
O3vi—K1B—O4vii65.8 (3)P2—O2—K1Bv84.3 (3)
O2—K1B—O4vii106.1 (4)Ni1xv—O2—K1Bv92.2 (3)
O1iv—K1B—O4vii133.3 (5)Fe1xv—O2—K1Bv92.2 (3)
O2iv—K1B—O4vii90.3 (5)K1B—O2—K1Bv168.0 (3)
O5iv—K1B—P2132.8 (6)K1Aiv—O2—K1Bv94.42 (19)
O4—K1B—P227.35 (14)K1A—O2—K1Bv167.1 (3)
O5vi—K1B—P2140.4 (6)K1Biv—O2—K1Bv93.6 (5)
O3vi—K1B—P271.2 (3)P2—O3—Ni1xvi150.1 (3)
O2—K1B—P227.44 (13)P2—O3—Fe1xvi150.1 (3)
O1iv—K1B—P287.3 (3)Ni1xvi—O3—Fe1xvi0.00 (3)
O2iv—K1B—P2108.4 (4)P2—O3—K1Av105.1 (2)
O4vii—K1B—P2131.7 (4)Ni1xvi—O3—K1Av98.46 (16)
O5iv—K1B—P1viii27.36 (14)Fe1xvi—O3—K1Av98.46 (16)
O4—K1B—P1viii119.6 (6)P2—O3—K1Bv101.0 (4)
O5vi—K1B—P1viii27.71 (13)Ni1xvi—O3—K1Bv100.8 (3)
O3vi—K1B—P1viii113.1 (4)Fe1xvi—O3—K1Bv100.8 (3)
O2—K1B—P1viii166.6 (6)K1Av—O3—K1Bv6.3 (2)
O1iv—K1B—P1viii85.3 (3)P2—O4—Ni1xvii135.0 (2)
O2iv—K1B—P1viii90.1 (3)P2—O4—Fe1xvii135.0 (2)
O4vii—K1B—P1viii73.6 (3)Ni1xvii—O4—Fe1xvii0.00 (3)
P2—K1B—P1viii146.7 (6)P2—O4—K1B96.5 (3)
O5iv—K1B—O2vi102.0 (5)Ni1xvii—O4—K1B113.5 (3)
O4—K1B—O2vi54.6 (3)Fe1xvii—O4—K1B113.5 (3)
O5vi—K1B—O2vi67.5 (3)P2—O4—K1Axiv101.84 (19)
O3vi—K1B—O2vi47.4 (2)Ni1xvii—O4—K1Axiv97.46 (19)
O2—K1B—O2vi80.6 (4)Fe1xvii—O4—K1Axiv97.46 (19)
O1iv—K1B—O2vi127.7 (6)K1B—O4—K1Axiv111.5 (3)
O2iv—K1B—O2vi174.4 (5)P2—O4—K1A93.21 (17)
O4vii—K1B—O2vi92.5 (3)Ni1xvii—O4—K1A115.51 (15)
P2—K1B—O2vi73.2 (3)Fe1xvii—O4—K1A115.51 (15)
P1viii—K1B—O2vi86.0 (4)K1B—O4—K1A3.5 (3)
O5iv—K1B—O1vii93.5 (4)K1Axiv—O4—K1A113.54 (12)
O4—K1B—O1vii150.5 (5)P2—O4—K1Bxiv105.2 (3)
O5vi—K1B—O1vii89.6 (4)Ni1xvii—O4—K1Bxiv93.5 (3)
O3vi—K1B—O1vii95.5 (4)Fe1xvii—O4—K1Bxiv93.5 (3)
O2—K1B—O1vii99.1 (5)K1B—O4—K1Bxiv112.9 (2)
O1iv—K1B—O1vii95.8 (4)K1Axiv—O4—K1Bxiv4.0 (3)
O2iv—K1B—O1vii48.2 (3)K1A—O4—K1Bxiv115.1 (3)
O4vii—K1B—O1vii44.5 (2)P1—O5—Fe1144.88 (18)
P2—K1B—O1vii123.2 (5)P1—O5—K1Biv100.3 (3)
P1viii—K1B—O1vii89.8 (4)Fe1—O5—K1Biv97.7 (3)
O2vi—K1B—O1vii135.7 (4)P1—O5—K1Aiv98.87 (15)
O5ix—P1—O5108.79 (10)Fe1—O5—K1Aiv102.05 (18)
O5ix—P1—O5x110.8 (2)K1Biv—O5—K1Aiv6.5 (2)
O5—P1—O5x108.79 (10)P1—O5—K1Bv95.5 (3)
O5ix—P1—O5xi108.79 (10)Fe1—O5—K1Bv101.9 (3)
O5—P1—O5xi110.8 (2)K1Biv—O5—K1Bv118.67 (12)
O5x—P1—O5xi108.79 (10)K1Aiv—O5—K1Bv112.8 (3)
O5ix—P1—K1Bxii56.8 (2)P1—O5—K1Av96.61 (14)
O5—P1—K1Bxii130.8 (3)Fe1—O5—K1Av97.63 (18)
O5x—P1—K1Bxii120.3 (3)K1Biv—O5—K1Av124.5 (3)
O5xi—P1—K1Bxii52.3 (2)K1Aiv—O5—K1Av118.73 (10)
O5ix—P1—K1Biv120.3 (3)K1Bv—O5—K1Av6.5 (2)
O5—P1—K1Biv52.3 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) y1/2, x+1/2, z1/2; (iv) x, y+1, z; (v) y, x+1, z+1; (vi) y+1, x, z+1; (vii) y+1/2, x+1/2, z+1/2; (viii) x, y1, z; (ix) y+1, x+1, z+1; (x) y1, x+1, z+1; (xi) x, y+2, z; (xii) x, y+1, z; (xiii) y, x+1, z+1; (xiv) y+1/2, x+1/2, z1/2; (xv) y1/2, x+1/2, z+1/2; (xvi) x+1/2, y+3/2, z+1/2; (xvii) x+1/2, y1/2, z+1/2.
Selected bond lengths (Å) top
Fe1—O11.908 (3)P1—O5v1.531 (3)
Fe1—O4i1.908 (3)P1—O5vi1.531 (2)
Fe1—O3ii1.918 (3)P2—O21.510 (3)
Fe1—O51.975 (2)P2—O41.514 (3)
Fe1—O2iii1.979 (3)P2—O31.520 (3)
P1—O5iv1.531 (3)P2—O11.542 (3)
P1—O51.531 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) y1/2, x+1/2, z1/2; (iv) y+1, x+1, z+1; (v) y1, x+1, z+1; (vi) x, y+2, z.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarpanda, P., Nishimura, S., Chung, S., Yamada, Y., Okubo, M., Zhou, H. & Yamada, A. (2012). Electrochem. Commun. 24, 116–119.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909–916.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFisher, C. A. J., Hart-Prieto, V. M. & Islam, M. S. (2008). Chem. Mater. 20, 5907–5915.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B. & Ben Amara, M. (2002). Acta Cryst. C58, i147–i148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2003). J. Alloys Compd, 358, 36–41.  Web of Science CrossRef CAS Google Scholar
First citationHidouri, M., Sendi, N., Wattiaux, A. & Ben Amara, M. (2008). J. Phys. Chem. Solids, 69, 2555–2558.  Web of Science CrossRef CAS Google Scholar
First citationHuang, W., Day, D. E., Ray, C. S. & Kim, C. W. (2005). J. Nucl. Mater. 346, 298–305.  Web of Science CrossRef CAS Google Scholar
First citationLajmi, B., Hidouri, M., Rzeigui, M. & Ben Amara, M. (2002). Mater. Res. Bull. 37, 2407–2416.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, P. Y. (2003). Mater. Chem. Phys. 80, 299–304.  Web of Science CrossRef CAS Google Scholar
First citationStrutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160–164.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). J. Electrochem. Soc. 157, A947–A952.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds