research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 799-806

Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

CROSSMARK_Color_square_no_text.svg

aISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, England, bDepartment of Earth Sciences, University College London, Gower Street, London WC1E 6BT, England, and cDepartment of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
*Correspondence e-mail: andrew.fortes@ucl.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 June 2015; accepted 10 June 2015; online 17 June 2015)

Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]). Acta Cryst. E63, i142] is in fact an ordinary two-centred `linear' hydrogen bond.

1. Chemical context

Na2MoO4 and Na2WO4 are unusual amongst the alkali metal mono-molybdates and mono-tungstates in being highly soluble in water and forming polyhydrated crystals. Additionally, sodium apparently plays a significant role in the solvation of other alkali metal ions to form a range of double molybdate and tungstate hydrates (Klevtsova et al., 1990[Klevtsova, R. F., Glinskaya, L. A., Perepelitsa, A. P., Ishchenko, V. N. & Klevtsov, P. V. (1990). Sov. Phys. Crystallogr. 35, 643-646.]; Klevtsov et al., 1997[Klevtsov, P. V., Glinskaya, L. A., Klevtsova, R. F. & Aleksandrov, K. S. (1997). J. Struct. Chem. 38, 615-619.]; Mirzoev et al., 2010[Mirzoev, R. S., Shetov, R. A., Ligidov, M. Kh. & El'mesova, R. M. (2010). Russ. J. Inorg. Chem. 55, 96-102.]), for example, Na3K(MoO4)2·9H2O. Both dihydrate and deca­hydrate varieties of the two title compounds are known, their solubilities as a function of temperature being well characterised (Funk, 1900[Funk, R. (1900). Ber. Dtsch Chem. Ges. 33, 3696-3703.]; Zhilova et al., 2008[Zhilova, S. B., Karov, Z. G. & El'mesova, R. M. (2008). Russ. J. Inorg. Chem. 53, 628-635.]). The structures of the deca­hydrates have not yet been reported, although I have established that they are not isotypic with the sodium sulfate analogue, Na2SO4·10H2O, as had hitherto been thought.

The dihydrates have been the subject of extensive crystallographic studies, from descriptions of their density, habit and measurements of inter­facial angles (Svanberg & Struve, 1848[Svanberg, L. & Struve, H. (1848). Phil. Mag. 3rd Ser. 33, 409-434.]; Zenker, 1853[Zenker, F. E. (1853). J. Prakt. Chem. 58, 486-492.]; Rammelsberg, 1855[Rammelsberg, K. F. A. (1855). In Handbuch der Krystallographischen Chemie. Berlin: P. Jeanrenaud.]; Marignac, 1863[Marignac, J. C. (1863). Ann. Chim. Phys. 3eme Ser. 69, 5-86.]; Delafontaine, 1865[Delafontaine, M. (1865). J. Prakt. Chem. 95, 136-145.]; Ullik, 1867[Ullik, F. (1867). Justus Liebigs Ann. Chem. 144, 204-233.]; Clarke, 1877[Clarke, F. W. (1877). Am. J. Sci. Ser. III, 14, 280-286.]; Zambonini, 1923[Zambonini, F. (1923). Z. Kristallogr. 58, 266-292.]), through to determination of absolute unit-cell parameters (Pistorius & Sharp, 1961[Pistorius, C. W. F. T. & Sharp, W. E. (1961). Acta Cryst. 14, 316-317.]), and subsequent solution and refinement of their structures (Mitra & Verma, 1969[Mitra, R. P. & Verma, H. K. L. (1969). Indian J. Chem. 7, 598-602.]; Okada et al., 1974[Okada, K., Morikawa, H., Marumo, F. & Iwai, S. I. (1974). Bull. Tokyo Inst. Technol. 120, 7-11.]; Matsumoto et al., 1975[Matsumoto, K., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009-1013.]; Atovmyan & D'yachenko, 1969[Atovmyan, L. O. & D'yachenko, O. A. (1969). J. Struct. Chem. 10, 416-418.]; Capitelli et al., 2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]; Farrugia, 2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]). However, the presence of heavy atoms in these materials makes it impossible to achieve a uniform precision on all structural parameters using X-rays, and even with single-crystal methods that purport to identify hydrogen positions there may be significant inaccuracies. Such problems are minimised using a neutron radiation probe since the coherent neutron scattering lengths of the constituent elements differ by less than a factor of two, being 6.715 fm for Mo, 4.86 fm for W, 3.63 fm for Na, 5.803 fm for O, and 6.67 fm for 2D (Sears, 1992[Sears, V. F. (1992). Neutron News, 3, 26-37.]). Thus one can locate accurately all of the light atoms and obtain a uniform level of precision on their coordinates and displacement parameters. Since the incoherent neutron scattering cross section of 1H is large (80.3 barns) it is usual to prepare perdeuterated specimens whenever possible (the incoherent cross section of 2D being only 2.1 barns) as this optimises the coherent Bragg scattering signal above the background, reducing the counting times required for a high-precision structure refinement from many days to a matter of hours on the instrument used for these measurements. These data were therefore measured using Na2MoO4·2D2O and Na2WO4·2D2O samples.

The occurrence of polyhydrated forms of both Na2MoO4 and Na2WO4 suggests that both would be excellent candidates for the formation of hydrogen-bonded complexes with water-soluble organics, such as amino acids, producing metal-organic crystals with potentially useful optical properties (cf., glycine lithium molybdate; Fleck et al., 2006[Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122-m125.]). High-pressure polymorphs of Na2MoO4·2H2O and Na2WO4·2H2O are indicated from Raman scattering studies (Luz-Lima et al., 2010[Luz-Lima, C., Saraiva, G. D., Souza Filho, A. G., Paraguassu, W., Freirea, P. T. C. & Mendes Filhoa, J. (2010). J. Raman Spectrosc. 41, 576-581.]; Saraiva et al., 2013[Saraiva, G. D., Luz-Lima, C., Freire, P. T. C., Ramiro de Castro, A. J., de Sousa, G. P., Melo, F. E. A., Silva, J. H. & Mendes Filho, J. (2013). J. Mol. Struct. 1033, 154-161.]). Characterising the structures and properties of the title compounds provides an essential foundation on which to build future studies of the high-pressure phases, of the as-yet incomplete deca­hydrate structures and any related organic-bearing hydrates.

2. Structural commentary

Na2MoO4·2H2O and Na2WO4·2H2O are isotypic, crystallizing in the ortho­rhom­bic space group Pbca; all atoms occupy general positions (Wyckoff sites 8c). Note that the atom labelling scheme and space-group setting used here follows Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]); consequently there are some differences with respect to other literature sources, although equivalent contacts are referred to in Table 1[link] and Table 2[link]. The X6+ ions (X = Mo, W) are tetra­hedrally coordinated by O2−, the Mo—O and W—O bond lengths varying slightly according to the type of coordination adopted by a particular apex: O1 and O4 are each coordinated to Na+ and each also accepts two hydrogen bonds; O2 is coordinated to three Na+ ions and O3 is coordinated to two Na+ ions (Fig. 1[link]). In both title compounds, X–O1 and X–O4 are the longest contacts and X–O3 is the shortest contact in the tetra­hedral oxyanion. The mean Mo—O and W—O bond lengths are in good agreement with those found in the anhydrous crystals (Fortes, 2015[Fortes, A. D. (2015). Acta Cryst. E71, 592-596.]). Furthermore, each of the absolute Mo—O bond lengths are identical (within error) to those found by Capitelli et al. (2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]); the agreement in W—O bond lengths with Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]) is marginally poorer.

Table 1
Comparison of the X—O (X = Mo, W) and Na—O bond lengths (Å) in Na2MoO4·2D2O and Na2WO4·2D2O with those of the protonated isotopologues reported in the literature

  Na2MoO4·2D2O Na2MoO4·2H2O Na2WO4·2D2O Na2WO4·2H2O
  This work Capitelli et al. (2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]) This work Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.])
X—O1 1.773 (2) 1.772 (1) 1.785 (2) 1.776 (3)
X—O2 1.764 (1) 1.767 (1) 1.778 (2) 1.778 (3)
X—O3 1.750 (2) 1.751 (1) 1.766 (2) 1.761 (3)
X—O4 1.776 (2) 1.778 (1) 1.783 (2) 1.787 (3)
Mean X—O 1.766 1.767 1.778 1.776
         
Na1—O2 2.437 (3) 2.446 (2) 2.433 (2) 2.442 (3)
Na1—O2(i) 2.417 (3) 2.419 (2) 2.412 (3) 2.416 (3)
Na1—O3(ii) 2.482 (3) 2.481 (2) 2.479 (3) 2.480 (3)
Na1—O4(iii) 2.410 (3) 2.395 (2) 2.399 (2) 2.388 (3)
Na1—O5 2.476 (3) 2.456 (2) 2.479 (3) 2.464 (4)
Na1—O6 2.426 (3) 2.423 (2) 2.443 (3) 2.433 (3)
Mean Na1—O 2.441 2.437 2.441 2.437
         
Na2—O1iv 2.312 (3) 2.319 (2) 2.320 (2) 2.323 (3)
Na2—O2 2.363 (3) 2.354 (2) 2.355 (2) 2.346 (3)
Na2—O3v 2.339 (3) 2.341 (2) 2.328 (2) 2.331 (3)
Na2—O5 2.415 (3) 2.403 (2) 2.409 (3) 2.396 (3)
Na2—O6vi 2.305 (3) 2.300 (2) 2.311 (2) 2.304 (3)
Mean Na2—O 2.347 2.343 2.345 2.340
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iii) [{1\over 2}] − x, −[{1\over 2}] + y, z; (iv) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (v) [{3\over 2}] − x, −[{1\over 2}] + y, z; (vi) [{1\over 2}] + x, y, [{3\over 2}] − z.

Table 2
Comparison of the water mol­ecule and hydrogen bond geometry (Å, °) in Na2MoO4·2D2O and Na2WO4·2D2O with the protonated isotopologues as reported in the literature. Note the inclusion of the contact O5–D51···O3, which forms the longer `branch' of Farrugia's proposed bifurcated hydrogen bond

  Na2MoO4·2D2O Na2MoO4·2H2O Na2WO4·2D2O Na2WO4·2H2O
  This work Capitelli et al. (2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]) This work Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.])
O5—D51 0.977 (2) 0.68 (3) 0.970 (2) 0.86 (3)
O5—D52 0.966 (2) 0.76 (3) 0.959 (2) 0.86 (3)
D51—O5—D52 106.0 (2) 98 (4) 106.0 (2) 100 (5)
D51···O1(i) 1.874 (2) 2.16 (3) 1.873 (2) 2.09 (4)
O5—D51···O1(i) 167.9 (2) 167 (4) 168.2 (2) 145 (6)
D51···O3(ii) 2.70 (6)
O5—D51···O3(ii) 122 (5)
D52···O4(ii) 1.846 (3) 2.07 (3) 1.863 (2) 1.98 (3)
O5—D52···O4(ii) 171.2 (2) 176 (3) 170.9 (2) 174 (6)
         
O6—D61 0.972 (2) 0.83 (3) 0.968 (2) 0.86 (3)
O6—D62 0.972 (2) 0.71 (3) 0.966 (2) 0.86 (3)
D61—O6—D62 103.0 (2) 105 (3) 103.2 (2) 95 (5)
D61···O1 1.816 (2) 2.01 (3) 1.834 (2) 1.95 (3)
O6—D61···O1 167.0 (2) 167 (3) 167.0 (2) 167 (6)
D62···O4(iii) 1.868 (4) 2.08 (3) 1.876 (2) 2.02 (4)
O6—D62···O4(iii) 168.7 (2) 170 (3) 168.7 (2) 159 (6)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z.
[Figure 1]
Figure 1
First and second coordination shell of Mo6+/W6+ in the title compounds, revealing differences in the environment of each apical O2− that are responsible for the variations in Mo–O and W–O bond lengths. Anisotropic displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iv) [{1\over 2}] − x, [{1\over 2}] + y, z; (v) [{3\over 2}] − x, [{1\over 2}] + y, z; (vi) 1 − x, [{1\over 2}] + y, 1.5 − z.]

The Na+ ions occupy two inequivalent sites: in one, Na+ is six-fold coordinated by two water mol­ecules and four XO42− oxygen atoms, yielding an octa­hedral arrangement; in the second, Na+ is five-fold coordinated by two water mol­ecules and three XO42− oxygen atoms, yielding a square-pyramidal arrangement. These two polyhedra share a common edge (O2–O5) and are connected, moreover, with their inversion-centre-related neighbours along three other shared edges to form a cluster (Fig. 2[link]a). The clusters corner-share via O6 to create a `slab' parallel to (010) (Fig. 2[link]b). The mean Na—O bond lengths are statistically identical in Na2MoO4·2D2O and Na2WO4·2D2O being ∼1.6% longer in the NaO6 octa­hedra and ∼2.3% shorter in the NaO5 polyhedra than Na—O bonds in the anhydrous crystals (Fortes, 2015[Fortes, A. D. (2015). Acta Cryst. E71, 592-596.]). The agreement in Na—O bond lengths with the X-ray single crystal studies of Capitelli et al. (2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]) and Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]) is very good. Overall, the agreement in bond lengths and angles for the two independently refined data sets is excellent (Tables 1[link] and 2[link]).

[Figure 2]
Figure 2
(a) Arrangement of NaOx polyhedra into edge-sharing clusters comprised of two Na1O6 octa­hedra and two Na2O5 square pyramids; (b) Arrangement of the clusters shown in (a) by corner sharing to form `slabs' parallel (010). Ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iv) [{1\over 2}] − x, −[{1\over 2}] + y, z; (v) [{1\over 2}] + x, y, [{3\over 2}] − z; (vi) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z; (vii) [{3\over 2}] − x, −[{1\over 2}] + y, z.]

Although it is more usual to find Na+ in octa­hedral coordination, there are abundant examples of Na+ in five-fold coordination, including instances where the NaO5 polyhedron adopts a square-pyramidal arrangement (Beurskens & Jeffrey, 1961[Beurskens, G. & Jeffrey, G. A. (1961). J. Chem. Phys. 41, 924-929.]; Císařová; et al., 2001[Císařová, I., Skála, R., Ondruš, P. & Drábek, M. (2001). Acta Cryst. E57, i32-i34.]; Sharma et al., 2005[Sharma, R. P., Bala, R., Sharma, R. & Bond, A. D. (2005). Acta Cryst. C61, m356-m358.]; Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]; Aksenov et al., 2014[Aksenov, S. M., Rastsvetaeva, R. K., Chukanov, N. V. & Kolitsch, U. (2014). Acta Cryst. B70, 768-775.]) or the alternative trigonal-bipyramidal arrangement (Mereiter, 2013[Mereiter, K. (2013). Acta Cryst. E69, i77-i78.]; Smith, 2013[Smith, G. (2013). Acta Cryst. C69, 1472-1477.]). A similar combination of NaO6 and NaO5 polyhedra to that found in the title compounds occurs in the closely-related hydrates Na2CrO4·1.5H2O and Na2SeO4·1.5H2O (Kahlenberg, 2012[Kahlenberg, V. (2012). Z. Kristallogr. 227, 621-628.]; Weil & Bonneau, 2014[Weil, M. & Bonneau, B. (2014). Acta Cryst. E70, 54-57.]). The two water mol­ecules form hydrogen-bonded chains between the O1 and O4 atoms of the tetra­hedral oxyanions; O5-related chains extend along [001] and O6-related chains crosslink them in a staggered fashion along [100]. Fig. 3[link](a) and 3(b) depict the spatial relationship between this `net' of water linked tetra­hedra and the adjacent `slab' of corner-linked Na—O polyhedral clusters. The layers shown in Fig. 3[link](b) alternate to create the three-dimensional structure and are no doubt responsible for the macro-scale platy habit of the crystals.

[Figure 3]
Figure 3
(a) View down the b axis of the network of water-linked tetra­hedral oxyanions; chains linked by O5 extend along [001] whereas crosslinkages through O6 are staggered along [100]. (b) View of the same structure along the c axis. Ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iv) [{1\over 2}] + x, y, [{3\over 2}] − z; (v) x, [{3\over 2}] − y, −[{1\over 2}] + z; (vi) x, [{3\over 2}] − y, [{1\over 2}] + z.]

There are no significant differences in the hydrogen bond geometries of the molybdate or tungstate crystals. The most recent X-ray single-crystal diffraction study of Na2WO4·2H2O (Farrugia, 2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]) implied that one of the water mol­ecules (O5) was involved in a weaker three-centred inter­action, although a similarly recent measurement of Na2MoO4·2H2O (Capitelli et al., 2006[Capitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856-2860.]) identified a `normal' linear two-centred inter­action for this bond. This work, using neutrons, has been able to accurately and precisely characterise the hydrogen bond geometry, showing that the latter is true for both structures; there is no bifurcated bond and all hydrogen-bonded inter­actions are of the linear two-centred variety. Presumably the error in Farrugia's analysis arose due to the substantial absorption correction required (μ = 18.7 mm−1) for an accurate structure refinement from X-ray single-crystal data.

Raman spectra of Na2MoO4·2H2O and Na2MoO4·2D2O were first reported by Mahadevan Pillai et al. (1997[Mahadevan Pillai, V. P., Pradeep, T., Bushiri, M. J., Jayasree, R. S. & Nayar, V. U. (1997). Spectrochim. Acta A53, 867-876.]); subsequently, Luz-Lima et al. (2010[Luz-Lima, C., Saraiva, G. D., Souza Filho, A. G., Paraguassu, W., Freirea, P. T. C. & Mendes Filhoa, J. (2010). J. Raman Spectrosc. 41, 576-581.]) and Saraiva et al. (2013[Saraiva, G. D., Luz-Lima, C., Freire, P. T. C., Ramiro de Castro, A. J., de Sousa, G. P., Melo, F. E. A., Silva, J. H. & Mendes Filho, J. (2013). J. Mol. Struct. 1033, 154-161.]) published the Raman spectra of Na2MoO4·2H2O and Na2WO4·2H2O as a function of temperature (13–300 K) and as a function of hydro­static pressure (to 5 GPa). Both compounds exhibit evidence of a `conformational change' on cooling through 120 K: the molybdate appears to undergo two high-pressure phase transitions, one at 3 GPa and the second at 4 GPa; the tungstate apparently undergoes a high-pressure phase transition at 3.9 GPa. The Raman spectra reported here (Figs. 4[link] and 5[link] and Supporting information) agree well with data in the literature (Table 3[link]). The large blue-shifts in the inter­nal vibrational frequencies of the deuterated water mol­ecule are similar to the square root of the D:H mass ratio; the small blue-shifts of most of the inter­nal modes of the tetra­hedral oxyanions are consistent with stronger hydrogen bonding in the deuterated species, as expected (cf. Scheiner & Čuma, 1996[Scheiner, S. & Čuma, C. (1996). J. Am. Chem. Soc. 118, 1511-1521.]; Soper & Benmore, 2008[Soper, A. K. & Benmore, C. J. (2008). Phys. Rev. Lett. 101, 065502.]).

Table 3
Comparison of the inter­nal vibrational mode frequencies (cm−1) in fully protonated and 90 mol % deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O with literature data

  Na2MoO4·2H2O     Na2WO4·2H2O    
  This work (1H) This work (2D) Busey & Keller (1964[Busey, R. H. & Keller, O. L. (1964). J. Chem. Phys. 41, 215-225.]) This work (1H) This work (2D) Busey & Keller (1964[Busey, R. H. & Keller, O. L. (1964). J. Chem. Phys. 41, 215-225.])
ν2 (XO42−) 279 271 285 276 269 276
  319 315 325 324 321 325
  335 331   330 331  
ν4 (XO42−) 359 358   358 355  
ν3 (XO42−) 804 801 805 804 802 808
  833 826 836 836 831 838
  842 840 843   840  
ν1 (XO42−)       891 889 893
  894 894 897 929 928 931
[Figure 4]
Figure 4
Raman spectra of Na2MoO4·2H2O and Na2MoO4·2D2O in the range 200–3900 cm−1. Band positions and vibrational assignments are indicated (see also Table 3[link]). Vertical scales show intensities relative to ν1 (XO42−).
[Figure 5]
Figure 5
Raman spectra of Na2WO4·2H2O and Na2WO4·2D2O in the range 200–3900 cm−1. Band positions and vibrational assignments are indicated (see also Table 3[link]). Vertical scales show intensities relative to ν1 (XO42−).

3. Synthesis and crystallization

Coarse polycrystalline powders of Na2MoO4·2H2O (Sigma–Aldrich M1003 > 99.5%) and Na2WO4·2H2O (Sigma–Aldrich 14304 > 99%) were dehydrated by drying at 673 K in air. The resulting anhydrous materials were characterised by Raman spectroscopy, X-ray and neutron powder diffraction (Fortes, 2015[Fortes, A. D. (2015). Acta Cryst. E71, 592-596.]). This material was dissolved in D2O (Aldrich 151882, 99.9 atom% D) and twice recrystallized by gentle evaporation at 323 K. The molybdate crystallised with a coarse platy habit whereas the tungstate was deposited as a finer-grained material. Once the supernatant liquid was deca­nted, the residue was air dried on filter paper and then ground to a fine powder with an agate pestle and mortar. The powders were loaded into standard vanadium sample-holder tubes of inter­nal diameter 11 mm to a depth not less than 20 mm (this being the vertical neutron beam dimension at the sample position). Accurate volumes and masses were determined after the diffraction measurements were complete and used to correct the data for self-shielding. The level of deuteration was determined by Raman spectroscopy (see below) to be ∼91% for both compounds.

Raman spectra were acquired with a B&WTek i-Raman plus portable spectrometer; this device uses a 532 nm laser (37 mW power at the fiber-optic probe tip) to stimulate Raman scattering, which is measured in the range 170–4000 cm−1 with a spectral resolution of 3 cm−1. Data were collected for 600 sec at 17 mW for Na2MoO4·2H2O (as bought), 180 sec at 37 mW for Na2MoO4·2D2O, 300 sec at 17 mW for Na2WO4·2H2O (as bought) and 220 sec at 37 mW for Na2WO4·2D2O; after summation, the background was removed and peaks fitted using Pseudo-Voigt functions in OriginPro (OriginLab, Northampton MA). These data are provided as an electronic supplement in the form of an ASCII file. Small qu­anti­ties of ordinary hydrogen were found to be present in both specimens, the proportion being determined by the ratio of the areas under the ν1/ν3 (H2O) bands after normalisation relative to the height of the strong ν1 (XO42−) band. The molar abundance of 1H was used to correct the diffraction data for absorption (see below) and to ensure accurate refinement of the structure (see Refinement).

Time-of-flight neutron diffraction patterns were collected at 295 K using the High Resolution Powder Diffractometer, HRPD (Ibberson, 2009[Ibberson, R. M. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 47-49.]), at the ISIS spallation neutron source, Harwell Campus, Oxfordshire, UK. Data were acquired in the range of neutron flight times from 30–130 msec (equivalent to neutron wavelengths of 1.24–5.36 Å) for 15.17 hr from the molybdate and 14.40 hr from the tungstate, equivalent to 615 and 590 µAhr of integrated proton beam current, respectively. These data sets were normalized to the incident spectrum and corrected for detector efficiency by reference to a V:Nb null-scattering standard and then subsequently corrected for the sample-specific and wavelength-dependent self-shielding using Mantid (Arnold et al., 2014[Arnold, O., et al. (2014). Nucl. Instrum. Methods Phys. Res. A764, 156-166.]: Mantid, 2013[Mantid (2013). Manipulation and Analysis Toolkit for Instrument Data.; Mantid Project. https://dx.doi.org/10.5286/SOFTWARE/MANTID .]). In the case of the molybdate, the number density of the specimen was determined to be 3.28 mol nm−3, with a scattering cross section, allowing for the water being 9.1 mol % 1H, σscatt = 93.81 b and an absorption cross section, σabs = 3.66 b; for the tungstate, the number density was 3.01 mol nm−3, the scattering cross section, allowing for the water being 8.6 mol % 1H, σscatt = 94.19 b and σabs = 19.48 b. Diffraction data were exported in GSAS format and analysed with the GSAS/Expgui Rietveld package (Larsen & Von Dreele, 2000[Larsen, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, New Mexico. https://www.ncnr.NIST.gov/Xtal/software/GSAS.html .]: Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). The fitted diffraction data are shown in Figs. 6[link] and 7[link].

[Figure 6]
Figure 6
Neutron powder diffraction data for Na2MoO4·2D2O; red points are the observations, the green line is the calculated profile and the pink line beneath the diffraction pattern represents Obs−Calc. Vertical black tick marks report the expected positions of the Bragg peaks. The inset shows the data measured at short flight times (i.e. small d-spacings).
[Figure 7]
Figure 7
Neutron powder diffraction data for Na2WO4·2D2O; red points are the observations, the green line is the calculated profile and the pink line beneath the diffraction pattern represents Obs−Calc. Vertical black tick marks report the expected positions of the Bragg peaks. The inset shows the data measured at short flight times (i.e. small d-spacings).

4. Refinement

Profile refinements were done using GSAS/Expgui (Larsen & Von Dreele, 2000[Larsen, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, New Mexico. https://www.ncnr.NIST.gov/Xtal/software/GSAS.html .]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]) starting from the coordinates reported by Farrugia (2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]). Statistically significant anisotropic displacement parameters were refined for all atoms. An assumption was made that 1H was uniformly distributed on all 2D sites, so the neutron scattering length of 2D was edited in GSAS in accordance with the concentration of 1H determined by Raman spectroscopy; for the molybdate a value of 5.776 fm was used, and for the tungstate a value of 5.724 fm was adopted. Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  Na2MoO4·2D2O Na2WO4·2D2O
Crystal data
Chemical formula Na2MoO4·2D2O Na2WO4·2D2O
Mr 245.99 333.87
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 295 295
a, b, c (Å) 8.482961 (14), 10.566170 (17), 13.83195 (3) 8.482514 (15), 10.595156 (19), 13.85640 (3)
V3) 1239.79 (1) 1245.32 (1)
Z 8 8
Radiation type Neutron Neutron
μ (mm−1) 0.03 + 0.0007 * λ 0.03 + 0.0033 * λ
Specimen shape, size (mm) Cylinder, 38 × 11 Cylinder, 50 × 11
 
Data collection
Diffractometer HRPD, High resolution neutron powder HRPD, High resolution neutron powder
Specimen mounting Vanadium tube Vanadium tube
Data collection mode Transmission Transmission
Scan method Time of flight Time of flight
Absorption correction Analytical [data were corrected for self shielding using σscatt = 93.812 barns and σab(λ) = 3.657 barns at 1.798 Å during the normalization procedure. The linear absorption coefficient is wavelength dependent and is calculated as: μ = 0.0308 + 0.0007 * λ (mm−1)] analytical [data were corrected for self shielding using σscatt = 94.190 barns and σab(λ) = 19.484 barns at 1.798 Å during the normalization procedure. The linear absorption coefficient is wavelength dependent and is calculated as: μ = 0.0284 + 0.0033 * λ (mm−1)]
Tmin, Tmax 0.685, 0.706 0.700, 0.603
2θ values (°) 2θfixed = 168.329 2θfixed = 168.329
Distance from source to specimen (mm) 95000 95000
Distance from specimen to detector (mm) 965 965
 
Refinement
R factors and goodness of fit Rp = 0.013, Rwp = 0.013, Rexp = 0.007, R(F2) = 0.05255, χ2 = 3.534 Rp = 0.014, Rwp = 0.013, Rexp = 0.007, R(F2) = 0.04597, χ2 = 3.312
No. of data points 4610 4610
No. of parameters 133 133
Computer programs: HRPD control software, GSAS/Expgui (Larsen & Von Dreele, 2000[Larsen, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, New Mexico. https://www.ncnr.NIST.gov/Xtal/software/GSAS.html .]: Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]), Mantid (Arnold et al., 2014[Arnold, O., et al. (2014). Nucl. Instrum. Methods Phys. Res. A764, 156-166.]: Mantid, 2013[Mantid (2013). Manipulation and Analysis Toolkit for Instrument Data.; Mantid Project. https://dx.doi.org/10.5286/SOFTWARE/MANTID .]), DIAMOND (Putz & Brandenburg, 2006[Putz, H. & Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Na2MoO4 and Na2WO4 are unusual amongst the alkali metal mono-molybdates and mono-tungstates in being highly soluble in water and forming polyhydrated crystals. Additionally, sodium apparently plays a significant role in the solvation of other alkali metal ions to form a range of double molybdate and tungstate hydrates (Klevtsova et al., 1990; Klevtsov et al., 1997; Mirzoev et al., 2010), for example, Na3K(MoO4)2·9H2O. Both dihydrate and decahydrate varieties of the two title compounds are known, their solubilities as a function of temperature being well characterised (Funk, 1900; Zhilova et al., 2008). The structures of the decahydrates have not yet been reported, although I have established that they are not isotypic with the sodium sulfate analogue, Na2SO4·10H2O, as had hitherto been thought.

The dihydrates have been the subject of extensive crystallographic studies, from descriptions of their density, habit and measurements of inter­facial angles (Svanberg & Struve, 1848; Zenker, 1853; Rammelsberg, 1855; Marignac, 1863; Delafontaine, 1865; Ullik, 1867; Clarke, 1877; Zambonini, 1923), through to determination of absolute unit-cell parameters (Pistorius & Sharp, 1961), and subsequent solution and refinement of their structures (Mitra & Verma, 1969; Okada et al., 1974; Matsumoto et al., 1975; Atovmyan & D'yachenko, 1969; Capitelli et al., 2006; Farrugia, 2007). However, the presence of heavy atoms in these materials makes it impossible to achieve a uniform precision on all structural parameters using X-rays, and even with single-crystal methods that purport to identify hydrogen positions there may be significant inaccuracies. Such problems are minimised using a neutron radiation probe since the coherent neutron scattering lengths of the constituent elements differ by less than a factor of two, being 6.715 fm for Mo, 4.86 fm for W, 3.63 fm for Na, 5.803 fm for O, and 6.67 fm for 2D (Sears, 1992). Thus one can locate accurately all of the light atoms and obtain a uniform level of precision on their coordinates and displacement parameters. Since the incoherent neutron scattering cross section of 1H is large (80.3 barns) it is usual to prepare perdeuterated specimens whenever possible (the incoherent cross section of 2D being only 2.1 barns) since this optimises the coherent Bragg scattering signal above the background, reducing the counting times required for a high-precision structure refinement from many days to a matter of hours on the instrument used for these measurements. These data were therefore measured using Na2MoO4·2D2O and Na2WO4·2D2O samples.

The occurrence of polyhydrated forms of both Na2MoO4 and Na2WO4 suggests that both would be excellent candidates for the formation of hydrogen-bonded complexes with water-soluble organics, such as amino acids, producing metal-organic crystals with potentially useful optical properties (cf., glycine lithium molybdate; Fleck et al., 2006). High-pressure polymorphs of Na2MoO4·2H2O and Na2WO4·2H2O are indicated from Raman scattering studies (Luz-Lima et al., 2010; Saraiva et al., 2013). Characterising the structures and properties of the title compounds provides an essential foundation on which to build future studies of the high-pressure phases, of the as-yet incomplete decahydrate structures and any related organic-bearing hydrates.

Structural commentary top

Na2MoO4·2H2O and Na2WO4·2H2O are isotypic, crystallizing in the orthorhombic space group Pbca; all atoms occupy general positions (Wyckoff sites 8c). Note that the atom labelling scheme and space-group setting used here follows Farrugia (2007); consequently there are some differences with respect to other literature sources, although equivalent contacts are referred to in Table 1 and Table 2. The X6+ ions (X = Mo, W) are tetra­hedrally coordinated by O2-, the Mo—O and W—O bond lengths varying slightly according to the type of coordination adopted by a particular apex: O1 and O4 are each coordinated to Na+ and each also accepts two hydrogen bonds; O2 is coordinated to three Na+ ions and O3 is coordinated to two Na+ ions (Fig. 1). In both title compounds, X–O1 and X–O4 are the longest contacts and X–O3 is the shortest contact in the tetra­hedral oxyanion. The mean Mo—O and W—O bond lengths are in good agreement with those found in the anhydrous crystals (Fortes, 2015). Furthermore, each of the absolute Mo—O bond lengths are identical (within error) to those found by Capitelli et al. (2006); the agreement in W—O bond lengths with Farrugia (2007) is marginally poorer.

The Na+ ions occupy two inequivalent sites: in one, Na+ is six-fold coordinated by two water molecules and four XO42- oxygen atoms, yielding an o­cta­hedral arrangement; in the second, Na+ is five-fold coordinated by two water molecules and three XO42- oxygen atoms, yielding a square-pyramidal arrangement. These two polyhedra share a common edge (O2–O5) and are connected, moreover, with their inversion-centre-related neighbours along three other shared edges to form a cluster (Fig. 2a). The clusters corner-share via O6 to create a `slab' parallel to (010) (Fig. 2b). The mean Na—O bond lengths are statistically identical in Na2MoO4·2D2O and Na2WO4·2D2O being ~1.6 % longer in the NaO6 o­cta­hedra and ~2.3 % shorter in the NaO5 polyhedra than Na—O bonds in the anhydrous crystals (Fortes, 2015). The agreement in Na—O bond lengths with the X-ray single crystal studies of Capitelli et al. (2006) and Farrugia (2007) is very good. Overall, the agreement in bond lengths and angles for the two independently refined data sets is excellent (Tables 1 and 2).

Although it is more usual to find Na+ in o­cta­hedral coordination, there are abundant examples of Na+ in five-fold coordination, including instances where the NaO5 polyhedron adopts a square-pyramidal arrangement (Beurskens & Jeffrey, 1961; Císarová et al., 2001; Sharma et al., 2005; Smith & Wermuth, 2014; Aksenov et al., 2014) or the alternative trigonal-bipyramidal arrangement (Mereiter, 2013; Smith, 2013). A similar combination of NaO6 and NaO5 polyhedra to that found in the title compounds occurs in the closely-related hydrates Na2CrO4·1.5H2O and Na2SeO4·1.5H2O (Kahlenberg, 2012; Weil & Bonneau, 2014). The two water molecules form hydrogen-bonded chains between the O1 and O4 atoms of the tetra­hedral oxyanions; O5-related chains extend along [001] and O6-related chains crosslink them in a staggered fashion along [100]. Figs. 3(a) and 3(b) depict the spatial relationship between this `net' of water linked tetra­hedra and the adjacent `slab' of corner-linked Na—O polyhedral clusters. The layers shown in Fig. 3(b) alternate to create the three-dimensional structure and are no doubt responsible for the macro-scale platy habit of the crystals.

There are no significant differences in the hydrogen bond geometries of the molybdate or tungstate crystals. The most recent X-ray single-crystal diffraction study of Na2WO4·2H2O (Farrugia, 2007) implied that one of the water molecules (O5) was involved in a weaker three-centred inter­action, although a similarly recent measurement of Na2MoO4·2H2O (Capitelli et al., 2006) identified a 'normal' linear two-centred inter­action for this bond. This work, using neutrons, has been able to accurately and precisely characterise the hydrogen bond geometry, showing that the latter is true for both structures; there is no bifurcated bond and all hydrogen-bonded inter­actions are of the linear two-centred variety. Presumably the error in Farrugia's analysis arose due to the substantial absorption correction required (µ = 18.7 mm-1) for an accurate structure refinement from X-ray single-crystal data.

Raman spectra of Na2MoO4·2H2O and Na2MoO4·2D2O were first reported by Mahadevan Pillai et al. (1997); subsequently, Luz-Lima et al. (2010) and Saraiva et al. (2013) published the Raman spectra of Na2MoO4·2H2O and Na2WO4·2H2O as a function of temperature (13–300 K) and as a function of hydro­static pressure (to 5 GPa). Both compounds exhibit evidence of a 'conformational change' on cooling through 120 K: the molybdate appears to undergo two high-pressure phase transitions, one at 3 GPa and the second at 4 GPa; the tungstate apparently undergoes a high-pressure phase transition at 3.9 GPa. The Raman spectra reported here (Figs. 4 and 5 and Supporting information) agree well with data in the literature (Table 3). The large blue-shifts in the inter­nal vibrational frequencies of the deuterated water molecule are similar to the square root of the D:H mass ratio; the small blue-shifts of most of the inter­nal modes of the tetra­hedral oxyanions are consistent with stronger hydrogen bonding in the deuterated species, as expected (cf. Scheiner & Čuma, 1996; Soper & Benmore, 2008).

Synthesis and crystallization top

Coarse polycrystalline powders of Na2MoO4·2H2O (Sigma-Adrich M1003 > 99.5%) and Na2WO4·2H2O (Sigma-Adrich 14304 > 99%) were dehydrated by drying at 673 K in air. The resulting anhydrous materials were characterised by Raman spectroscopy, X-ray and neutron powder diffraction (Fortes, 2015). This material was dissolved in D2O (Aldrich 151882, 99.9 atom% D) and twice recrystallized by gentle evaporation at 323 K. The molybdate crystallised with a coarse platy habit whereas the tungstate was deposited as a finer-grained material. Once the supernatant liquid was decanted, the residue was air dried on filter paper and then ground to a fine powder with an agate pestle and mortar. The powders were loaded into standard vanadium sample-holder tubes of inter­nal diameter 11 mm to a depth not less than 20 mm (this being the vertical neutron beam dimension at the sample position). Accurate volumes and masses were determined after the diffraction measurements were complete and used to correct the data for self-shielding. The level of deuteration was determined by Raman spectroscopy (see below) to be ~91% for both compounds.

Raman spectra were acquired with a B&WTek i-Raman plus portable spectrometer; this device uses a 532 nm laser (37 mW power at the fiber-optic probe tip) to stimulate Raman scattering, which is measured in the range 170–4000 cm-1 with a spectral resolution of 3 cm-1. Data were collected for 600 sec at 17 mW for Na2MoO4·2H2O (as bought), 180 sec at 37 mW for Na2MoO4·2D2O, 300 sec at 17 mW for Na2WO4·2H2O (as bought) and 220 sec at 37 mW for Na2WO4·2D2O; after summation, the background was removed and peaks fitted using Pseudo-Voigt functions in OriginPro (OriginLab, Northampton MA). These data are provided as an electronic supplement in the form of an ASCII file. Small qu­anti­ties of ordinary hydrogen were found to be present in both specimens, the proportion being determined by the ratio of the areas under the ν1/ν3 (H2O) bands after normalisation relative to the height of the strong ν1 (XO42-) peak. The molar abundance of 1H was used to correct the diffraction data for absorption (see below) and to ensure accurate refinement of the structure (see Refinement).

Time-of-flight neutron diffraction patterns were collected at 295 K using the High Resolution Powder Diffractometer, HRPD (Ibberson, 2009), at the ISIS spallation neutron source, Harwell Campus, Oxfordshire, U.K. Data were acquired in the range of neutron flight times from 30–130 msec (equivalent to neutron wavelengths of 1.24–5.36 Å) for 15.17 hr from the molybdate and 14.40 hr from the tungstate, equivalent to 615 and 590 µAhr of integrated proton beam current, respectively. These data sets were normalized to the incident spectrum and corrected for detector efficiency by reference to a V:Nb null-scattering standard and then subsequently corrected for the sample-specific and wavelength-dependent self-shielding using Mantid (Arnold et al., 2014: Mantid, 2013). In the case of the molybdate, the number density of the specimen was determined to be 3.28 mol nm-3, with a scattering cross section, allowing for the water being 9.1 mol % 1H, σscatt = 93.81 b and an absorption cross section, σabs = 3.66 b; for the tungstate, the number density was 3.01 mol nm-3, the scattering cross section, allowing for the water being 8.6 mol % 1H, σscatt = 94.19 b and σabs = 19.48 b. Diffraction data were exported in GSAS format and analysed with the GSAS/Expgui Rietveld package (Larsen & Von Dreele, 2000: Toby, 2001). The fitted diffraction data are shown in Figs. 6 and 7.

Refinement top

Profile refinements were done using GSAS/Expgui (Larsen & Von Dreele, 2000; Toby, 2001) starting from the coordinates reported by Farrugia (2007). Statistically significant anisotropic displacement parameters were refined for all atoms. An assumption was made that 1H was uniformly distributed on all 2D sites, so the neutron scattering length of 2D was edited in GSAS in accordance with the concentration of 1H determined by Raman spectroscopy; for the molybdate a value of 5.776 fm was used, and for the tungstate a value of 5.724 fm was adopted. Crystal data, data collection and structure refinement details are summarized in Table 4.

Computing details top

For both compounds, data collection: HRPD control software; cell refinement: GSAS/Expgui (Larsen & Von Dreele, 2000: Toby, 2001); data reduction: Mantid (Arnold et al., 2014: Mantid, 2013); program(s) used to solve structure: n/a; program(s) used to refine structure: GSAS/Expgui (Larsen & Von Dreele, 2000: Toby, 2001); molecular graphics: DIAMOND (Putz & Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. First and second coordination shell of Mo6+/W6+ in the title compounds, revealing differences in the environment of each apical O2- that are responsible for the variations in Mo–O and W–O bond lengths. Anisotropic displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1/2 + x, 1.5 - y, 1 - z; (iii) -1/2 + x, 1.5 - y, 1 - z; (iv) 1/2 - x, 1/2 + y, z; (v) 1.5 - x, 1/2 + y, z; (vi) 1 - x, 1/2 + y, 1.5 - z.]
[Figure 2] Fig. 2. (a) Arrangement of NaOx polyhedra into edge-sharing clusters comprised of two Na1O6 octahedra and two Na2O5 square pyramids; (b) Arrangement of the clusters shown in (a) by corner sharing to form `slabs' parallel (010). Ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1/2 + x, 1.5 - y, 1 - z; (iii) -1/2 + x, 1.5 - y, 1 - z; (iv) 0.5 - x, -1/2 + y, z; (v) 1/2 + x, y, 1.5 - z; (vi) 0.5 - x, 1 - y, 1/2 + z; (vii) 1.5 - x, -1/2 + y, z.]
[Figure 3] Fig. 3. (a) View down the b axis of the network of water-linked tetrahedral oxyanions; chains linked by O5 extend along [001] whereas crosslinkages through O6 are staggered along [100]. (b) View of the same structure along the c axis. Ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1/2 + y, 1.5 - z; (iii) 1/2 + x, 1.5 - y, 1 - z; (iv) 1/2 + x, y, 1.5 - z; (v) x, 1.5 - y, -1/2 + z; (vi) x, 1.5 - y, 1/2 + z.]
[Figure 4] Fig. 4. Raman spectra of Na2MoO4·2H2O and Na2MoO4·2H2O in the range 200–3900 cm-1. Band positions and vibrational assignments are indicated (see also Table 4). Vertical scales show intensities relative to ν1 (XO42-).
[Figure 5] Fig. 5. Raman spectra of Na2WO4·2H2O and Na2WO4·2H2O in the range 200–3900 cm-1. Band positions and vibrational assignments are indicated (see also Table 4). Vertical scales show intensities relative to ν1 (XO42-).
[Figure 6] Fig. 6. Neutron powder diffraction data for Na2MoO4·2H2O; red points are the observations, the green line is the calculated profile and the pink line beneath the diffraction pattern represents Obs-Calc. Vertical black tick marks report the expected positions of the Bragg peaks. The inset shows the data measured at short flight times (i.e. small d-spacings).
[Figure 7] Fig. 7. Neutron powder diffraction data for Na2WO4·2H2O; red points are the observations, the green line is the calculated profile and the pink line beneath the diffraction pattern represents Obs–Calc. Vertical black tick marks report the expected positions of the Bragg peaks. The inset shows the data measured at short flight times (i.e. small d-spacings).
(Na2MoO4.2D2O) Disodium molybdenum(VI) oxide dihydrate top
Crystal data top
Na2MoO4·2D2ODx = 2.636 Mg m3
Mr = 245.99Melting point: 353 K
Orthorhombic, PbcaNeutron radiation
Hall symbol: -P 2ac 2abµ = 0.03+ 0.0007 * λ mm1
a = 8.482961 (14) ÅT = 295 K
b = 10.566170 (17) Åwhite
c = 13.83195 (3) Åcylinder, 38 × 11 mm
V = 1239.79 (1) Å3Specimen preparation: Prepared at 323 K and 100 kPa
Z = 8
Data collection top
HRPD, High resolution neutron powder
diffractometer
Absorption correction: analytical
Data were corrected for self shielding using σscatt = 93.812 barns and σab(λ) = 3.657 barns at 1.798 Å during the normalisation procedure. The linear absorption coefficient is wavelength dependent and is calculated as: µ = 0.0308 + 0.0007 * λ [mm-1]
Radiation source: ISIS Facility, Neutron spallation sourceTmin = 0.685, Tmax = 0.706
Specimen mounting: vanadium tube2θfixed = 168.329
Data collection mode: transmissionDistance from source to specimen: 95000 mm
Scan method: time of flightDistance from specimen to detector: 965 mm
Refinement top
Least-squares matrix: fullExcluded region(s): none
Rp = 0.013Profile function: TOF profile function #3 (21 terms). Profile coefficients for exp pseudovoigt convolution [Von Dreele, 1990 (unpublished)] (α) = 0.1414, (β0) = 0.026250, (β1) = 0.004690, (σ0) = 0, (σ1) = 194.5, (σ2) = 13.5, (γ0) = 0, (γ1) = 0, (γ2) = 0, (γ2s) = 0, (γ1e) = 0, (γ2e) = 0, (εi) = 0, (εa) = 0, (εA) = 0, (γ11) = 0.057, (γ22) = 0, (γ33) = 0.059, (γ12) = -0.087, (γ13) = -0.014, (γ23) = -0.018. Peak tails ignored where intensity <0.0010x peak. Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.013133 parameters
Rexp = 0.0070 restraints
R(F2) = 0.052550 constraints
χ2 = 3.534(Δ/σ)max = 0.03
4610 data pointsBackground function: GSAS Background function number 1 with 12 terms. Shifted Chebyshev function of 1st kind 1: 4.30598, 2: 1.54022, 3: -0.237828 4: -6.992080x10-2, 5: -0.113274, 6: -1.736560x10-2, 7: -1.996810x10-2, 8: 2.118030x10-5, 9: -4.698340x10-3, 10: -2.646770x10-2, 11: 2.772870x10-2, 12: -1.690170x10-3
Crystal data top
Na2MoO4·2D2OV = 1239.79 (1) Å3
Mr = 245.99Z = 8
Orthorhombic, PbcaNeutron radiation
a = 8.482961 (14) ŵ = 0.03+ 0.0007 * λ mm1
b = 10.566170 (17) ÅT = 295 K
c = 13.83195 (3) Åcylinder, 38 × 11 mm
Data collection top
HRPD, High resolution neutron powder
diffractometer
Tmin = 0.685, Tmax = 0.706
Specimen mounting: vanadium tube2θfixed = 168.329
Data collection mode: transmissionDistance from source to specimen: 95000 mm
Scan method: time of flightDistance from specimen to detector: 965 mm
Absorption correction: analytical
Data were corrected for self shielding using σscatt = 93.812 barns and σab(λ) = 3.657 barns at 1.798 Å during the normalisation procedure. The linear absorption coefficient is wavelength dependent and is calculated as: µ = 0.0308 + 0.0007 * λ [mm-1]
Refinement top
Rp = 0.013χ2 = 3.534
Rwp = 0.0134610 data points
Rexp = 0.007133 parameters
R(F2) = 0.052550 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.51477 (10)0.80193 (8)0.52313 (8)0.01137
Na10.3438 (3)0.4964 (2)0.58515 (17)0.02371
Na20.7433 (2)0.5509 (2)0.64802 (16)0.0216
O10.45103 (15)0.82353 (12)0.40216 (9)0.01917
O20.55667 (15)0.64011 (10)0.54111 (10)0.01665
O30.68676 (15)0.89087 (11)0.53936 (11)0.02282
O40.37187 (15)0.85121 (12)0.60907 (10)0.0194
O50.53793 (19)0.40846 (16)0.70077 (14)0.0252
O60.2281 (2)0.64176 (17)0.70081 (11)0.02505
D510.5576 (2)0.32908 (18)0.66668 (13)0.03656
D520.5585 (2)0.39149 (15)0.76825 (14)0.03068
D610.1235 (2)0.64696 (14)0.67235 (12)0.03034
D620.27890 (19)0.71840 (16)0.67765 (12)0.03232
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0103 (6)0.0083 (5)0.0156 (6)0.0001 (4)0.0009 (5)0.0003 (5)
Na10.0249 (13)0.0213 (11)0.0250 (15)0.0011 (10)0.0026 (10)0.0012 (9)
Na20.0196 (12)0.0180 (12)0.0272 (14)0.0037 (9)0.0008 (9)0.0006 (10)
O10.0188 (7)0.0191 (7)0.0196 (8)0.0025 (6)0.0004 (6)0.0017 (6)
O20.0161 (6)0.0086 (6)0.0252 (8)0.0008 (6)0.0019 (6)0.0017 (6)
O30.0197 (7)0.0199 (7)0.0289 (9)0.0079 (6)0.0020 (6)0.0022 (7)
O40.0187 (6)0.0163 (6)0.0233 (8)0.0040 (6)0.0050 (6)0.0011 (6)
O50.0272 (9)0.0207 (9)0.0277 (10)0.0006 (7)0.0036 (8)0.0001 (8)
O60.0264 (9)0.0257 (9)0.0231 (10)0.0018 (8)0.0031 (7)0.0060 (7)
D510.0432 (11)0.0272 (9)0.0393 (11)0.0030 (8)0.0107 (9)0.0006 (9)
D520.0399 (9)0.0292 (8)0.0229 (8)0.0008 (8)0.0003 (8)0.0027 (8)
D610.0233 (9)0.0340 (9)0.0337 (9)0.0004 (7)0.0062 (8)0.0030 (8)
D620.0338 (10)0.0248 (8)0.0384 (12)0.0056 (8)0.0024 (8)0.0028 (8)
Geometric parameters (Å, º) top
Mo1—O11.7732 (17)Na2—O3v2.339 (3)
Mo1—O21.7640 (14)Na2—O52.415 (3)
Mo1—O31.7499 (16)Na2—O6vi2.305 (3)
Mo1—O41.7759 (17)O5—D510.9766 (19)
Na1—O22.437 (3)O5—D520.9664 (18)
Na1—O2i2.417 (3)O6—D610.9722 (16)
Na1—O3ii2.482 (3)O6—D620.9719 (18)
Na1—O4iii2.410 (3)D51—O1i1.874 (2)
Na1—O52.476 (2)D52—O4vii1.846 (3)
Na1—O62.426 (3)D61—O1ii1.816 (2)
Na2—O1iv2.312 (3)D62—O41.868 (3)
Na2—O22.363 (3)
O1—Mo1—O2108.62 (8)O2i—Na1—O6174.75 (13)
O1—Mo1—O3107.83 (8)O4iii—Na1—O5100.22 (10)
O1—Mo1—O4112.69 (8)O4iii—Na1—O690.30 (9)
O2—Mo1—O3109.54 (7)O5—Na1—O694.63 (10)
O2—Mo1—O4109.11 (8)O1iv—Na2—O295.39 (9)
O3—Mo1—O4109.01 (8)O1iv—Na2—O3v91.65 (9)
O2—Na1—O2i86.12 (8)O1iv—Na2—O5176.34 (12)
O2—Na1—O3ii85.70 (9)O1iv—Na2—O6vi94.37 (9)
O2—Na1—O4iii173.42 (12)O2—Na2—O3v93.22 (9)
O2—Na1—O584.40 (9)O2—Na2—O587.38 (8)
O2—Na1—O694.02 (10)O2—Na2—O6vi111.35 (10)
O3ii—Na1—O2i88.43 (9)O3v—Na2—O585.79 (9)
O3ii—Na1—O4iii89.62 (9)O3v—Na2—O6vi153.97 (12)
O3ii—Na1—O5170.10 (11)O5—Na2—O6vi86.84 (10)
O3ii—Na1—O686.35 (9)D51—O5—D52106.0 (2)
O2i—Na1—O4iii89.13 (9)D61—O6—D62103.0 (2)
O2i—Na1—O590.61 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y1/2, z; (vi) x+1/2, y, z+3/2; (vii) x+1, y1/2, z+3/2.
(Na2WO4.2D2O) Disodium tungsten(VI) oxide dihydrate top
Crystal data top
Na2WO4·2D2ODx = 3.562 Mg m3
Mr = 333.87Melting point: 373 K
Orthorhombic, PbcaNeutron radiation
Hall symbol: -P 2ac 2abµ = 0.03+ 0.0033 * λ mm1
a = 8.482514 (15) ÅT = 295 K
b = 10.595156 (19) Åwhite
c = 13.85640 (3) Åcylinder, 50 × 11 mm
V = 1245.32 (1) Å3Specimen preparation: Prepared at 323 K and 100 kPa
Z = 8
Data collection top
HRPD, High resolution neutron powder
diffractometer
Absorption correction: analytical
Data were corrected for self shielding using σscatt = 94.190 barns and σab(λ) = 19.484 barns at 1.798 Å during the normalisation procedure. The linear absorption coefficient is wavelength dependent and is calculated as: µ = 0.0284 + 0.0033 * λ [mm-1]
Radiation source: ISIS Facility, Neutron spallation sourceTmin = 0.603, Tmax = 0.700
Specimen mounting: vanadium tube2θfixed = 168.329
Data collection mode: transmissionDistance from source to specimen: 95000 mm
Scan method: time of flightDistance from specimen to detector: 965 mm
Refinement top
Least-squares matrix: fullExcluded region(s): none
Rp = 0.014Profile function: TOF profile function #3 (21 terms). Profile coefficients for exp pseudovoigt convolution [Von Dreele, 1990 (unpublished)] (α) = 0.1414, (β0) = 0.026250, (β1) = 0.004690, (σ0) = 0, (σ1) = 322.9, (σ2) = 15.7, (γ0) = 0, (γ1) = 0, (γ2) = 0, (γ2s) = 0, (γ1e) = 0, (γ2e) = 0, (εi) = 0, (εa) = 0, (εA) = 0, (γ11) = 0.023, (γ22) = 0, (γ33) = 0.006, (γ12) = 0.050, (γ13) = 0.016, (γ23) = 0.017. Peak tails ignored where intensity <0.0010x peak. Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.013133 parameters
Rexp = 0.0070 restraints
R(F2) = 0.045970 constraints
χ2 = 3.312(Δ/σ)max = 0.04
4610 data pointsBackground function: GSAS Background function number 1 with 12 terms. Shifted Chebyshev function of 1st kind 1: 3.91163, 2: 1.22805, 3: -0.206144, 4: -8.53351x10-2, 5: -9.966470x10-2, 6: -1.847470x10-2, 7: -1.38195x10-2, 8: 9.956170x10-4, 9: 4.49839x10-3, 10: -2.199010x10-2, 11: 2.57524x10-2, 12: -2.00574x10-3
Crystal data top
Na2WO4·2D2OV = 1245.32 (1) Å3
Mr = 333.87Z = 8
Orthorhombic, PbcaNeutron radiation
a = 8.482514 (15) ŵ = 0.03+ 0.0033 * λ mm1
b = 10.595156 (19) ÅT = 295 K
c = 13.85640 (3) Åcylinder, 50 × 11 mm
Data collection top
HRPD, High resolution neutron powder
diffractometer
Tmin = 0.603, Tmax = 0.700
Specimen mounting: vanadium tube2θfixed = 168.329
Data collection mode: transmissionDistance from source to specimen: 95000 mm
Scan method: time of flightDistance from specimen to detector: 965 mm
Absorption correction: analytical
Data were corrected for self shielding using σscatt = 94.190 barns and σab(λ) = 19.484 barns at 1.798 Å during the normalisation procedure. The linear absorption coefficient is wavelength dependent and is calculated as: µ = 0.0284 + 0.0033 * λ [mm-1]
Refinement top
Rp = 0.014χ2 = 3.312
Rwp = 0.0134610 data points
Rexp = 0.007133 parameters
R(F2) = 0.045970 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.51352 (13)0.80186 (10)0.52310 (10)0.01206
Na10.3444 (2)0.4957 (2)0.58501 (16)0.02213
Na20.7422 (2)0.54966 (18)0.64745 (14)0.02166
O10.44940 (14)0.82253 (11)0.40144 (8)0.01858
O20.55647 (14)0.63936 (9)0.54135 (9)0.01675
O30.68666 (14)0.89213 (10)0.53870 (10)0.02256
O40.36916 (14)0.85058 (11)0.60895 (9)0.01972
O50.53794 (17)0.40814 (14)0.70116 (12)0.02505
O60.2276 (2)0.64134 (14)0.70148 (11)0.02531
D510.5576 (2)0.32926 (17)0.66767 (12)0.03829
D520.55912 (18)0.39189 (14)0.76800 (13)0.03325
D610.1229 (2)0.64645 (13)0.67384 (10)0.03267
D620.27774 (17)0.71764 (15)0.67874 (12)0.03524
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0099 (7)0.0064 (6)0.0199 (7)0.0002 (5)0.0009 (6)0.0002 (6)
Na10.0209 (11)0.0167 (9)0.0289 (130.0004 (9)0.0028 (9)0.0003 (8)
Na20.0192 (10)0.0183 (11)0.0275 (13)0.0001 (8)0.0006 (8)0.0000 (9)
O10.0170 (6)0.0192 (6)0.0195 (7)0.0008 (5)0.0010 (6)0.0031 (5)
O20.0176 (6)0.0079 (5)0.0248 (7)0.0014 (5)0.0004 (5)0.0035 (5)
O30.0193 (7)0.0190 (6)0.0293 (8)0.0083 (5)0.0002 (6)0.0015 (6)
O40.0201 (6)0.0176 (6)0.0214 (7)0.0045 (5)0.0052 (6)0.0008 (6)
O50.0305 (9)0.0206 (9)0.0241 (8)0.0027 (7)0.0031 (7)0.0023 (7)
O60.0246 (8)0.0247 (8)0.0266 (9)0.0004 (7)0.0046 (7)0.0061 (7)
D510.0448 (10)0.0304 (9)0.0397 (9)0.0001 (8)0.0104 (8)0.0032 (8)
D520.0415 (9)0.0323 (8)0.0259 (8)0.0027 (7)0.0001 (8)0.0004 (7)
D610.0259 (9)0.0354 (9)0.0367 (9)0.0011 (7)0.0030 (7)0.0046 (8)
D620.0347 (9)0.0270 (8)0.0440 (11)0.0059 (7)0.0029 (7)0.0059 (7)
Geometric parameters (Å, º) top
W1—O11.7849 (19)Na2—O3v2.328 (2)
W1—O21.7779 (15)Na2—O52.409 (3)
W1—O31.7659 (17)Na2—O6vi2.311 (2)
W1—O41.7834 (18)O5—D510.9702 (18)
Na1—O22.433 (2)O5—D520.9591 (16)
Na1—O2i2.412 (3)O6—D610.9684 (16)
Na1—O3ii2.479 (3)O6—D620.9664 (16)
Na1—O4iii2.399 (2)D51—O1i1.873 (2)
Na1—O52.479 (3)D52—O4vii1.863 (2)
Na1—O62.443 (3)D61—O1ii1.834 (2)
Na2—O1iv2.320 (2)D62—O41.876 (2)
Na2—O22.355 (2)
O1—W1—O2108.40 (9)O2i—Na1—O6174.55 (12)
O1—W1—O3107.61 (8)O4iii—Na1—O599.82 (9)
O1—W1—O4112.66 (8)O4iii—Na1—O690.40 (8)
O2—W1—O3109.67 (7)O5—Na1—O694.37 (10)
O2—W1—O4109.03 (9)O1iv—Na2—O295.10 (8)
O3—W1—O4109.43 (9)O1iv—Na2—O3v91.90 (8)
O2—Na1—O2i86.16 (7)O1iv—Na2—O5176.73 (11)
O2—Na1—O3ii85.82 (8)O1iv—Na2—O6vi93.43 (9)
O2—Na1—O4iii173.55 (11)O2—Na2—O3v93.36 (8)
O2—Na1—O584.60 (8)O2—Na2—O587.87 (7)
O2—Na1—O693.95 (9)O2—Na2—O6vi111.09 (9)
O3ii—Na1—O2i88.32 (8)O3v—Na2—O586.57 (8)
O3ii—Na1—O4iii89.72 (8)O3v—Na2—O6vi154.35 (11)
O3ii—Na1—O5170.42 (10)O5—Na2—O6vi86.74 (9)
O3ii—Na1—O686.26 (8)D51—O5—D52105.96 (19)
O2i—Na1—O4iii89.05 (8)D61—O6—D62103.18 (19)
O2i—Na1—O591.07 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y1/2, z; (vi) x+1/2, y, z+3/2; (vii) x+1, y1/2, z+3/2.
Comparison of the X—O (X = Mo, W) and Na—O bond lengths (Å) in Na2MoO4·2D2O and Na2WO4·2D2O with those of the protonated isotopologues reported in the literature. top
Na2MoO4·2D2ONa2MoO4·2H2ONa2WO4·2D2ONa2WO4·2H2O
This workCapitelli et al. (2006)This workFarrugia (2007)
X—O11.773 (2)1.772 (1)1.785 (2)1.776 (3)
X—O21.764 (1)1.767 (1)1.778 (2)1.778 (3)
X—O31.750 (2)1.751 (1)1.766 (2)1.761 (3)
X—O41.776 (2)1.778 (1)1.783 (2)1.787 (3)
Mean X—O1.7661.7671.7781.776
Na1—O22.437 (3)2.446 (2)2.433 (2)2.442 (3)
Na1—O2(i)2.417 (3)2.419 (2)2.412 (3)2.416 (3)
Na1—O3(ii)2.482 (3)2.481 (2)2.479 (3)2.480 (3)
Na1—O4(iii)2.410 (3)2.395 (2)2.399 (2)2.388 (3)
Na1—O52.476 (3)2.456 (2)2.479 (3)2.464 (4)
Na1—O62.426 (3)2.423 (2)2.443 (3)2.433 (3)
Mean Na1—O2.4412.4372.4412.437
Na2—O1iv2.312 (3)2.319 (2)2.320 (2)2.323 (3)
Na2—O22.363 (3)2.354 (2)2.355 (2)2.346 (3)
Na2—O3v2.339 (3)2.341 (2)2.328 (2)2.331 (3)
Na2—O52.415 (3)2.403 (2)2.409 (3)2.396 (3)
Na2—O6vi2.305 (3)2.300 (2)2.311 (2)2.304 (3)
Mean Na2—O2.3472.3432.3452.340
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -0.5+x, 1.5-y, 1-z; (iii) 0.5-x, -0.5+y, z; (iv) 0.5+x, 1.5-y, 1-z; (v) 1.5-x, -0.5+y, z; (vi) 0.5+x, y, 1.5-z.
Comparison of the water molecule and hydrogen bond geometry (Å, °) in Na2MoO4·2D2O and Na2WO4·2D2O with the protonated isotopologues as reported in the literature. Note the inclusion of the contact O5–D51···O3, which forms the longer `branch' of Farrugia's proposed bifurcated hydrogen bond. top
Na2MoO4·2D2ONa2MoO4·2H2ONa2WO4·2D2ONa2WO4·2H2O
This workCapitelli et al. (2006)This workFarrugia (2007)
O5—D510.977 (2)0.68 (3)0.970 (2)0.86 (3)
O5—D520.966 (2)0.76 (3)0.959 (2)0.86 (3)
D51—O5—D52106.0 (2)98 (4)106.0 (2)100 (5)
D51···O1(i)1.874 (2)2.16 (3)1.873 (2)2.09 (4)
O5—D51···O1(i)167.9 (2)167 (4)168.2 (2)145 (6)
D51···O3(ii)2.70 (6)
O5—D51···O3(ii)122 (5)
D52···O4(ii)1.846 (3)2.07 (3)1.863 (2)1.98 (3)
O5—D52···O4(ii)171.2 (2)176 (3)170.9 (2)174 (6)
O6—D610.972 (2)0.83 (3)0.968 (2)0.86 (3)
O6—D620.972 (2)0.71 (3)0.966 (2)0.86 (3)
D61—O6—D62103.0 (2)105 (3)103.2 (2)95 (5)
D61···O11.816 (2)2.01 (3)1.834 (2)1.95 (3)
O6—D61···O1167.0 (2)167 (3)167.0 (2)167 (6)
D62···O4(iii)1.868 (4)2.08 (3)1.876 (2)2.02 (4)
O6—D62···O4(iii)168.7 (2)170 (3)168.7 (2)159 (6)
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1-x, -0.5+y, 1.5-z; (iii) -0.5+x, 1.5-y, 1-z.
Comparison of the internal vibrational mode frequencies (cm-1) in fully protonated and 90 mol % deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O with literature data. top
Na2MoO4·2H2ONa2WO4·2H2O
This work (1H)This work (2D)Busey & Keller (1964)This work (1H)This work (2D)Busey & Keller (1964)
ν2 (XO42-)279271285276269276
319315325324321325
335331330331
ν4 (XO42-)359358358355
ν3 (XO42-)804801805804802808
833826836836831838
842840843840
ν1 (XO42-)891889893
894894897929928931

Experimental details

(Na2MoO4.2D2O)(Na2WO4.2D2O)
Crystal data
Chemical formulaNa2MoO4·2D2ONa2WO4·2D2O
Mr245.99333.87
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)295295
a, b, c (Å)8.482961 (14), 10.566170 (17), 13.83195 (3)8.482514 (15), 10.595156 (19), 13.85640 (3)
V3)1239.79 (1)1245.32 (1)
Z88
Radiation typeNeutronNeutron
µ (mm1)0.03+ 0.0007 * λ0.03+ 0.0033 * λ
Specimen shape, size (mm)Cylinder, 38 × 11Cylinder, 50 × 11
Data collection
DiffractometerHRPD, High resolution neutron powder
diffractometer
HRPD, High resolution neutron powder
diffractometer
Specimen mountingVanadium tubeVanadium tube
Data collection modeTransmissionTransmission
Scan methodTime of flightTime of flight
Absorption correctionAnalytical
Data were corrected for self shielding using σscatt = 93.812 barns and σab(λ) = 3.657 barns at 1.798 Å during the normalisation procedure. The linear absorption coefficient is wavelength dependent and is calculated as: µ = 0.0308 + 0.0007 * λ [mm-1]
Tmin, Tmax0.685, 0.706
2θ values (°)2θfixed = 168.3292θfixed = 168.329
Distance from source to specimen (mm)9500095000
Distance from specimen to detector (mm)965965
Refinement
R factors and goodness of fitRp = 0.013, Rwp = 0.013, Rexp = 0.007, R(F2) = 0.05255, χ2 = 3.534Rp = 0.014, Rwp = 0.013, Rexp = 0.007, R(F2) = 0.04597, χ2 = 3.312
No. of data points46104610
No. of parameters133133

Computer programs: HRPD control software, GSAS/Expgui (Larsen & Von Dreele, 2000: Toby, 2001), Mantid (Arnold et al., 2014: Mantid, 2013), n/a, DIAMOND (Putz & Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks the STFC ISIS facility for beam-time access and acknowledges financial support from STFC (grant No. ST/K000934/1).

References

First citationAksenov, S. M., Rastsvetaeva, R. K., Chukanov, N. V. & Kolitsch, U. (2014). Acta Cryst. B70, 768–775.  CSD CrossRef IUCr Journals Google Scholar
First citationArnold, O., et al. (2014). Nucl. Instrum. Methods Phys. Res. A764, 156–166.  CrossRef Google Scholar
First citationAtovmyan, L. O. & D'yachenko, O. A. (1969). J. Struct. Chem. 10, 416–418.  CrossRef Google Scholar
First citationBeurskens, G. & Jeffrey, G. A. (1961). J. Chem. Phys. 41, 924–929.  CrossRef Google Scholar
First citationBusey, R. H. & Keller, O. L. (1964). J. Chem. Phys. 41, 215–225.  CrossRef CAS Web of Science Google Scholar
First citationCapitelli, F., Selim, M. & Mukherjea, K. K. (2006). Asian J. Chem. 18, 2856–2860.  CAS Google Scholar
First citationCísařová, I., Skála, R., Ondruš, P. & Drábek, M. (2001). Acta Cryst. E57, i32–i34.  CrossRef IUCr Journals Google Scholar
First citationClarke, F. W. (1877). Am. J. Sci. Ser. III, 14, 280–286.  Google Scholar
First citationDelafontaine, M. (1865). J. Prakt. Chem. 95, 136–145.  CrossRef Google Scholar
First citationFarrugia, L. J. (2007). Acta Cryst. E63, i142.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFortes, A. D. (2015). Acta Cryst. E71, 592–596.  CSD CrossRef IUCr Journals Google Scholar
First citationFunk, R. (1900). Ber. Dtsch Chem. Ges. 33, 3696–3703.  CrossRef CAS Google Scholar
First citationIbberson, R. M. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 47–49.  Web of Science CrossRef CAS Google Scholar
First citationKahlenberg, V. (2012). Z. Kristallogr. 227, 621–628.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A., Perepelitsa, A. P., Ishchenko, V. N. & Klevtsov, P. V. (1990). Sov. Phys. Crystallogr. 35, 643–646.  Google Scholar
First citationKlevtsov, P. V., Glinskaya, L. A., Klevtsova, R. F. & Aleksandrov, K. S. (1997). J. Struct. Chem. 38, 615–619.  CrossRef CAS Google Scholar
First citationLarsen, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, New Mexico. https://www.ncnr.NIST.gov/Xtal/software/GSAS.htmlGoogle Scholar
First citationLuz-Lima, C., Saraiva, G. D., Souza Filho, A. G., Paraguassu, W., Freirea, P. T. C. & Mendes Filhoa, J. (2010). J. Raman Spectrosc. 41, 576–581.  CAS Google Scholar
First citationMahadevan Pillai, V. P., Pradeep, T., Bushiri, M. J., Jayasree, R. S. & Nayar, V. U. (1997). Spectrochim. Acta A53, 867–876.  CrossRef Google Scholar
First citationMantid (2013). Manipulation and Analysis Toolkit for Instrument Data.; Mantid Project. https://dx.doi.org/10.5286/SOFTWARE/MANTIDGoogle Scholar
First citationMarignac, J. C. (1863). Ann. Chim. Phys. 3eme Ser. 69, 5–86.  Google Scholar
First citationMatsumoto, K., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009–1013.  CrossRef CAS Google Scholar
First citationMereiter, K. (2013). Acta Cryst. E69, i77–i78.  CSD CrossRef IUCr Journals Google Scholar
First citationMirzoev, R. S., Shetov, R. A., Ligidov, M. Kh. & El'mesova, R. M. (2010). Russ. J. Inorg. Chem. 55, 96–102.  CrossRef CAS Google Scholar
First citationMitra, R. P. & Verma, H. K. L. (1969). Indian J. Chem. 7, 598–602.  CAS Google Scholar
First citationOkada, K., Morikawa, H., Marumo, F. & Iwai, S. I. (1974). Bull. Tokyo Inst. Technol. 120, 7–11.  CAS Google Scholar
First citationPistorius, C. W. F. T. & Sharp, W. E. (1961). Acta Cryst. 14, 316–317.  CrossRef IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationRammelsberg, K. F. A. (1855). In Handbuch der Krystallographischen Chemie. Berlin: P. Jeanrenaud.  Google Scholar
First citationSaraiva, G. D., Luz-Lima, C., Freire, P. T. C., Ramiro de Castro, A. J., de Sousa, G. P., Melo, F. E. A., Silva, J. H. & Mendes Filho, J. (2013). J. Mol. Struct. 1033, 154–161.  CrossRef CAS Google Scholar
First citationScheiner, S. & Čuma, C. (1996). J. Am. Chem. Soc. 118, 1511–1521.  CrossRef CAS Google Scholar
First citationSears, V. F. (1992). Neutron News, 3, 26–37.  CrossRef Google Scholar
First citationSharma, R. P., Bala, R., Sharma, R. & Bond, A. D. (2005). Acta Cryst. C61, m356–m358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. C69, 1472–1477.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741.  CSD CrossRef IUCr Journals Google Scholar
First citationSoper, A. K. & Benmore, C. J. (2008). Phys. Rev. Lett. 101, 065502.  CrossRef PubMed Google Scholar
First citationSvanberg, L. & Struve, H. (1848). Phil. Mag. 3rd Ser. 33, 409–434.  Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUllik, F. (1867). Justus Liebigs Ann. Chem. 144, 204–233.  CrossRef Google Scholar
First citationWeil, M. & Bonneau, B. (2014). Acta Cryst. E70, 54–57.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZambonini, F. (1923). Z. Kristallogr. 58, 266–292.  Google Scholar
First citationZenker, F. E. (1853). J. Prakt. Chem. 58, 486–492.  CrossRef Google Scholar
First citationZhilova, S. B., Karov, Z. G. & El'mesova, R. M. (2008). Russ. J. Inorg. Chem. 53, 628–635.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 799-806
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds