inorganic compounds
The 3.84Ni0.78Fe3.19(PO4)5
KaDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St, 01601 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: Nataliya_N@ukr.net
The title compound, tetrapotassium tetra[nickel(II)/iron(III)] pentakis(orthophosphate), K3.84Ni0.78Fe3.19(PO4)5, has been obtained from a The structure is isotypic with that of K4MgFe3(PO4)5. The three-dimensional framework is built up from (Ni/Fe)O5 trigonal bipyramids with a mixed Fe:Ni occupancy of 0.799 (8):0.196 (10) and isolated PO4 tetrahedra, one of which is on a general position and one of which has -4.. Two K+ cations are statistically occupied and are distributed over two positions in hexagonally shaped channels that run parallel to [001]. One K+ cation [occupancy 0.73 (3)] is surrounded by nine O atoms, while the other K+ cation [occupancy 0.23 (3)] is surrounded by eight O atoms.
CCDC reference: 1007841
Related literature
The structure of isotypic K4MgFe3(PO4)5 was determined by Hidouri et al. (2008). For applications of iron-containing phosphates, see: Barpanda et al. (2012); Fisher et al. (2008); Huang et al. (2005); Shih (2003); Trad et al. (2010). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002, 2003). Lajmi et al. (2002). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995). For related compounds, see: Strutynska et al. (2014).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).
Supporting information
CCDC reference: 1007841
https://doi.org/10.1107/S1600536814013609/wm5027sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814013609/wm5027Isup2.hkl
The title compound was obtained during investigation of the melting system K2O–P2O5–Fe2O3–NiO–MoO3. A mixture of KPO3 (14.16 g), NiO (2.70 g), Fe2O3 (2.88 g) and K2Mo2O7 (4 g) was ground in an agate mortar, placed in a platinum crucible and heated up to 1273 K. The melt was kept at this temperature for 3 h. After that, the temperature was cooled down to 873 K at a rate of 10 K/h. The crystals of (I) were separated from the remaining
by boiling with water. The chemical composition of selected single-crystal was verified by EDX analysis. Analysis found (calculated) for K3.84Ni0.78Fe3.19 (PO4)5 in atomic percentage: K 17.62 (17.69), Ni 5.34 (5.39), Fe 20.83 (20.99), P 18.44 (18.24) and O 37.77 (37.69).Because of the similarity of possible coordination by O atoms, Ni and Fe were placed on the same site. Their coordinates and anisotropic displacement parameters (ADP) were constrained to be equal. The corresponding occupancy factors were refined using free variables. After that procedure, an unidentified high electron density peak was found near the position of the K site. It was supposed that this site can be occupied only by another K+ caion. ADPs of both split K sites were constrained to be equal, while the occupancies were refined using free variables. The calculated occupancy factors of all partially occupied positions were close to those reported in this paper. To fix the electroneutrality of the compound, SUMP restraints in SHELXL (Sheldrick, 2008) were applied to the occupancy factors of the refined atoms.
The highest and lowest electron densities were found 1.00 Å from O1 and 0.76 Å from NI1, respectively.
Complex iron-containing phosphates have different applications, for example as ionic conductors (Fisher et al., 2008), cathode materials (Barpanda et al., 2012; Trad et al., 2010) and matrices for storage of nuclear waste (Huang et al., 2005; Shih, 2003). In the crystal structures of these compounds the iron cations can adopt different coordination numbers and hence different oxygen polyhedra: FeO4 (Hidouri et al., 2002), FeO5 (Hidouri et al., 2003) or FeO6 (Lajmi et al., 2002). Herein, the structure of the
K3.84Ni0.78Fe3.19(PO4)5, tetrapotassium tetra(nickel(II)/iron(III)) pentakis(orthophosphate), (I), is reported. The of (I) is isotypic with K4MgFe3(PO4)5 (Hidouri et al., 2008).The
of (I) consists of one mixed-occupied (NiII/FeIII) site, two P sites (one of which is located on a fourfold rotoinversion axis), five oxygen sites and two K+ sites which are partly occupied and distributed over two positions (K1A and K1B) (Fig. 1). The main building blocks are one [(Ni/FeIII)O5] trigonal bipyramid and two [PO4] tetrahedra. The [(Ni/FeIII)O5] polyhedron is linked with [P1O4] tetrahedra into chains along [001] which additionally are aggregated by the linkage with [P2O4] tetrahedra into a three-dimensional framework with composition [Ni0.78Fe3.19(PO4)5]3.84- (Fig. 2).The environment of the mixed (NiII/FeIII) site is defined by five oxygen atoms from four [P2O4] tetrahedra and one [P1O4] tetrahedron. The distances (Ni/Fe)—O vary between 1.908 (3) and 1.979 (3) Å. The average distance ((Ni/Fe)—O) = 1.937 Å is slightly less than that in K4MgFe3(PO4)5 (d((Mg/Fe)—O) = 1.952 Å) (Hidouri et al., 2008). The tetrahedral orthophosphate anions deviate only slightly from ideal values with P—O bond lengths ranging from 1.510 (3) to 1.542 (3) Å.
The disordered K+ cations are located in hexagonally-shaped channels running along [001], with occupancies of 0.73 (3) (K1A) and 0.23 (3) (K1B). The results of the construction of Voronoi-Dirichlet polyhedra (Blatov et al., 1995) show the K1A being surrounded by nine O atoms while K1B is surrounded by eight O atoms. The K—O distances in the [K1AO9]-polyhedron are in the range 2.719 (5)–3.072 (6) Å, while in the [K1BO8]-polyhedron they are in the range 2.636 (13)–3.065 (15) Å.
The main difference between the obtained
and the phosphate K4MgFe3(PO4)5 (Hidouri et al., 2008) is the splitting of the K+ site in two positions. The occupation of the K1B site (0.23 (3)) correlates with the increase of the iron content (from 3 to 3.19) in the starting matrix [MIIFeIII3(PO4)5]4-. It seems that a partial substitution of Ni by Fe in [MIIFeIII3(PO4)5]4- causes the formation of vacancies in the cationic K+ lattice and a splitting of the respective K+ site. A similar influence of an heterovalent substitution on the splitting of alkaline metal sites was found for KNi0.93FeII0.07FeIII(PO4)2 (Strutynska et al., 2014).The structure of isotypic K4MgFe3(PO4)5 was determined by Hidouri et al. (2008). For applications of iron-containing phosphates, see: Barpanda et al. (2012); Fisher et al. (2008); Huang et al. (2005); Shih (2003); Trad et al. (2010). For the different coordination polyhedra of iron in the structures of these compounds, see: Hidouri et al. (2002, 2003) Lajmi et al. (2002). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995). For related compounds, see: Strutynska et al. (2014).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. | |
Fig. 2. The main building blocks and their linkage into chains and the three-dimensional framework for (I) in polyhedral representation. |
K3.84Ni0.78Fe3.19(PO4)5 | Dx = 3.222 Mg m−3 |
Mr = 848.92 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 14788 reflections |
Hall symbol: P -4 2 n | θ = 3.0–35° |
a = 9.6622 (6) Å | µ = 4.90 mm−1 |
c = 9.380 (1) Å | T = 293 K |
V = 875.70 (12) Å3 | Prism, yellow |
Z = 2 | 0.12 × 0.10 × 0.05 mm |
F(000) = 826 |
Oxford Diffraction Xcalibur-3 diffractometer | 1935 independent reflections |
Radiation source: fine-focus sealed tube | 1771 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
φ and ω scans | θmax = 35°, θmin = 3.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −15→15 |
Tmin = 0.562, Tmax = 0.743 | k = −15→15 |
14788 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.050P)2 + 0.8951P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 1.02 e Å−3 |
1935 reflections | Δρmin = −1.00 e Å−3 |
82 parameters | Absolute structure: Flack (1983), 829 Friedel pairs |
1 restraint | Absolute structure parameter: 0.02 (3) |
K3.84Ni0.78Fe3.19(PO4)5 | Z = 2 |
Mr = 848.92 | Mo Kα radiation |
Tetragonal, P421c | µ = 4.90 mm−1 |
a = 9.6622 (6) Å | T = 293 K |
c = 9.380 (1) Å | 0.12 × 0.10 × 0.05 mm |
V = 875.70 (12) Å3 |
Oxford Diffraction Xcalibur-3 diffractometer | 1935 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1771 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.743 | Rint = 0.064 |
14788 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.095 | Δρmax = 1.02 e Å−3 |
S = 1.04 | Δρmin = −1.00 e Å−3 |
1935 reflections | Absolute structure: Flack (1983), 829 Friedel pairs |
82 parameters | Absolute structure parameter: 0.02 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.07474 (5) | 0.81210 (5) | 0.21055 (5) | 0.01399 (11) | 0.799 (8) |
Ni1 | 0.07474 (5) | 0.81210 (5) | 0.21055 (5) | 0.01399 (11) | 0.196 (10) |
K1A | 0.0677 (6) | 0.3344 (4) | 0.5415 (10) | 0.0267 (8) | 0.73 (3) |
K1B | 0.0837 (15) | 0.3284 (14) | 0.5131 (17) | 0.0267 (8) | 0.23 (3) |
P1 | 0 | 1 | 0.5 | 0.0138 (3) | |
P2 | 0.25560 (9) | 0.58266 (10) | 0.36473 (8) | 0.01535 (18) | |
O1 | 0.1268 (3) | 0.6356 (3) | 0.2843 (3) | 0.0238 (5) | |
O2 | 0.2226 (3) | 0.5930 (3) | 0.5217 (3) | 0.0245 (6) | |
O3 | 0.3798 (4) | 0.6706 (4) | 0.3236 (4) | 0.0361 (8) | |
O4 | 0.2718 (3) | 0.4322 (3) | 0.3226 (3) | 0.0289 (6) | |
O5 | 0.0560 (3) | 0.8822 (3) | 0.4074 (3) | 0.0204 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0157 (2) | 0.0181 (2) | 0.00817 (16) | 0.00085 (16) | −0.00043 (16) | −0.00122 (15) |
Ni1 | 0.0157 (2) | 0.0181 (2) | 0.00817 (16) | 0.00085 (16) | −0.00043 (16) | −0.00122 (15) |
K1A | 0.0289 (10) | 0.0276 (6) | 0.0235 (18) | −0.0078 (6) | −0.0031 (11) | 0.0056 (9) |
K1B | 0.0289 (10) | 0.0276 (6) | 0.0235 (18) | −0.0078 (6) | −0.0031 (11) | 0.0056 (9) |
P1 | 0.0177 (5) | 0.0177 (5) | 0.0061 (6) | 0 | 0 | 0 |
P2 | 0.0180 (4) | 0.0198 (4) | 0.0083 (3) | −0.0018 (3) | 0.0008 (3) | −0.0018 (3) |
O1 | 0.0294 (13) | 0.0228 (12) | 0.0191 (11) | 0.0015 (10) | −0.0095 (11) | 0.0004 (10) |
O2 | 0.0299 (13) | 0.0363 (15) | 0.0074 (9) | 0.0067 (13) | −0.0033 (8) | 0.0001 (10) |
O3 | 0.0270 (14) | 0.0427 (19) | 0.0385 (18) | −0.0108 (14) | 0.0101 (13) | −0.0073 (15) |
O4 | 0.0402 (16) | 0.0222 (12) | 0.0243 (13) | 0.0091 (12) | 0.0056 (11) | −0.0014 (11) |
O5 | 0.0245 (13) | 0.0247 (12) | 0.0120 (9) | 0.0010 (10) | 0.0020 (9) | −0.0054 (9) |
Fe1—O1 | 1.908 (3) | P1—K1Bxii | 3.277 (13) |
Fe1—O4i | 1.908 (3) | P1—K1Biv | 3.277 (13) |
Fe1—O3ii | 1.918 (3) | P1—K1Bxiii | 3.277 (13) |
Fe1—O5 | 1.975 (2) | P1—K1Bv | 3.277 (13) |
Fe1—O2iii | 1.979 (3) | P1—K1Aiv | 3.319 (4) |
Fe1—K1Biv | 3.498 (14) | P1—K1Axii | 3.319 (4) |
Fe1—K1Av | 3.613 (4) | P1—K1Axiii | 3.319 (4) |
Fe1—K1Aiii | 3.672 (4) | P1—K1Av | 3.319 (4) |
Fe1—K1Aiv | 3.679 (7) | P2—O2 | 1.510 (3) |
Fe1—K1Bv | 3.707 (13) | P2—O4 | 1.514 (3) |
Fe1—K1Biii | 3.737 (13) | P2—O3 | 1.520 (3) |
Fe1—K1Bi | 3.914 (17) | P2—O1 | 1.542 (3) |
K1A—O5iv | 2.719 (5) | P2—K1Axiv | 3.473 (9) |
K1A—O5vi | 2.774 (5) | P2—K1Bv | 3.493 (13) |
K1A—O4vii | 2.830 (8) | P2—K1Av | 3.573 (4) |
K1A—O3vi | 2.862 (5) | P2—K1Aiv | 3.626 (3) |
K1A—O2iv | 2.898 (6) | P2—K1Biv | 3.664 (13) |
K1A—O2 | 2.919 (5) | P2—K1Bxiv | 3.758 (16) |
K1A—O4 | 3.000 (9) | O1—K1Biv | 2.978 (13) |
K1A—O1vii | 3.031 (10) | O1—K1Axiv | 3.031 (10) |
K1A—O1iv | 3.072 (6) | O1—K1Aiv | 3.072 (6) |
K1A—P1viii | 3.319 (4) | O1—K1Bxiv | 3.339 (18) |
K1A—P2 | 3.435 (6) | O2—Ni1xv | 1.979 (3) |
K1A—K1Aiv | 3.458 (10) | O2—Fe1xv | 1.979 (3) |
K1B—O5iv | 2.636 (13) | O2—K1Aiv | 2.898 (6) |
K1B—O4 | 2.739 (16) | O2—K1Biv | 3.057 (15) |
K1B—O5vi | 2.755 (13) | O2—K1Bv | 3.303 (16) |
K1B—O3vi | 2.869 (13) | O3—Ni1xvi | 1.918 (3) |
K1B—O2 | 2.889 (13) | O3—Fe1xvi | 1.918 (3) |
K1B—O1iv | 2.978 (13) | O3—K1Av | 2.862 (5) |
K1B—O2iv | 3.057 (15) | O3—K1Bv | 2.869 (13) |
K1B—O4vii | 3.065 (15) | O4—Ni1xvii | 1.908 (3) |
K1B—P2 | 3.276 (13) | O4—Fe1xvii | 1.908 (3) |
K1B—P1viii | 3.277 (13) | O4—K1Axiv | 2.830 (8) |
K1B—O2vi | 3.303 (16) | O4—K1Bxiv | 3.065 (15) |
K1B—O1vii | 3.339 (18) | O5—K1Biv | 2.636 (13) |
P1—O5ix | 1.531 (3) | O5—K1Aiv | 2.719 (5) |
P1—O5 | 1.531 (2) | O5—K1Bv | 2.755 (13) |
P1—O5x | 1.531 (3) | O5—K1Av | 2.774 (5) |
P1—O5xi | 1.531 (2) | ||
O1—Fe1—O4i | 113.45 (13) | O5x—P1—K1Biv | 56.8 (2) |
O1—Fe1—O3ii | 113.43 (14) | O5xi—P1—K1Biv | 130.8 (3) |
O4i—Fe1—O3ii | 133.04 (15) | K1Bxii—P1—K1Biv | 175.7 (5) |
O1—Fe1—O5 | 89.54 (12) | O5ix—P1—K1Bxiii | 130.8 (3) |
O4i—Fe1—O5 | 90.85 (12) | O5—P1—K1Bxiii | 120.3 (3) |
O3ii—Fe1—O5 | 92.08 (13) | O5x—P1—K1Bxiii | 52.3 (2) |
O1—Fe1—O2iii | 84.85 (12) | O5xi—P1—K1Bxiii | 56.8 (2) |
O4i—Fe1—O2iii | 92.89 (13) | K1Bxii—P1—K1Bxiii | 90.08 (2) |
O3ii—Fe1—O2iii | 88.65 (13) | K1Biv—P1—K1Bxiii | 90.08 (2) |
O5—Fe1—O2iii | 174.16 (12) | O5ix—P1—K1Bv | 52.3 (2) |
O1—Fe1—K1Biv | 58.3 (3) | O5—P1—K1Bv | 56.8 (2) |
O4i—Fe1—K1Biv | 135.1 (3) | O5x—P1—K1Bv | 130.8 (3) |
O3ii—Fe1—K1Biv | 74.9 (3) | O5xi—P1—K1Bv | 120.3 (3) |
O5—Fe1—K1Biv | 48.3 (2) | K1Bxii—P1—K1Bv | 90.08 (2) |
O2iii—Fe1—K1Biv | 126.6 (2) | K1Biv—P1—K1Bv | 90.08 (2) |
O1—Fe1—K1Av | 82.58 (14) | K1Bxiii—P1—K1Bv | 175.7 (5) |
O4i—Fe1—K1Av | 50.96 (18) | O5ix—P1—K1Aiv | 115.1 (2) |
O3ii—Fe1—K1Av | 139.59 (13) | O5—P1—K1Aiv | 54.03 (13) |
O5—Fe1—K1Av | 49.57 (14) | O5x—P1—K1Aiv | 56.12 (12) |
O2iii—Fe1—K1Av | 130.90 (13) | O5xi—P1—K1Aiv | 136.1 (2) |
K1Biv—Fe1—K1Av | 84.63 (17) | K1Bxii—P1—K1Aiv | 170.7 (4) |
O1—Fe1—K1Aiii | 75.43 (16) | K1Biv—P1—K1Aiv | 5.40 (18) |
O4i—Fe1—K1Aiii | 144.29 (15) | K1Bxiii—P1—K1Aiv | 93.1 (3) |
O3ii—Fe1—K1Aiii | 50.43 (13) | K1Bv—P1—K1Aiv | 87.4 (3) |
O5—Fe1—K1Aiii | 124.50 (14) | O5ix—P1—K1Axii | 56.12 (12) |
O2iii—Fe1—K1Aiii | 52.34 (13) | O5—P1—K1Axii | 136.1 (2) |
K1Biv—Fe1—K1Aiii | 79.86 (19) | O5x—P1—K1Axii | 115.1 (2) |
K1Av—Fe1—K1Aiii | 157.50 (3) | O5xi—P1—K1Axii | 54.03 (13) |
O1—Fe1—K1Aiv | 56.57 (12) | K1Bxii—P1—K1Axii | 5.40 (18) |
O4i—Fe1—K1Aiv | 131.48 (15) | K1Biv—P1—K1Axii | 170.7 (4) |
O3ii—Fe1—K1Aiv | 78.87 (17) | K1Bxiii—P1—K1Axii | 87.4 (3) |
O5—Fe1—K1Aiv | 46.28 (11) | K1Bv—P1—K1Axii | 93.1 (3) |
O2iii—Fe1—K1Aiv | 128.36 (11) | K1Aiv—P1—K1Axii | 166.5 (3) |
K1Biv—Fe1—K1Aiv | 4.1 (2) | O5ix—P1—K1Axiii | 136.1 (2) |
K1Av—Fe1—K1Aiv | 80.81 (6) | O5—P1—K1Axiii | 115.1 (2) |
K1Aiii—Fe1—K1Aiv | 83.13 (5) | O5x—P1—K1Axiii | 54.03 (13) |
O1—Fe1—K1Bv | 79.3 (2) | O5xi—P1—K1Axiii | 56.12 (12) |
O4i—Fe1—K1Bv | 55.6 (3) | K1Bxii—P1—K1Axiii | 93.1 (3) |
O3ii—Fe1—K1Bv | 137.9 (2) | K1Biv—P1—K1Axiii | 87.4 (3) |
O5—Fe1—K1Bv | 46.6 (2) | K1Bxiii—P1—K1Axiii | 5.40 (18) |
O2iii—Fe1—K1Bv | 133.3 (2) | K1Bv—P1—K1Axiii | 170.7 (4) |
K1Biv—Fe1—K1Bv | 80.1 (2) | K1Aiv—P1—K1Axiii | 90.79 (4) |
K1Av—Fe1—K1Bv | 4.68 (18) | K1Axii—P1—K1Axiii | 90.79 (4) |
K1Aiii—Fe1—K1Bv | 153.49 (18) | O5ix—P1—K1Av | 54.03 (13) |
K1Aiv—Fe1—K1Bv | 76.22 (18) | O5—P1—K1Av | 56.12 (12) |
O1—Fe1—K1Biii | 79.6 (3) | O5x—P1—K1Av | 136.1 (2) |
O4i—Fe1—K1Biii | 140.6 (2) | O5xi—P1—K1Av | 115.1 (2) |
O3ii—Fe1—K1Biii | 49.0 (2) | K1Bxii—P1—K1Av | 87.4 (3) |
O5—Fe1—K1Biii | 127.4 (2) | K1Biv—P1—K1Av | 93.1 (3) |
O2iii—Fe1—K1Biii | 49.9 (2) | K1Bxiii—P1—K1Av | 170.7 (4) |
K1Biv—Fe1—K1Biii | 83.93 (9) | K1Bv—P1—K1Av | 5.40 (18) |
K1Av—Fe1—K1Biii | 162.0 (2) | K1Aiv—P1—K1Av | 90.79 (4) |
K1Aiii—Fe1—K1Biii | 4.74 (16) | K1Axii—P1—K1Av | 90.79 (4) |
K1Aiv—Fe1—K1Biii | 87.29 (19) | K1Axiii—P1—K1Av | 166.5 (3) |
K1Bv—Fe1—K1Biii | 158.14 (6) | O2—P2—O4 | 109.86 (17) |
O1—Fe1—K1Bi | 90.4 (2) | O2—P2—O3 | 112.16 (19) |
O4i—Fe1—K1Bi | 39.9 (2) | O4—P2—O3 | 112.85 (18) |
O3ii—Fe1—K1Bi | 137.3 (2) | O2—P2—O1 | 106.56 (17) |
O5—Fe1—K1Bi | 124.4 (2) | O4—P2—O1 | 105.92 (17) |
O2iii—Fe1—K1Bi | 57.5 (2) | O3—P2—O1 | 109.10 (19) |
K1Biv—Fe1—K1Bi | 145.0 (3) | O2—P2—K1B | 61.9 (3) |
K1Av—Fe1—K1Bi | 75.32 (18) | O4—P2—K1B | 56.2 (3) |
K1Aiii—Fe1—K1Bi | 109.1 (2) | O3—P2—K1B | 158.0 (3) |
K1Aiv—Fe1—K1Bi | 141.56 (17) | O1—P2—K1B | 92.7 (3) |
K1Bv—Fe1—K1Bi | 78.8 (2) | O2—P2—K1A | 57.59 (18) |
K1Biii—Fe1—K1Bi | 107.17 (6) | O4—P2—K1A | 60.68 (19) |
O5iv—K1A—O5vi | 53.88 (13) | O3—P2—K1A | 158.44 (17) |
O5iv—K1A—O4vii | 98.74 (17) | O1—P2—K1A | 92.38 (12) |
O5vi—K1A—O4vii | 59.16 (13) | K1B—P2—K1A | 4.6 (2) |
O5iv—K1A—O3vi | 135.3 (2) | O2—P2—K1Axiv | 145.72 (14) |
O5vi—K1A—O3vi | 85.30 (13) | O4—P2—K1Axiv | 52.89 (13) |
O4vii—K1A—O3vi | 69.10 (15) | O3—P2—K1Axiv | 102.11 (15) |
O5iv—K1A—O2iv | 74.39 (12) | O1—P2—K1Axiv | 60.63 (14) |
O5vi—K1A—O2iv | 114.49 (17) | K1B—P2—K1Axiv | 86.0 (3) |
O4vii—K1A—O2iv | 98.5 (3) | K1A—P2—K1Axiv | 89.82 (9) |
O3vi—K1A—O2iv | 147.9 (3) | O2—P2—K1Bv | 70.2 (3) |
O5iv—K1A—O2 | 148.8 (4) | O4—P2—K1Bv | 161.9 (3) |
O5vi—K1A—O2 | 138.7 (2) | O3—P2—K1Bv | 53.7 (3) |
O4vii—K1A—O2 | 111.7 (2) | O1—P2—K1Bv | 91.0 (2) |
O3vi—K1A—O2 | 56.21 (11) | K1B—P2—K1Bv | 130.91 (4) |
O2iv—K1A—O2 | 106.56 (15) | K1A—P2—K1Bv | 126.3 (2) |
O5iv—K1A—O4 | 102.4 (3) | K1Axiv—P2—K1Bv | 136.3 (3) |
O5vi—K1A—O4 | 108.0 (3) | O2—P2—K1Av | 75.1 (2) |
O4vii—K1A—O4 | 138.76 (16) | O4—P2—K1Av | 161.74 (15) |
O3vi—K1A—O4 | 70.94 (17) | O3—P2—K1Av | 50.65 (17) |
O2iv—K1A—O4 | 121.09 (19) | O1—P2—K1Av | 88.79 (14) |
O2—K1A—O4 | 49.42 (13) | K1B—P2—K1Av | 135.4 (2) |
O5iv—K1A—O1vii | 99.1 (2) | K1A—P2—K1Av | 130.85 (3) |
O5vi—K1A—O1vii | 95.9 (2) | K1Axiv—P2—K1Av | 131.60 (16) |
O4vii—K1A—O1vii | 49.06 (18) | K1Bv—P2—K1Av | 4.92 (17) |
O3vi—K1A—O1vii | 102.8 (3) | O2—P2—K1Aiv | 50.0 (2) |
O2iv—K1A—O1vii | 52.46 (16) | O4—P2—K1Aiv | 114.87 (14) |
O2—K1A—O1vii | 105.9 (2) | O3—P2—K1Aiv | 132.28 (15) |
O4—K1A—O1vii | 154.35 (18) | O1—P2—K1Aiv | 57.0 (2) |
O5iv—K1A—O1iv | 55.96 (12) | K1B—P2—K1Aiv | 62.3 (3) |
O5vi—K1A—O1iv | 109.51 (18) | K1A—P2—K1Aiv | 58.56 (19) |
O4vii—K1A—O1iv | 140.0 (2) | K1Axiv—P2—K1Aiv | 106.02 (10) |
O3vi—K1A—O1iv | 150.9 (3) | K1Bv—P2—K1Aiv | 79.60 (18) |
O2iv—K1A—O1iv | 48.28 (9) | K1Av—P2—K1Aiv | 82.07 (11) |
O2—K1A—O1iv | 100.54 (17) | O2—P2—K1Biv | 54.9 (3) |
O4—K1A—O1iv | 80.5 (2) | O4—P2—K1Biv | 114.6 (2) |
O1vii—K1A—O1iv | 100.48 (17) | O3—P2—K1Biv | 132.2 (2) |
O5iv—K1A—P1viii | 27.11 (6) | O1—P2—K1Biv | 52.1 (3) |
O5vi—K1A—P1viii | 27.26 (6) | K1B—P2—K1Biv | 64.0 (5) |
O4vii—K1A—P1viii | 75.89 (12) | K1A—P2—K1Biv | 60.5 (3) |
O3vi—K1A—P1viii | 112.04 (14) | K1Axiv—P2—K1Biv | 101.87 (18) |
O2iv—K1A—P1viii | 92.13 (12) | K1Bv—P2—K1Biv | 80.7 (4) |
O2—K1A—P1viii | 158.0 (3) | K1Av—P2—K1Biv | 82.84 (15) |
O4—K1A—P1viii | 110.9 (3) | K1Aiv—P2—K1Biv | 4.89 (16) |
O1vii—K1A—P1viii | 94.63 (17) | O2—P2—K1Bxiv | 147.0 (2) |
O1iv—K1A—P1viii | 83.06 (12) | O4—P2—K1Bxiv | 51.9 (2) |
O5iv—K1A—P2 | 123.1 (3) | O3—P2—K1Bxiv | 100.8 (2) |
O5vi—K1A—P2 | 131.9 (3) | O1—P2—K1Bxiv | 62.5 (2) |
O4vii—K1A—P2 | 134.67 (15) | K1B—P2—K1Bxiv | 86.7 (2) |
O3vi—K1A—P2 | 68.87 (13) | K1A—P2—K1Bxiv | 90.6 (2) |
O2iv—K1A—P2 | 108.16 (12) | K1Axiv—P2—K1Bxiv | 2.1 (2) |
O2—K1A—P2 | 25.89 (8) | K1Bv—P2—K1Bxiv | 136.6 (3) |
O4—K1A—P2 | 26.12 (7) | K1Av—P2—K1Bxiv | 131.8 (3) |
O1vii—K1A—P2 | 128.24 (19) | K1Aiv—P2—K1Bxiv | 108.05 (18) |
O1iv—K1A—P2 | 83.01 (17) | K1Biv—P2—K1Bxiv | 103.9 (3) |
P1viii—K1A—P2 | 136.7 (3) | P2—O1—Fe1 | 133.35 (16) |
O5iv—K1A—K1Aiv | 123.1 (2) | P2—O1—K1Biv | 103.7 (4) |
O5vi—K1A—K1Aiv | 164.4 (3) | Fe1—O1—K1Biv | 88.7 (3) |
O4vii—K1A—K1Aiv | 109.62 (17) | P2—O1—K1Axiv | 93.04 (15) |
O3vi—K1A—K1Aiv | 101.10 (15) | Fe1—O1—K1Axiv | 109.87 (14) |
O2iv—K1A—K1Aiv | 53.81 (18) | K1Biv—O1—K1Axiv | 134.6 (2) |
O2—K1A—K1Aiv | 53.25 (10) | P2—O1—K1Aiv | 98.1 (2) |
O4—K1A—K1Aiv | 87.55 (11) | Fe1—O1—K1Aiv | 92.22 (17) |
O1vii—K1A—K1Aiv | 68.91 (12) | K1Biv—O1—K1Aiv | 5.7 (2) |
O1iv—K1A—K1Aiv | 71.40 (18) | K1Axiv—O1—K1Aiv | 136.63 (15) |
P1viii—K1A—K1Aiv | 145.7 (2) | P2—O1—K1Bxiv | 93.3 (3) |
P2—K1A—K1Aiv | 63.49 (9) | Fe1—O1—K1Bxiv | 109.0 (2) |
O5iv—K1B—O4 | 112.2 (6) | K1Biv—O1—K1Bxiv | 135.4 (4) |
O5iv—K1B—O5vi | 54.9 (3) | K1Axiv—O1—K1Bxiv | 1.0 (3) |
O4—K1B—O5vi | 116.6 (6) | K1Aiv—O1—K1Bxiv | 137.52 (19) |
O5iv—K1B—O3vi | 139.3 (5) | P2—O2—Ni1xv | 140.79 (19) |
O4—K1B—O3vi | 74.7 (4) | P2—O2—Fe1xv | 140.79 (19) |
O5vi—K1B—O3vi | 85.5 (4) | Ni1xv—O2—Fe1xv | 0.00 (3) |
O5iv—K1B—O2 | 158.7 (6) | P2—O2—K1B | 90.7 (4) |
O4—K1B—O2 | 52.1 (3) | Ni1xv—O2—K1B | 98.6 (3) |
O5vi—K1B—O2 | 141.5 (5) | Fe1xv—O2—K1B | 98.6 (3) |
O3vi—K1B—O2 | 56.5 (3) | P2—O2—K1Aiv | 106.4 (2) |
O5iv—K1B—O1iv | 57.9 (3) | Ni1xv—O2—K1Aiv | 112.8 (2) |
O4—K1B—O1iv | 86.6 (4) | Fe1xv—O2—K1Aiv | 112.8 (2) |
O5vi—K1B—O1iv | 112.9 (4) | K1B—O2—K1Aiv | 76.5 (3) |
O3vi—K1B—O1iv | 158.5 (5) | P2—O2—K1A | 96.5 (2) |
O2—K1B—O1iv | 103.5 (4) | Ni1xv—O2—K1A | 95.20 (17) |
O5iv—K1B—O2iv | 72.9 (3) | Fe1xv—O2—K1A | 95.20 (17) |
O4—K1B—O2iv | 124.7 (5) | K1B—O2—K1A | 6.2 (2) |
O5vi—K1B—O2iv | 110.2 (5) | K1Aiv—O2—K1A | 72.95 (18) |
O3vi—K1B—O2iv | 138.1 (6) | P2—O2—K1Biv | 101.2 (3) |
O2—K1B—O2iv | 103.3 (4) | Ni1xv—O2—K1Biv | 118.0 (3) |
O1iv—K1B—O2iv | 47.8 (2) | Fe1xv—O2—K1Biv | 118.0 (3) |
O5iv—K1B—O4vii | 95.0 (4) | K1B—O2—K1Biv | 76.7 (4) |
O4—K1B—O4vii | 140.1 (5) | K1Aiv—O2—K1Biv | 5.2 (2) |
O5vi—K1B—O4vii | 56.5 (3) | K1A—O2—K1Biv | 73.6 (3) |
O3vi—K1B—O4vii | 65.8 (3) | P2—O2—K1Bv | 84.3 (3) |
O2—K1B—O4vii | 106.1 (4) | Ni1xv—O2—K1Bv | 92.2 (3) |
O1iv—K1B—O4vii | 133.3 (5) | Fe1xv—O2—K1Bv | 92.2 (3) |
O2iv—K1B—O4vii | 90.3 (5) | K1B—O2—K1Bv | 168.0 (3) |
O5iv—K1B—P2 | 132.8 (6) | K1Aiv—O2—K1Bv | 94.42 (19) |
O4—K1B—P2 | 27.35 (14) | K1A—O2—K1Bv | 167.1 (3) |
O5vi—K1B—P2 | 140.4 (6) | K1Biv—O2—K1Bv | 93.6 (5) |
O3vi—K1B—P2 | 71.2 (3) | P2—O3—Ni1xvi | 150.1 (3) |
O2—K1B—P2 | 27.44 (13) | P2—O3—Fe1xvi | 150.1 (3) |
O1iv—K1B—P2 | 87.3 (3) | Ni1xvi—O3—Fe1xvi | 0.00 (3) |
O2iv—K1B—P2 | 108.4 (4) | P2—O3—K1Av | 105.1 (2) |
O4vii—K1B—P2 | 131.7 (4) | Ni1xvi—O3—K1Av | 98.46 (16) |
O5iv—K1B—P1viii | 27.36 (14) | Fe1xvi—O3—K1Av | 98.46 (16) |
O4—K1B—P1viii | 119.6 (6) | P2—O3—K1Bv | 101.0 (4) |
O5vi—K1B—P1viii | 27.71 (13) | Ni1xvi—O3—K1Bv | 100.8 (3) |
O3vi—K1B—P1viii | 113.1 (4) | Fe1xvi—O3—K1Bv | 100.8 (3) |
O2—K1B—P1viii | 166.6 (6) | K1Av—O3—K1Bv | 6.3 (2) |
O1iv—K1B—P1viii | 85.3 (3) | P2—O4—Ni1xvii | 135.0 (2) |
O2iv—K1B—P1viii | 90.1 (3) | P2—O4—Fe1xvii | 135.0 (2) |
O4vii—K1B—P1viii | 73.6 (3) | Ni1xvii—O4—Fe1xvii | 0.00 (3) |
P2—K1B—P1viii | 146.7 (6) | P2—O4—K1B | 96.5 (3) |
O5iv—K1B—O2vi | 102.0 (5) | Ni1xvii—O4—K1B | 113.5 (3) |
O4—K1B—O2vi | 54.6 (3) | Fe1xvii—O4—K1B | 113.5 (3) |
O5vi—K1B—O2vi | 67.5 (3) | P2—O4—K1Axiv | 101.84 (19) |
O3vi—K1B—O2vi | 47.4 (2) | Ni1xvii—O4—K1Axiv | 97.46 (19) |
O2—K1B—O2vi | 80.6 (4) | Fe1xvii—O4—K1Axiv | 97.46 (19) |
O1iv—K1B—O2vi | 127.7 (6) | K1B—O4—K1Axiv | 111.5 (3) |
O2iv—K1B—O2vi | 174.4 (5) | P2—O4—K1A | 93.21 (17) |
O4vii—K1B—O2vi | 92.5 (3) | Ni1xvii—O4—K1A | 115.51 (15) |
P2—K1B—O2vi | 73.2 (3) | Fe1xvii—O4—K1A | 115.51 (15) |
P1viii—K1B—O2vi | 86.0 (4) | K1B—O4—K1A | 3.5 (3) |
O5iv—K1B—O1vii | 93.5 (4) | K1Axiv—O4—K1A | 113.54 (12) |
O4—K1B—O1vii | 150.5 (5) | P2—O4—K1Bxiv | 105.2 (3) |
O5vi—K1B—O1vii | 89.6 (4) | Ni1xvii—O4—K1Bxiv | 93.5 (3) |
O3vi—K1B—O1vii | 95.5 (4) | Fe1xvii—O4—K1Bxiv | 93.5 (3) |
O2—K1B—O1vii | 99.1 (5) | K1B—O4—K1Bxiv | 112.9 (2) |
O1iv—K1B—O1vii | 95.8 (4) | K1Axiv—O4—K1Bxiv | 4.0 (3) |
O2iv—K1B—O1vii | 48.2 (3) | K1A—O4—K1Bxiv | 115.1 (3) |
O4vii—K1B—O1vii | 44.5 (2) | P1—O5—Fe1 | 144.88 (18) |
P2—K1B—O1vii | 123.2 (5) | P1—O5—K1Biv | 100.3 (3) |
P1viii—K1B—O1vii | 89.8 (4) | Fe1—O5—K1Biv | 97.7 (3) |
O2vi—K1B—O1vii | 135.7 (4) | P1—O5—K1Aiv | 98.87 (15) |
O5ix—P1—O5 | 108.79 (10) | Fe1—O5—K1Aiv | 102.05 (18) |
O5ix—P1—O5x | 110.8 (2) | K1Biv—O5—K1Aiv | 6.5 (2) |
O5—P1—O5x | 108.79 (10) | P1—O5—K1Bv | 95.5 (3) |
O5ix—P1—O5xi | 108.79 (10) | Fe1—O5—K1Bv | 101.9 (3) |
O5—P1—O5xi | 110.8 (2) | K1Biv—O5—K1Bv | 118.67 (12) |
O5x—P1—O5xi | 108.79 (10) | K1Aiv—O5—K1Bv | 112.8 (3) |
O5ix—P1—K1Bxii | 56.8 (2) | P1—O5—K1Av | 96.61 (14) |
O5—P1—K1Bxii | 130.8 (3) | Fe1—O5—K1Av | 97.63 (18) |
O5x—P1—K1Bxii | 120.3 (3) | K1Biv—O5—K1Av | 124.5 (3) |
O5xi—P1—K1Bxii | 52.3 (2) | K1Aiv—O5—K1Av | 118.73 (10) |
O5ix—P1—K1Biv | 120.3 (3) | K1Bv—O5—K1Av | 6.5 (2) |
O5—P1—K1Biv | 52.3 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z+1/2; (iii) y−1/2, x+1/2, z−1/2; (iv) −x, −y+1, z; (v) y, −x+1, −z+1; (vi) −y+1, x, −z+1; (vii) −y+1/2, −x+1/2, z+1/2; (viii) x, y−1, z; (ix) −y+1, x+1, −z+1; (x) y−1, −x+1, −z+1; (xi) −x, −y+2, z; (xii) x, y+1, z; (xiii) −y, x+1, −z+1; (xiv) −y+1/2, −x+1/2, z−1/2; (xv) y−1/2, x+1/2, z+1/2; (xvi) x+1/2, −y+3/2, −z+1/2; (xvii) −x+1/2, y−1/2, −z+1/2. |
Fe1—O1 | 1.908 (3) | P1—O5v | 1.531 (3) |
Fe1—O4i | 1.908 (3) | P1—O5vi | 1.531 (2) |
Fe1—O3ii | 1.918 (3) | P2—O2 | 1.510 (3) |
Fe1—O5 | 1.975 (2) | P2—O4 | 1.514 (3) |
Fe1—O2iii | 1.979 (3) | P2—O3 | 1.520 (3) |
P1—O5iv | 1.531 (3) | P2—O1 | 1.542 (3) |
P1—O5 | 1.531 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z+1/2; (iii) y−1/2, x+1/2, z−1/2; (iv) −y+1, x+1, −z+1; (v) y−1, −x+1, −z+1; (vi) −x, −y+2, z. |
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Barpanda, P., Nishimura, S., Chung, S., Yamada, Y., Okubo, M., Zhou, H. & Yamada, A. (2012). Electrochem. Commun. 24, 116–119. Web of Science CrossRef CAS Google Scholar
Blatov, V. A., Shevchenko, A. P. & Serenzhkin, V. N. (1995). Acta Cryst. A51, 909–916. CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fisher, C. A. J., Hart-Prieto, V. M. & Islam, M. S. (2008). Chem. Mater. 20, 5907–5915. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hidouri, M., Lajmi, B. & Ben Amara, M. (2002). Acta Cryst. C58, i147–i148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Ben Amara, M. (2003). J. Alloys Compd, 358, 36–41. Web of Science CrossRef CAS Google Scholar
Hidouri, M., Sendi, N., Wattiaux, A. & Ben Amara, M. (2008). J. Phys. Chem. Solids, 69, 2555–2558. Web of Science CrossRef CAS Google Scholar
Huang, W., Day, D. E., Ray, C. S. & Kim, C. W. (2005). J. Nucl. Mater. 346, 298–305. Web of Science CrossRef CAS Google Scholar
Lajmi, B., Hidouri, M., Rzeigui, M. & Ben Amara, M. (2002). Mater. Res. Bull. 37, 2407–2416. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shih, P. Y. (2003). Mater. Chem. Phys. 80, 299–304. Web of Science CrossRef CAS Google Scholar
Strutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160–164. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Trad, K., Carlier, D., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). J. Electrochem. Soc. 157, A947–A952. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complex iron-containing phosphates have different applications, for example as ionic conductors (Fisher et al., 2008), cathode materials (Barpanda et al., 2012; Trad et al., 2010) and matrices for storage of nuclear waste (Huang et al., 2005; Shih, 2003). In the crystal structures of these compounds the iron cations can adopt different coordination numbers and hence different oxygen polyhedra: FeO4 (Hidouri et al., 2002), FeO5 (Hidouri et al., 2003) or FeO6 (Lajmi et al., 2002). Herein, the structure of the solid solution K3.84Ni0.78Fe3.19(PO4)5, tetrapotassium tetra(nickel(II)/iron(III)) pentakis(orthophosphate), (I), is reported. The crystal structure of (I) is isotypic with K4MgFe3(PO4)5 (Hidouri et al., 2008).
The asymmetric unit of (I) consists of one mixed-occupied (NiII/FeIII) site, two P sites (one of which is located on a fourfold rotoinversion axis), five oxygen sites and two K+ sites which are partly occupied and distributed over two positions (K1A and K1B) (Fig. 1). The main building blocks are one [(Ni/FeIII)O5] trigonal bipyramid and two [PO4] tetrahedra. The [(Ni/FeIII)O5] polyhedron is linked with [P1O4] tetrahedra into chains along [001] which additionally are aggregated by the linkage with [P2O4] tetrahedra into a three-dimensional framework with composition [Ni0.78Fe3.19(PO4)5]3.84- (Fig. 2).
The environment of the mixed (NiII/FeIII) site is defined by five oxygen atoms from four [P2O4] tetrahedra and one [P1O4] tetrahedron. The distances (Ni/Fe)—O vary between 1.908 (3) and 1.979 (3) Å. The average distance ((Ni/Fe)—O) = 1.937 Å is slightly less than that in K4MgFe3(PO4)5 (d((Mg/Fe)—O) = 1.952 Å) (Hidouri et al., 2008). The tetrahedral orthophosphate anions deviate only slightly from ideal values with P—O bond lengths ranging from 1.510 (3) to 1.542 (3) Å.
The disordered K+ cations are located in hexagonally-shaped channels running along [001], with occupancies of 0.73 (3) (K1A) and 0.23 (3) (K1B). The results of the construction of Voronoi-Dirichlet polyhedra (Blatov et al., 1995) show the K1A being surrounded by nine O atoms while K1B is surrounded by eight O atoms. The K—O distances in the [K1AO9]-polyhedron are in the range 2.719 (5)–3.072 (6) Å, while in the [K1BO8]-polyhedron they are in the range 2.636 (13)–3.065 (15) Å.
The main difference between the obtained solid solution and the phosphate K4MgFe3(PO4)5 (Hidouri et al., 2008) is the splitting of the K+ site in two positions. The occupation of the K1B site (0.23 (3)) correlates with the increase of the iron content (from 3 to 3.19) in the starting matrix [MIIFeIII3(PO4)5]4-. It seems that a partial substitution of Ni by Fe in [MIIFeIII3(PO4)5]4- causes the formation of vacancies in the cationic K+ lattice and a splitting of the respective K+ site. A similar influence of an heterovalent substitution on the splitting of alkaline metal sites was found for KNi0.93FeII0.07FeIII(PO4)2 (Strutynska et al., 2014).