inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Hg2SO4 – a redetermination

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 April 2014; accepted 14 April 2014; online 1 August 2014)

The crystal structure of mercury(I) sulfate (or mercurous sulfate), Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969[Dorm, E. (1969). Acta Chem. Scand. 23, 1607-1615.]). Acta Chem. Scand. 23, 1607–1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg—Hg = 2.5031 (7) compared to 2.500 (3)Å]. The structure consists of alternating rows along [001] of Hg22+ dumbbells (generated by inversion symmetry) and SO42− tetra­hedra (symmetry 2). The dumbbells are linked via short O—Hg—Hg—O bonds to the sulfate tetra­hedra into chains extending parallel to [20-1]. More remote O—Hg—Hg—O bonds connect these chains into a three-dimensional framework.

1. Related literature

Structural data of the previous refinement of Hg2SO4 (Dorm, 1969[Dorm, E. (1969). Acta Chem. Scand. 23, 1607-1615.]) were deposited with the ICSD (2014[ICSD (2014). Inorganic Crystal Structure Database, FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/icsd_home.html]), but contain an error in the z coordinate of the sulfur atom. Other phases in the system Hg/S/O were structurally characterized by Aurivillius & Stålhandske (1980[Aurivillius, K. & Stålhandske, C. (1980). Z. Kristallogr. 153, 121-129.]) [HgSO4], Weil (2001[Weil, M. (2001). Acta Cryst. E57, i98-i100.]) [Hg3(SO4)O2] and Logemann & Wickleder (2013[Logemann, C. & Wickleder, M. S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 161-162.]) [Hg(S2O7)]. For a review on Hg—Hg bond lengths in mercurous compounds, see: Weil et al. (2005[Weil, M., Tillmanns, E. & Pushcharovsky, D. Yu. (2005). Inorg. Chem. 44, 1443-1451.]).

2. Experimental

2.1. Crystal data

  • Hg2O4S

  • Mr = 497.24

  • Monoclinic, P 2/c

  • a = 6.2771 (8) Å

  • b = 4.4290 (6) Å

  • c = 8.3596 (10) Å

  • β = 91.695 (4)°

  • V = 232.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 66.35 mm−1

  • T = 295 K

  • 0.18 × 0.08 × 0.04 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: numerical (HABITUS; Herrendorf, 1997[Herrendorf (1997). HABITUS. University of Giessen, Germany.]) Tmin = 0.012, Tmax = 0.119

  • 1737 measured reflections

  • 701 independent reflections

  • 629 reflections with I > 2σ(I)'

  • Rint = 0.060

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.06

  • 701 reflections

  • 34 parameters

  • Δρmax = 3.57 e Å−3

  • Δρmin = −3.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg—O2i 2.193 (6)
Hg—O2ii 2.518 (6)
Hg—O1iii 2.725 (6)
Hg—O1iv 2.898 (7)
Hg—Hgv 2.5031 (7)
S—O1 1.450 (7)
S—O2 1.509 (6)
O2i—Hg—Hgv 164.47 (14)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z; (v) -x, -y, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

Structural data of the previous refinement of Hg2SO4 (Dorm, 1969) were deposited with the ICSD (2014), but contain an error in the z coordinate of the sulfur atom. Other phases in the system Hg/S/O were structurally characterized by Aurivillius & Stålhandske (1980) [HgSO4], Weil (2001) [Hg3(SO4)O2] and Logemann & Wickleder (2013) [Hg(S2O7)]. For a review on Hg—Hg bond lengths in mercurous compounds, see: Weil et al. (2005).

Experimental top

1 g HgO was suspended in 20 ml water. 4 ml sulfuric acid (96%wt) and 2 drops CS2 were added to the mixture, transferred into a 50 ml polypropylene beaker that was sealed and heated for 12 h at 393 K. Besides a polycrystalline dirty-white solid with an unknown diffraction pattern, few colourless and transparent single crystals of the title compound were present in the reaction mixture.

Refinement top

The coordinates of the previous refinement (Dorm, 1969) were used as starting parameters. The highest and lowest remaining electron density is 0.84 Å and 1.25 Å, respectively, from the Hg atom. It should be noted that in the current version (01/2014) of the Inorganic Structure Data Base (ICSD, 2014), the deposited structure data of the previous refinement by Dorm (1969) contain an error: The z parameter of the sulfur atom must be 1/4, not 3/4.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of Hg2SO4 in a projection along [010]. Displacement ellipsoids are drawn at the 74% probability level; short Hg—O bonds are displayed with closed black lines, longer Hg—O bonds with open lines.
Mercury(I) sulfate top
Crystal data top
Hg2O4SF(000) = 416
Mr = 497.24Dx = 7.109 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1233 reflections
a = 6.2771 (8) Åθ = 3.3–30.4°
b = 4.4290 (6) ŵ = 66.35 mm1
c = 8.3596 (10) ÅT = 295 K
β = 91.695 (4)°Fragment, colourless
V = 232.31 (5) Å30.18 × 0.08 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
701 independent reflections
Radiation source: fine-focus sealed tube629 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.060
ω–scansθmax = 30.4°, θmin = 4.6°
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
h = 88
Tmin = 0.012, Tmax = 0.119k = 66
1737 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.052P)2 + 1.7115P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.087Δρmax = 3.57 e Å3
S = 1.06Δρmin = 3.18 e Å3
701 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
34 parametersExtinction coefficient: 0.0118 (12)
0 restraints
Crystal data top
Hg2O4SV = 232.31 (5) Å3
Mr = 497.24Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.2771 (8) ŵ = 66.35 mm1
b = 4.4290 (6) ÅT = 295 K
c = 8.3596 (10) Å0.18 × 0.08 × 0.04 mm
β = 91.695 (4)°
Data collection top
Bruker SMART CCD
diffractometer
701 independent reflections
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
629 reflections with I > 2σ(I)'
Tmin = 0.012, Tmax = 0.119Rint = 0.060
1737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03534 parameters
wR(F2) = 0.0870 restraints
S = 1.06Δρmax = 3.57 e Å3
701 reflectionsΔρmin = 3.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.19318 (5)0.05289 (9)0.02034 (4)0.0275 (2)
S0.50000.5674 (5)0.25000.0134 (5)
O10.6943 (11)0.3901 (16)0.2586 (8)0.0224 (12)
O20.5038 (9)0.7720 (13)0.1058 (6)0.0172 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.0119 (2)0.0392 (3)0.0315 (3)0.00369 (11)0.00211 (13)0.00072 (13)
S0.0125 (12)0.0141 (11)0.0136 (11)0.0000.0000 (8)0.000
O10.018 (3)0.027 (3)0.022 (3)0.009 (2)0.001 (2)0.004 (2)
O20.015 (2)0.020 (2)0.016 (2)0.001 (2)0.0010 (18)0.004 (2)
Geometric parameters (Å, º) top
Hg—O2i2.193 (6)S—Hgiii3.7082 (15)
Hg—O2ii2.518 (6)S—Hgix3.8936 (17)
Hg—O1iii2.725 (6)S—Hgiv3.8936 (17)
Hg—O1iv2.898 (7)O1—Hgiii2.725 (6)
Hg—Hgv2.5031 (7)O1—Hgiv2.898 (7)
S—O1iii1.450 (7)O1—Hgi3.261 (7)
S—O11.450 (7)O1—Hgvii3.716 (7)
S—O2iii1.509 (6)O1—Hgx4.090 (6)
S—O21.509 (6)O2—Hgi2.193 (6)
S—Hgvi3.2315 (13)O2—Hgviii2.518 (6)
S—Hgi3.2315 (13)O2—Hgvi3.812 (5)
S—Hgvii3.6309 (15)O2—Hgvii4.097 (6)
S—Hgviii3.6309 (15)
O2i—Hg—Hgv164.47 (14)S—O1—Hgx156.0 (3)
O2i—Hg—O2ii69.1 (2)Hgiii—O1—Hgx36.63 (8)
Hgv—Hg—O2ii126.30 (13)Hgiv—O1—Hgx77.69 (14)
O2i—Hg—O1iii82.0 (2)Hgi—O1—Hgx117.52 (19)
Hgv—Hg—O1iii102.86 (14)Hgvii—O1—Hgx89.04 (14)
O2ii—Hg—O1iii75.8 (2)S—O1—Hg62.8 (3)
O2i—Hg—O1iv77.5 (2)Hgiii—O1—Hg115.4 (2)
Hgv—Hg—O1iv102.91 (14)Hgiv—O1—Hg64.22 (13)
O2ii—Hg—O1iv75.64 (18)Hgi—O1—Hg95.95 (15)
O1iii—Hg—O1iv149.3 (3)Hgvii—O1—Hg138.14 (18)
O1iii—S—O1114.5 (6)Hgx—O1—Hg129.82 (18)
O1iii—S—O2iii109.4 (3)S—O2—Hgi120.5 (3)
O1—S—O2iii108.6 (4)S—O2—Hgviii126.9 (3)
O1iii—S—O2108.6 (4)Hgi—O2—Hgviii110.9 (2)
O1—S—O2109.4 (3)S—O2—Hgvi56.41 (19)
O2iii—S—O2106.2 (5)Hgi—O2—Hgvi131.7 (2)
S—O1—Hgiii122.3 (4)Hgviii—O2—Hgvi80.47 (14)
S—O1—Hgiv123.6 (4)S—O2—Hg72.7 (2)
Hgiii—O1—Hgiv96.8 (2)Hgi—O2—Hg129.6 (2)
S—O1—Hgi76.0 (3)Hgviii—O2—Hg85.11 (15)
Hgiii—O1—Hgi148.1 (3)Hgvi—O2—Hg97.20 (13)
Hgiv—O1—Hgi91.77 (18)S—O2—Hgvii61.6 (2)
S—O1—Hgvii75.3 (3)Hgi—O2—Hgvii77.46 (15)
Hgiii—O1—Hgvii85.41 (17)Hgviii—O2—Hgvii122.59 (19)
Hgiv—O1—Hgvii153.3 (2)Hgvi—O2—Hgvii58.72 (8)
Hgi—O1—Hgvii73.82 (14)Hg—O2—Hgvii134.35 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+1/2; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z+1/2; (viii) x, y+1, z; (ix) x, y, z+1/2; (x) x+1, y, z+1/2.
Selected geometric parameters (Å, º) top
Hg—O2i2.193 (6)Hg—Hgv2.5031 (7)
Hg—O2ii2.518 (6)S—O11.450 (7)
Hg—O1iii2.725 (6)S—O21.509 (6)
Hg—O1iv2.898 (7)
O2i—Hg—Hgv164.47 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+1/2; (iv) x+1, y, z; (v) x, y, z.
 

Acknowledgements

The author thanks Berthold Stöger who assisted in the preparative work. The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAurivillius, K. & Stålhandske, C. (1980). Z. Kristallogr. 153, 121–129.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDorm, E. (1969). Acta Chem. Scand. 23, 1607–1615.  CrossRef CAS Web of Science Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHerrendorf (1997). HABITUS. University of Giessen, Germany.  Google Scholar
First citationICSD (2014). Inorganic Crystal Structure Database, FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/icsd_home.html  Google Scholar
First citationLogemann, C. & Wickleder, M. S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 161–162.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeil, M. (2001). Acta Cryst. E57, i98–i100.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeil, M., Tillmanns, E. & Pushcharovsky, D. Yu. (2005). Inorg. Chem. 44, 1443–1451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds